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ABSTRACT. This is a r\’esum\’e of previously published results on an analogue of Mathias forcing
associated to the tree $\omega^{<\omega}$ endowed with a topology appointed by a set of filters.

1, INTRODUCTION

We shall consider the set
Seq $=\omega^{<\omega}=\cup\{^{n}\omega:n<\omega\}$

of all finite sequences of natural numbers. The set Seq is a tree with a natural order defined as
follows: for $s,$ $t\in$ Seq we set

$s\leq t\Leftrightarrow tr$ dom$(s)=s.$

The set of all immediate successors of an element $s\in$ Seq is denoted by

succ $(s)=$ { $t\in$ Seq: $t$ is minimal in $\{t\in$ Seq: $t>s\}$ }.
Hence succ $(s)=\{s^{-}n:n\in\omega\}$ , where $s^{rightarrow}k$ denotes the concatenation of sequence $s\in n\omega$ by a
number $k$ , i.e. $s^{-}k=s\cup\{(n, k)\}$ is the sequence that extends $s$ and whose last term is $k.$

Definition 1. Assume that $\mathfrak{F}=$ $(\mathcal{F}_{t}:t\in$ Seq$)$ , where $\mathcal{F}_{t}\subseteq \mathcal{P}(succ(t))$ is a collection of free
filters. $A$ set $U\subseteq$ Seq is open in the $\mathfrak{F}$-topology on Seq whenever

$(\forall s\in U)(\exists F\in \mathcal{F}_{s})(F\subseteq U)$ .

Then Seq$(\mathfrak{F})$ denotes the set Seq endowed with the $\mathfrak{F}$-topology.

The idea of $\mathfrak{F}$-topology on Seq has been given by Szyma\’{n}ski [10] and, independently, by
Trnkova [11]. Later on it was developed by several other authors. $A$ review of $\mathfrak{F}$-topologies and
their generalizations can be found in [2]. In this paper, in particular, one can find a proof of the
following theorem:

Theorem 1. For every $\mathfrak{F}=$ $(\mathcal{F}_{t}:t\in$ Seq$)$ the space Seq $(\mathfrak{F})$ is a zero-dimensional, nowhere
compact Hausdorff space. Moreover, Seq $(\mathfrak{F})$ is extremally disconnected iff all the filters in $\mathfrak{F}$ are
ultrafilters.

Here, nowhere compact means that every compact subset of the space is nowhere dense. In the
sequel we shall discuss the Boolean algebra $\mathbb{C}1op$(Seq $(\mathfrak{F})$ ) of all the clopen $(=$closed and open $)$

subsets of the space Seq $(\mathfrak{F})$ . Clearly, $\mathbb{C}1op$(Seq $(\mathfrak{F})$ ) is in fact a field of subsets of Seq. Theorem 1
immediately implies the following:

Corollary 1. The Boolean algebra $\mathbb{C}lop(Seq(3))$ is complete iff all the filters in $\mathfrak{F}$ are ultrafilters.
The space Seq $(\mathfrak{F})$ was used in a construction of a complete rigid Boolean algebra. Namely, it

was proved by Dow, Gubi and Szyma\’{n}ski [7] that if $\mathfrak{F}$ consists of one weak $P$-ultrafilter, then
the Boolean algebra $\mathbb{C}1op$(Seq(3)) is complete and rigid.

Let us recollect some well-known cardinal numbers connected to the set of all the functions
from $\omega$ to $\omega$ ordered by the relation $\leq^{*}$ defined as follows:

$f\leq^{*}g\Leftrightarrow(\exists n<\omega)(\forall k>n)(f(k)\leq g(k))$ .
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This relation leads to the following cardinal characteristics:
1. The dominating number $\mathfrak{d}$ is defined as follows:

$\mathfrak{d}=\min\{|D|:(\forall f\in\omega\omega)(\exists g\in D)(f\leq^{*}g)\}.$

2, The boundedness $\mathfrak{b}$ denotes the minimal cardinality of an unbounded subset of $\omega\omega$ , i.e.
$\mathfrak{b}=\min\{|U|:(\forall f\in\omega\omega)(\exists g\in U)(|\{n\in\omega:f(n)<g(n)\}|\geq\omega)\}.$

3. The cardinal number $\mathfrak{p}$ is defined as
$\mathfrak{p}=\min${ $|\mathcal{U}|:u\subseteq \mathbb{C}1op(\mathcal{P}(\omega^{*}))$ is centered and Int $\cap \mathcal{U}=\emptyset$ }.

