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ABSTRACT. We give a characterization of convex functions in terms of difference among
values of a function. As an application, we propose an estimation of operator monotone
functions: If A > B > 0 and f is operator monotone on (0, co), then

f(A) - f(B) = f(IB] +¢) - f(IBI) >0,
where ¢ = ||(A — B)~!||7!. As a consequance, we give a refined estimation of Léwner-
Heinz inequality under the assumption A > B > 0. Moreover it gives a simple proof to
Furuta’s theorem: If log A > log B for A, B > 0 and f is operator monotone on (0, 00),
then there exists a 8 > 0 such that

f(A%) > f(B®) forall 0 < a < 8.

Finally we discuss strict positivity of Furuta inequality which is a beautiful extension of
Léwner-Heinz inequality.

1. INTRODUCTION

For a twice differentiable real-valued function f, its convexity is characterized by f” > 0.
Since there are many non-differentiable convex functions, we consider a characterization
of general convex functions. We cannot use the differentiation, but the average rate
of change is available. Roughly speaking, we claim that the convexity of a function is
characterized by the non-decreasingness of average rate of change. It seems to be natural
as a generalization of the condition f” > 0. Actually it will be formulated as Lemma 1

in the next section.

To explain operator monotone functions, we introduce the operator order A > B among
selfadjoint operators A, B on a Hilbert space H by (Az,z) > (Bz,z) forallz € H. In
particular, A is positive if A > 0, i.e., (Az,z) > 0 for all z € H. Next, a positive operator
A is said to be strictly positive, denoted by A > 0, if 4 > ¢ for some constant ¢ > 0. So

A > B means that A— B > 0.

A real-valued continuous function f defined on [0,00) is called operator monotone
if it preserves the operator order, i.e., f(4) > f(B) for A > B > 0. One of the most
important examples is the power function ¢ — # for 0 < p < 1 (Léwner-Heinz inequality).
In general, f is called operator monotone on an interval J if f (A) > f(B) for A > B
whose spectra contained in J. For this, we pose logt as a fundamental example of an

operator monotone function on (0, 00).

Very recently, Moslehian and Najafi [13] proposed an excellent extension of the Léwner-

Heinz inequality as follows:
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Theorem MN. IfA> B >0and0<r <1, then A" — B" > || A||" - (||A] — ¢)" > 0,
and log A — log B > log || Al| — log(||A]| — €) > 0, where e = ||(A— B)™*|| 7.

In this note, we apply our characterization of concave functions and give an improve-
ment and a generalization of Theorem MN (Theorem 5). As another application, we can
give a short proof to a recent result due to Furuta [9, Theorem 2.1], which is an oper-
ator inequality related to operator monotone functions and chaotic order, i.e., the order
defined by log A > log B among positive invertible operators.

Incidentally, this note is based on our paper [5].

2. A CHARACTERIZATION OF CONVEX FUNCTIONS

In this section, we propose an elementary characterization of convex functions. We
essentially use average rate of change.

Lemma 2.1. A real valued continuous function f on an interval J = [a,b) with b €
(—o0, +00] is convex (resp. concave) if and only if, for each 0 < € < b —a, D.(t) =
f(t+¢€) — f(t) is non-decreasing (resp. non-increasing) on [a,b— €).

Proof. Suppose that f is convex on J. Take s,t € J with s < tandt+e € J. We
may assume that ¢t — s < e. Let y = L(t) be the linear function through (s, f(s)) and
(s+¢, f(s+¢)). Then we have

L(t) > f(t) and L(t +¢) < f(t+¢)
by the convexity of f. Hence it implies that
D.(t) = f(t+¢) — f(t)
> L(t+¢) — L(t)
= L(s+¢€) — L(s) by the linearity of L
= fls+¢) - f(s)
= De(8)7
as desired.

Conversely suppose that D.(t) is non-decreasing. Take t, s € J with s <t = s + 2e.
Since D,(s) < D.(s + €), we have

25 (235) =265+ < Fls+ 20+ £5) = /O + S(s).

