A VARIANT PROOF OF Con(b < a)

JÖRG BRENDLE AND ANDREW D. BROOKE-TAYLOR

Abstract. We present a variation of the proof in [2] of $\operatorname{Con}(\mathfrak{b} < \mathfrak{a})$, which in particular removes some of the obstacles to generalising the argument to cardinals $\kappa > \omega$.

§1. Introduction. The generalisations of cardinal characteristics of the continuum to cardinals κ greater than ω has generated significant interest recently. A particular result that has so far resisted attempts at generalisation is the statement that $\mathbf{b} < \mathbf{a}$ is consistent. Blass, Hyttinen and Zhang [1, Section 5] briefly survey the different approaches known for proving $\operatorname{Con}(\mathbf{b} < \mathbf{a})$, highlighting the difficulties each presents for a generalisation.

We present here a variation on the proof of $\operatorname{Con}(\mathfrak{b} < \mathfrak{a})$ given in [2], which we hope will be more amenable to generalisation. In particular, the proof in [2] relies on a rank argument, which of course cannot be naïvely generalised to uncountable κ . We show here that it may be replaced by a suitable formulation in terms of games, which *does* generalise to higher κ . Indeed, with this observation, the question of forcing $\mathfrak{b}_{\kappa} > \mathfrak{a}_{\kappa}$ for some suitable large cardinal κ seems to boil down to interesting questions about the existence of suitable filters on κ .

§2. Preliminaries. Let κ be an infinite cardinal. A family $\mathcal{A} \subseteq [\kappa]^{\kappa}$ is called *almost disjoint* if $|A \cap B| < \kappa$ for any two distinct members A and B of \mathcal{A} . \mathcal{A} is a maximal almost disjoint family (mad family, for short) if \mathcal{A} is almost disjoint and maximal with this property. This means that for every $C \in [\kappa]^{\kappa}$ there is $A \in \mathcal{A}$ such that $|A \cap C| = \kappa$. The almost disjointness number \mathfrak{a}_{κ} is the least

Received by the editors December 19, 2013.

Partially supported by Grant-in-Aid for Scientific Research (C) 24540126, Japan Society for the Promotion of Science.

Written while holding a JSPS Postdoctoral Fellowship for Foreign Researchers at Kobe University and supported by JSPS Grant-in-Aid no. 23 01765.

size of a mad family on κ of size at least $cf(\kappa)$ (equivalently, of size $> cf(\kappa)$). In case $\kappa = \omega$ write **a** for \mathbf{a}_{ω} .

Now assume κ is a regular cardinal. For functions $f, g \in \kappa^{\kappa}$, say that g eventually dominates f ($f \leq^* g$ in symbols) if $f(\alpha) \leq g(\alpha)$ holds for all α beyond some $\alpha_0 < \kappa$. The unbounding number \mathfrak{b}_{κ} is the least size of an unbounded family \mathcal{F} in the order (κ^{κ}, \leq^*). That is, for all $g \in \kappa^{\kappa}$ there is $f \in \mathcal{F}$ with $f(\alpha) > g(\alpha)$ for cofinally many α 's. Again we write \mathfrak{b} instead of \mathfrak{b}_{ω} .

Let \mathcal{F} be a filter on ω . Mathias forcing $\mathbb{M}(\mathcal{F})$ with \mathcal{F} consists of conditions (s, F) such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max(s) < \min(F)$. $\mathbb{M}(\mathcal{F})$ is ordered by $(t, G) \leq (s, F)$ if $s \subseteq t \subseteq s \cup F$ and $G \subseteq F$. It is well-known and easy to see that $\mathbb{M}(\mathcal{F})$ is a σ -centered forcing which introduces a pseudointersection Z of the filter \mathcal{F} . This means that $Z \subseteq^* F$ for all $F \in \mathcal{F}$, where \subseteq^* denotes almost inclusion: $A \subseteq^* B$ iff $A \setminus B$ is finite.

In [2], the notion of *pseudocontinuity* is used. This notion and the corresponding basic lemma can be nicely phrased in terms of continuity with respect to an appropriate topology.

DEFINITION 1. The initial segment topology on ω is the topology which has the (von Neumann) ordinals as open sets. We denote ω endowed with this topology by ω_i .

DEFINITION 2. A function to ω or ω^{ω} is pseudocontinuous if it is continuous as a function to ω_i or ω_i^{ω} respectively.

Thus, a pseudocontinuous function $F: X \to \omega$ is one such that for every $n \in \omega$, the set of x in X with image at most n is open.