It is well-known that:
$\omega<\mathfrak{p}\leq \mathfrak{b}\leq \mathfrak{d}\leq 2^{\omega}.$

The character of $a$ (free) filter denotes the character of the corresponding subset of $\omega^{*}$ , i.e. for
every (free) filter $\mathcal{F}\subseteq \mathcal{P}(\omega)$ there is

$\chi(\mathcal{F})=\chi(A_{\mathcal{F}}, \omega^{*})$ ,

where $A_{\mathcal{F}}=\cap\{c1_{\beta N}U:U\in \mathcal{F}\}.$

Using the cardinal $\mathfrak{d}$ one can calculate the character of a space Seq $(\mathfrak{F})$ at every point of Seq.

Proposition 1. For every $\mathfrak{F}=(\mathcal{F}_{t}:t\in Seq)$ and every $s\in$ Seq we have
$\chi(s, Seq(\mathfrak{F}))=\mathfrak{d}+\chi(\mathcal{F}_{S})$ .

2. $P_{\lambda}$ -FILTERS AND $P_{\lambda}$ -SETS

Since for every $s\in$ Seq the set succ $(s)$ of all the successors of $s$ is countable, in the definition
of $\mathfrak{F}$-topology on Seq instead of filters on $\mathcal{P}(succ(s))$ one can consider filters on $\mathcal{P}(\omega)$ . Let us
recall that all filters considered here are assumed to be free filters.

Definition 2. $A$ filter $\mathcal{F}\subseteq \mathcal{P}(\omega)$ is called a $P_{\lambda}$ -filter whenever for every family $\mathcal{R}\subseteq \mathcal{F}$ of size
less than $\lambda$ there exists $F\in \mathcal{F}$ such that $F\subseteq^{*}U$ for every $U\in \mathcal{F}.$ $A$ $P_{\omega_{1}}$ -filter is simply called
a $P$-filter.

Here, as usual, $F\subseteq^{*}U$ means that the set $F\backslash U$ is finite. In the virtue of the well-known
result of Shelah, $P$-ultrafilters do not exists in ZFC. However, it is quite easy to construct a
$P$-filter. In fact, if $\{U_{n}:n\in\omega\}$ consists of infinite subsets of $\omega$ and $U_{n+1}\subseteq^{*}U_{n}$ for every $n\in\omega,$

then there exists an infinite set $V\subseteq\omega$ such that $V\subseteq^{*}U_{n}$ for every $n<\omega$ . Hence, by transfinite
induction one can construct a sequence $\{U_{\alpha}:\alpha<\omega_{1}\}\subseteq \mathcal{P}(\omega)$ of infinite sets such that $U_{\alpha}\subseteq^{*}U_{\beta}$

for all $\beta<\alpha<\omega_{1}$ . Clearly, the family $\{U_{\alpha}:\alpha<\omega_{1}\}$ generates a $P$-filter.
For topological spaces we have an analogous definition,

Definition 3. For $\lambda\geq\omega$ and a topological space $X$ , a set $S\subseteq X$ is called a $P_{\lambda}$ -set provided that
$S$ is contained in the interior of the intersection of every family of size less than $\lambda$ consisting of
open neighborhoods of S. Also, a $P$ -set is just a $P_{\omega_{1}}$ -set.

Let us note that if a Tychonoff space $X$ is nowhere compact then $X$ is simultaneously dense
and boundary in the $\check{C}ech$-Stone compactification $\beta X$ . Hence, by Theorem 1, Seq $(\mathfrak{F})$ is dense
and boundary in $\beta$ Seq$(\mathfrak{F})$ . The next theorem has been recently proved in [3].