So f is convex. O

Corollary 2.2. If f is strictly increasing and concave on an interval [a,b+ 8] in R for
some & > 0, then for each 0 < € < 8, D(t) > D.(b) > 0 for all t € [a,b].

Remark 2.3. Analogous argument on convexity of functions as above has been done in
[12, page 2].
3. APPLICATIONS TO OPERATOR MONOTONE FUNCTIONS

As an application of Corollary 2.2, we give an estimation of operator monotone func-
tions.

Lemma 3.1. If f is non-constant and operator monotone on the interval Ry = [0, 00),
then f is strictly increasing.
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Proof. First of all, we note that f is non-decreasing. Next we suppose that f'(c) = 0 for
some ¢ > 0. Noting that the Lowner matrix

f'le)  fMc,d)
fH(d,e)  f(d)
is positive semidefinite for any d > 0 by the operator monotonicity of f, where (e, d) =

w is the devided difference.

Therefore its determinant is nonnegative, so that fM(c,d) = 0 for any d > 0. This
means that f is constant, which is a contradiction. Consequently we have f>0. O

Lemma 3.2. If C > 0 and f is a concave and strictly increasing function on an interval
[a,d) containing the spectrum of C, then for each 0 < € < d — ||C]|, f(C + e) > f(C)+
Dc(fcl).

Proof. We first note that for a given 0 < e < d — ||C||, we can take ¢ > 0 satisfying
0 <c<dande<c—|C|. Applying Corollary 2.2 to b = ||C|| and § = ¢ — ||C], it
follows that

f(C+e) = £(C) 2 D(||C]).
O
We here give a precise estimation of [9, Theorem 2.1] and [12, Proposition 2.2], cf. [13].

Theorem 3.3. If A> B > 0 and f is non-constant operator monotone on [0,00), then
f(4) = f(B) = f(IIBIl +€) — £(| BI) > 0, where e = ||(A — B)~|| .

Proof. Since A> B +efore= ||(A— B)™|~! > 0, we have
f(A) 2 f(B+e).
Furthermore Lemmas 3.1 and 3.2 imply that
F(B+¢€) > f(B) + D(||BI)).
Hence we have
f(A) = f(B) = D(lIBIl) = f(IIBll + ¢) — £(IIB]l) > 0.
O

As a consequence, we have an improvement of the estimation due to Moslehian and
Najafi [13]:
Corollary 3.4. f A>B>0and 0 <r <1, then A"~ B" > (|B|| + ¢)" — (| B|))" > 0,
and log A —log B > log(||B|| + €) — log || B|| > 0, where ¢ = ||(A — B)~Y||-L.

Remark 3.5. We note that Corollary 3.4 actually improves Theorem MN. Since Al -
(lAll =€) = e = (IB]| + ¢) — ||B|| and the function t — t" is strictly concave, it follows
that

IAI" = (Al = &) < (1Bl +¢)" — [|BII"

We here pose an example:

4 0 20
A=<O 2) and B=<0 1).
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IA]" = (Al - €)" =4" = 3" < (| Bl + ¢)" = ||B|I" = 8" - 2".

Now Theorem 3.3 can be regarded as a difference version. So we give a ratio version of
it. It is obtained by Theorem 3.3 itself:

ThenA—B=< )21andsoe=l. Hence we have

Corollary 3.6. If A> B >0 and f is non-constant operator monotone on (0,00), then
F(B) 2 f(A)F(B)™2 > 1+ (F(IBl +¢) — FUBIMIFBI T,

where ¢ = ||(A— B)7Y|~%

Proof. Put § = f(||B|| +¢€) — f(||B|). It follows from Theorem 3.3 that

F(B)2f(A)f(B)"% > f(B)"i(f(B) + 6)f(B)*
=146f(B)™ > 1+4[f(B)II™".
d

As another application of Theorem 3.3, we need the chaotic order: For A > 0, we can
define the selfadjoint operator log A. So a weaker order than the operator order appears
by log A > log B for A, B > 0. We call it the chaotic order. The chaotic order plays an
substantial role in operator inequalities. Among others, it brightens the Furuta inequality
(7, (3], [4], [1], [6], [10] and recent development of Karcher mean theory [16].