LEMMA 3. Compact sets in ω_i and ω_i^{ω} are bounded. In particular, any pseudocontinuous image in ω or ω^{ω} of a compact set must be bounded.

PROOF. The Lemma is clear for ω_i . Similarly, compact $K \subset \omega_i^{\omega}$ are in fact bounded in the strict (not just \leq^*) sense. Otherwise, there would be some m in ω such that f(m) is unbounded in ω for $f \in K$, and then the open sets $\mathcal{O}_{m,n} = \{f \in \omega_i^{\omega} \mid f(m) \leq n\}$ for $n < \omega$ would form an open cover of K with no finite subcover. \dashv

As usual we may identify $\mathcal{P}(\omega)$ with 2^{ω} by way of the map taking sets to their characteristic functions, $\chi : X \mapsto \chi_X$. We give $\mathcal{P}(\omega)$ the corresponding topology, making χ a homeomorphism from $\mathcal{P}(\omega)$ to the Cantor space 2^{ω} . DEFINITION 4. For any cardinal λ , we call a filter $\mathcal{G} \subseteq \mathcal{P}(\omega)$ a K_{λ} filter if it is generated by the union of fewer than λ many compact
subsets of $\mathcal{P}(\omega)$. We write K_{σ} for K_{\aleph_1} .

LEMMA 5. If K_0, \ldots, K_{n-1} are (finitely many) compact subsets of $\mathcal{P}(\omega)$, then the pointwise intersection

$$\bigwedge_{i < n} K_i = \left\{ \bigcap_{i < n} G_i \mid (G_0, \dots, G_{n-1}) \in \prod_{i < n} K_i \right\}$$

and the pointwise union

$$\bigvee_{i < n} K_i = \left\{ \bigcup_{i < n} G_i \mid (G_0, \dots, G_{n-1}) \in \prod_{i < n} K_i \right\}$$

are compact. Furthermore, for any compact set $K \subseteq \mathcal{P}(\omega)$, the upward closure

$$\bar{K} = \{A \in \mathcal{P}(\kappa) \mid \exists B \in K(A \supseteq B)\}$$

is also compact.

PROOF. The product $\prod_{i < n} K_i$ is compact by the Tychonoff theorem, and the functions $\mathcal{P}(\omega)^n \to \mathcal{P}(\omega)$ given by $(G_0, \ldots, G_{n-1}) \mapsto \bigcap_{i < n} G_i$ and $(G_0, \ldots, G_{n-1}) \mapsto \bigcup_{i < n} G_i$ are clearly continuous, so $\bigwedge_{i < n} K_i$ and $\bigvee_{i < n} K_i$ are compact. Finally, for compact $K \subseteq \mathcal{P}(\omega)$, \overline{K} is just $K \vee \mathcal{P}(\omega)$.

§3. The proof. We work in a model V of ZFC in which $\lambda = \mathfrak{c}^V$ is a regular cardinal satisfying $2^{\lambda} = \lambda^+$, and there is an unbounded, <*-well-ordered sequence $\langle f_{\alpha} : \alpha < \lambda \rangle$ of strictly increasing functions from ω to ω . For example, any model of GCH will suffice as a ground model, and these properties will be preserved in intermediate stages of our forcing iteration.

Let \mathcal{A} be an infinite maximal almost disjoint family in V of subsets of ω .

THEOREM 6. There is a ccc forcing $\mathbb{P}(\mathcal{A})$ such that

 $\Vdash_{\mathbb{P}(\mathcal{A})} \mathcal{A} \text{ is not mad and } \langle f_{\alpha} : \alpha < \lambda \rangle \text{ is still unbounded.}$

PROOF. Let $\mathcal{F} = \mathcal{F}(\mathcal{A})$ be the dual filter of \mathcal{A} , that is, the filter generated by the sets whose complements are finite or in \mathcal{A} . Note that this filter is proper: if for some $k < \omega$ there were $\{A_i \mid i < k\} \subset$ \mathcal{A} such that $|\bigcap_{i < k} \omega \setminus A_i| < \omega$, any other element of \mathcal{A} would have infinite intersection with one of the A_i , violating almost disjointness. Note that the generic subset of ω introduced by Mathias forcing with \mathcal{F} , or any filter extending \mathcal{F} , will end the madness of \mathcal{A} , as it will be almost contained in $\omega \smallsetminus A$ for every $A \in \mathcal{A}$.