Theorem 2 (Blaszczyk and Brzeska [3]). If $\mathfrak{F}=(\mathcal{F}_{S}:s\in Seq)$ is a collection of $P_{\lambda}$ -filters and
$\omega<\lambda\leq \mathfrak{b}$ then the space Seq $(\mathfrak{F})$ is a $P_{\lambda}$ -set in $\beta$ Seq $(\mathfrak{F})$ .

From Theorem 2 we immediately obtain the following:

Corollary 2 (Simon [9]). If every filter in $\mathfrak{F}=(\mathcal{F}_{s}:s\in$ Seq$)$ is a $P$ -filter, then Seq $(\mathfrak{F})$ is a
$P$ -set in $\beta Seq(\mathfrak{F})$ .
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Corollary 3 (Juh\’asz and Szyma\’{n}ski [8]). If $\omega<\lambda\leq \mathfrak{b}$ and $\mathcal{F}_{s}=\mathcal{F}$ for every $s\in$ Seq, where $\mathcal{F}$

is a $P_{\lambda}$ -ultrafilter, then Seq $(\mathfrak{F})$ is a $P_{\lambda}$ -set in $\beta$ Seq $(\mathfrak{F})$ .
The theorem of Simon answers a question of $Arhangel’ ski\dot{i}$ whereas Juh\’asz-Szyma\’{n}ski’s the-

orem leads to some constructions in the theory of calibers and tightness in compact spaces.

3. REGULAR EMBEDDINGS

In this section we shall outline some further applications of Theorem 2 in the theory of Boolean
algebras. First, we shall recall some definitions. Let $\mathbb{B}$ be a Boolean algebra. $A$ subalgebra $\mathbb{A}\subseteq B$

is regular if for every set $X\subseteq A$ there is

$\sup_{A}X=1\Rightarrow\sup_{B}X=1.$

A Boolean algebra A is regularly embedded in a Boolean algebra $\mathbb{B}$ provided that there exists a
monomorphism of A into $\mathbb{B}$ such that the image of A is a regular subalgebra of $\mathbb{B}.$

The symbol $\omega 2$ in the next definition, given by Baumgartner [1], denotes the Cantor set.

Definition 4. $A$ filter $\mathfrak{F}\subseteq \mathcal{P}(\omega)$ is nowhere dense if for every $f:\omegaarrow\omega 2$ there exists a set
$A\in \mathfrak{F}$ such that $f[A]$ is a nowhere dense subset of the Cantor set.

The next theorem gives us an unexpected interrelation between nowhere dense ultrafilters
and Boolean algebras. Let us recall that a Boolean algebra $B$ is $\sigma$-centered if it is the union of
countably many ultrafilters. An element $b\in B\backslash \{O\}$ is an atom if there is no $a\in \mathbb{B}$ such that
$0<a<b$ . A Boolean algebra is atomless if it has no atoms and it is atomic whenever below
every element of $\mathbb{B}\backslash \{0\}$ there is an atom.

Theorem 3 (Blaszczyk and Shelah [4]). There exists a $\sigma$ -centered, atomless, complete Boolean
algebra which does not contain any atomless, countable, regular subalgebra iff there exists a
nowhere dense ultrafilter.

Easier part of Theorem 3 can be derived from the next theorem. $A$ proof of this theorem can
be obtained by some modification of Theorem 17 from [5].

Theorem 4. Assume that $\mathfrak{F}=$ $(\mathcal{F}_{s}:s\in$ Seq$)$ is a collection of filters. If $\mathcal{F}_{s}=\mathcal{F}$ for every
$s\in$ Seq, then the countable free algebra $\mathbb{F}r(\omega)$ can be embedded in $\mathbb{C}lop(Seq(\mathfrak{F}))$ as a regular
subalgebra iff the filter $\mathcal{F}$ is not nowhere dense.