Now we give a simple and elementary proof to the following recent theorem [9, Theorem
2.1] due to Furuta, in which we don’t use any integral representation of operator monotone
functions.

Theorem 3.7. IflogA > logB for A, B > 0 and f is operator monotone on (0, 00),
then there exists 3 > 0 such that

f(A%) > f(B*) forall0<a<g.
Proof. Since log A > log B, it is known that there exists 3 > 0 such that
A*>B® foralld<a<p.
Therefore it follows from Theorem 3.3 that, for each fixed a € (0, 8],
£(4%) > £(B),
as desired. a

4., FURUTA INEQUALITY.

First of all, we cite the Furuta inequality (FI) in [7], see also [2], [8], [11] and [14] for
the best possibility of it.

The Furuta inequality. If A > B > 0, then for each r > 0,
A" > (AZBPA%)s
holds for p > 0, ¢ > 1 with
(14+r)g=>p+r.
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To extend Corollary 3.4, we remark that the case r = 0 in (FI) is just the Lowner—Heinz
inequality. Now we introduce a constant k(b, m, p, q, r) for b,m,p,q,r > 0 by

k(b,m,p,q,7) = (b+m) & T — b

As a matter of fact, we have an extension of Corollary 3.4 in the form of Furuta inequality
as follows: :

Theorem 4.1. Let A and B be invertible positive operators with A— B > m > 0. Then
forO<r <1,

A" — (AEBPAR):
holds forp >0, ¢ > 1 with (1 +7)q

k(IBIl, m,p,q,r)(IB7Y| 7t +m)"
p+r > qr.

Vv

Proof. We note that ¢ > 1 and (14 r)g > p+r > gr assure the exponent 2‘:—’ —r in the
constant k belongs to [0, 1]. Since 0 < r < 1, it follows from Theorem B that

A" — (A5BPA%)T = A®C — ASBY(BSATBE)c ' BiAT

= A% — ASBY(BTATBT) eBiAS
> A'" — AiBE(B BB %) uBRAS
— AT AEBP—(P-H)(l—%)A%

!
f-F

i

= AB(AT T - BT ) A
> k(I|B|l, m,p,q,m) A

> k(|| Bll,m,p,q,7)(B +m)"
> k(|| B|l,m,p,q,m)(IB7H 7 +m)"

O

For a general case on r, we have the following estimation of Furuta inequality by
repeating method as in a proof of Furuta inequality.

Theorem 4.2. Let A and B be invertible positive operators with A— B > m > 0 and
r =n+ s for some natural number n and 0 < s < 1. Then

A — (A5 BPAR)E > k(IBall ¥, maoa,p, 0,7 (IB7 ™ 4 m)°

holds forp>1, ¢> 1 withp+1>¢q > ’%1, where B, = AT BPA%,
M = k(| B8, Mn-1,0,¢, 1) (| B +m) forn>1

and mo = k(|| B||,m,p, ¢, s)(| B~*|| 7! +m)°.
Proof. Taking r =1 in the above theorem, we have

A - (43BPAY)T 2 k(|Bl,m,p,q, V(1B +m) = ma.
Next we put C' = A2BPA3. Since A > C#1 and 0 < s <1, it follows that

(A BPAT)T = (430A%)s
= A3CH(CEASCE) T CEAS
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< ARCH(CTiCwIC) T O A
= A3(C7)TRT A8,

Consequently we have

AT (A B AT
> AB((AT)PRTE  (0) R4S
1 prl=(g-1)s pfl-(a-1)s -1y- s
> ((ICe]) +my) 7 — ||| =5 ) (| B + m)°.

Taking s = 1 in the above, we have

pt2—q

AT — (ABPA)E > ((|CF] 4+ ma) 5 — ||CH |55 (|B7Y| ! + m)* == my.
Inductively we put D = ABPA and then we have

(A BPA )q:(A DAz)%SA%(D ) +2p+qz‘“A%
and so
AM (Azﬂzus BpAzﬂ)%
2 A%((Ap?,)pﬂ;iqz—l)a _ (D%)p+2;+§qz—12a )A%
1 p+2-(g-1)s p+2- 1_2_)_ 10—
> (D3|l +mg)™ 55 — || Ds| )(IBH|™ +m)°.
Repeating this, we obtain the conclusion. O

In the Furuta inequality, the optimal case where p > 1 and (1 +r)q = p + r is the
most important by virtue of the Lowner-Heinz inequality. So we would like to mention
the following result:

Corollary 4.3. Let A and B be invertible positive operators with A— B > m > 0. Then
AT — (ABBPAR)E > m((| BT + m)”
holds forp > 1 and r > 0.

Proof. First of all, we note that if ¢ = ’1’% for p > 1 and r > 0, then for each M > 0,
k(b, M,p,q,7) = M for arbitrary b > 0. Hence we have the conclusion for 0 < r < 1 by

Theorem 2.1.
Next, if » > 1, that is, r = n + s for some natural number n and 0 < s < 1, then

Theorem 2.2 implies that
AT — (AFBPAR)FF > mu (| BT+ m),
where m,,_; is the constant defined in Theorem 2.2. On the other hand, since
M1 = Mp_a(||B7| 7> +m) = muo(|B7H| ™ +m) =
=mo(|B7H|7" +m)" ™ = m(|B7Y| 7 +m)",

we get the desired lower bound. d
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5. CONCLUDING REMARKS.

We now pose a proof of Theorem 3.3 by the use of integral representation for operator
monotone functions.

Proof of Theorem 3.3. We first prepare the basic tool: If A > B > 0 and m = ||(4 —
B)~1|71, then

&1 SRR (= ey 7Tk

It is shown by

B'—A1>B' (B+m)'=mB(B+m)> =

IBlI([IB] +m)
because of A — B > m. Note that f admits the integral representation:

0 0 1 9
f)=a+ur [ 2t?ﬁﬂ@=a+%+/ (Lo Lt

—00

)dm(s)

t—s

where b > 0 and m(s) is a positive measure. Hence it follows that
0

ﬂm—ﬂm=wA—m+/'u+¥WB—@*—m—@*WM@

-0

2””*/0“+§)Qwﬁ—s‘wmjé+m)w“”

—C0

= f(IBIl+m) — f(IBI) (> 0).

O

Finally we discuss an operator extension of Lemma 2.1. Namely we may expect the
following conjecture:
A real valued function f on an interval J = (a,b) with b € (—o0, +00] is operator conver
if and only if, for each 0 < € < b — a, D.(t) is operator monotone on (a,b — ¢).
Unfortunately we have a negative answer as follows: We choose the function f(t) = % on
(0,00). It is a typical example of operator convex functions. Nevertheless, D;(t) = _E(_t-l-i-_lj
is not operator monotone. As a matter of fact, we take two 2 x 2 matrices A and B:

3 1 2 0
A=<1 2) and B=(0 1).

Note that D;(A) > Dy(B) if and only if A(A+ 1) > B(B +1). Clearly A > B, but
13 6 6 0 7 6
- men = (58 (3 9= (1 %) 20

This is a counterexample.
Incidentally, the operator convexity of the function % is easily shown as follows: It is
enough to prove the inequality

-1
(——A T B) < -;—(A‘1 + B™Y).

And it is simplified by putting C = A3 B~1A3 that
41+CHT<1+C,
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which follows from the numerical inequality 4 < (1 + z71)(1 + z).
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