The next theorem says that from the point of view of regular embeddings atomlessness is a
very essential requirement. For a Boolean algebra $\mathbb{B},$ $\pi(B)$ denotes the minimal size of a dense
subset of $\mathbb{B}.$

Theorem 5. Assume that $\mathfrak{F}=$ $(\mathcal{F}_{s}:s\in$ Seq$)$ is a collection of $P_{\lambda}$ -filters where $\omega<\lambda\leq \mathfrak{b}$ . If
$\mathbb{B}\subseteq \mathbb{C}lop(Seq(\mathfrak{F}))$ is a regular subalgebra and $\pi(\mathbb{B})<\lambda$ , then $\mathbb{B}$ is an atomic algebra.

A topological version of this theorem has been proved in [3]; see Theorem 3.6.

4. SKELETAL MAPPINGS

A continuous mapping $f:Xarrow Y$ is called skeletal whenever for every open and dense set
$G\subseteq Y$ the set $f^{-1}[G]$ is dense in $X$ . Skeletal maps are also known as semi-open mappings.
The mapping $f$ is semi-open whenever for every non-empty open set $U\subseteq X$ , the image $f[U]$

has a non-empty interior. It appears that skeletal mappings of topological spaces correspond to
regular embeddings of Boolean algebras.

Proposition 2. An embedding of Boolean algebms is regular iff the continuous surjection of the
corresponding mapping of Stone spaces is skeletal.

The following example shows that skeletal mappings are easy to construct.
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Example 1. If $\mathcal{U}$ is an infinite, maximal disjoint family of clopen subsets of a zero-dimensional
compact space $X$ , then the quotient mapping determined by the closed partition $\{\{U\}:U\in \mathcal{U}\}\cup$

$\{X\backslash \cup \mathcal{U}\}$ is a skeletal mapping onto the one-point compactification of the discrete space of
cardinality $|\mathcal{U}|.$

Clearly, if a continuous surjection is skeletal and the set of values is dense in itself, then the
domain has to be dense in itself as well. However, the above example shows that a skeletal
surjection can map a dense in itself compact space onto a space with a dense set of isolated
points. The next theorem, proved in [3] says a bit more about it,

Theorem 6. Assume that $\mathfrak{F}=(\mathcal{F}_{s}:s\in Seq)$ is a collection of $P_{\lambda}$ -filters where $\omega<\lambda\leq \mathfrak{b}$ . If $X$

is a Hausdorff space with $\pi w(X)<\lambda$ and a continuous surjection $f:\beta$ Seq $(\mathfrak{F})arrow X$ is skeletal
then the set of isolated points in $X$ is dense.

In connection to skeletal mappings Burke [6] has introduced the following notion:

Definition 5. $A$ continuous mapping $f:Xarrow Y$ is called nowhere constant if $f^{-1}(y)$ is nowhere
dense for every $y\in Y.$

Clearly, if $Y$ is a $T_{1}$ -space, a mapping $f:Xarrow Y$ is skeletal and the set $f[X]$ is dense in itself,
then $f$ is nowhere constant. Example 1 shows that in general the converse is not true: skeletal
mappings do not have to be nowhere constant. However, the following theorem of Burke shows
an interesting connection between nowhere constant and skeletal mappings.

Theorem 7 (Burke [6]). If $X$ is Tychonoff and there is a nowhere constant continuous function
from $X$ into $\mathbb{R}_{f}$ and $\pi w(X)<\mathfrak{p}$ , then there also exists a skeletal function from $X$ into $\mathbb{R}.$

In particular, the above theorem shows that if a compact metric space has a nowhere constant
mapping into the reals, then it has also a skeletal mapping into reals. Also, Burke [2] asked
whether there exists (in ZFC) a Tychonoff space of $\pi$-weight $\mathfrak{p}$ which has a nowhere constant
mapping onto $\mathbb{R}$ but does not have a skeletal mapping onto $\mathbb{R}$ . We give a partial answer to this
question.

Theorem 8. If $\mathfrak{F}=$ $(\mathcal{F}_{s}:s\in$ Seq$)$ is a collection of $P$-filters of character $\aleph_{1}$ , then the space
Seq $(\mathfrak{F})$ is a space of the $\pi$ -weight equal to $\mathfrak{d}$ which has a nowhere constant mapping into $\mathbb{R}$ but
does not have a skeletal mapping into $\mathbb{R}.$

The above theorem also shows that nowhere constant mapping does not have to be skeletal,
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