First we add λ many Cohen reals. It is well-known that the unboundedness of $\langle f_{\alpha} : \alpha < \lambda \rangle$ is preserved in this intermediate extension. In case \mathcal{A} is not mad anymore in this extension we are done. Also, if \mathcal{F} is contained in a K_{λ} filter \mathcal{G} in the intermediate extension, we may simply force with $\mathbb{M}(\mathcal{G})$ for it is well-known, and easy to see [2, 3.2], that Mathias forcing with a K_{λ} -filter does not destroy the unboundedness of $\langle f_{\alpha} : \alpha < \lambda \rangle$. So assume that \mathcal{F} is not contained in any K_{λ} -filter.

We shall recursively construct a filter $\mathcal{G} \supseteq \mathcal{F}$ such that furthermore

(*)
$$\Vdash_{\mathbb{M}(\mathcal{G})} \langle f_{\alpha} : \alpha < \lambda \rangle$$
 is unbounded.

Along the construction we shall take care of every potential $\mathbb{M}(\mathcal{G})$ name for a function in ω^{ω} , either "killing it" or "sealing it off".

To be precise: let us refer to partial functions $\tau : [\omega]^{<\omega} \times \omega \longrightarrow \omega$ as preterms, and let $\mathcal{T} = \{\tau_{\beta} : \beta < \lambda\}$ be an enumeration of the set of all preterms. Note in particular that if $\mathcal{G} \supseteq \mathcal{F}$ is a filter and \dot{g} is an $\mathbb{M}(\mathcal{G})$ -name for a function in ω^{ω} , then $\tau = \tau_{\dot{g}}$ given by

$$r(s,m) = n \text{ iff } \exists G \in \mathcal{G}((s,G) \Vdash \dot{g}(m) = n)$$

is a preterm, the preterm associated with \dot{g} . We shall constrain attention to names \dot{g} such that $\mathbb{1} \Vdash_{\mathbb{M}(\mathcal{G})} \dot{g} \in \omega^{\omega}$, since every function from ω to ω in the generic extension has such a name; we call such names total names.

We construct filters \mathcal{G}_{β} for $0 \leq \beta \leq \lambda$, starting from $\mathcal{G}_0 = \mathcal{F}$, such that

• for each $\beta < \lambda$, $\mathcal{G}_{\beta+1}$ is generated by \mathcal{G}_{β} and a K_{σ} filter \mathcal{H}_{β} ,

• $\mathcal{G}_{\delta} = \bigcup_{\beta < \delta} \mathcal{G}_{\beta}$ for each limit ordinal $\delta \leq \lambda$,

and either

(KILL): for all filters $\mathcal{H} \supseteq \mathcal{G}_{\beta+1}$, τ_{β} is not associated with any total $\mathbb{M}(\mathcal{H})$ -name, or

(SEAL): there is an $\alpha < \lambda$ such that for all filters $\mathcal{H} \supseteq \mathcal{G}_{\beta+1}$ and all $\mathbb{M}(\mathcal{H})$ -names \dot{g} , if $\tau_{\dot{g}} = \tau_{\beta}$ then $\Vdash_{\mathbb{M}(\mathcal{H})} \dot{g} \not\geq^* \check{f}_{\alpha}$.

Clearly any filter $\mathcal{G} \supseteq \mathcal{G}_{\lambda}$ will then satisfy (*).

So suppose \mathcal{G}_{β} has been defined for some $\beta < \lambda$; we wish to find an appropriate K_{σ} filter \mathcal{H}_{β} . Note that \mathcal{G}_{β} is generated by \mathcal{F} and a K_{λ} filter \mathcal{G}'_{β} ; without loss of generality we may assume that \mathcal{F} contains all cofinite subsets of ω . Let \mathcal{K}_{β} be a family of fewer than λ many compact subsets of 2^{ω} generating \mathcal{G}'_{β} . By Lemma 5, we may assume that \mathcal{K}_{β} is closed under finite pointwise intersections, and that for all $K \in \mathcal{K}_{\beta}$, K is upwards-closed under \subseteq , so that $\mathcal{G}'_{\beta} = \bigcup \mathcal{K}_{\beta}$.

Everything that has come so far can actually be considered to have occurred in a partial extension model, between the original model and the full extension with λ -many Cohens. More explicitly, all (codes of) elements of \mathcal{K}_{β} belong to this intermediate model.

Let \subset_{ee} denote the strict end-extension relation on $[\omega]^{<\omega}$: that is, $s \subset_{ee} s'$ if and only if $s \subset s'$ and $\max(s) < \min(s' < s)$; define \subseteq_{ee} , \supset_{ee} and \supseteq_{ee} accordingly.

In [2], a rank function was used. For our generalisation, we take a different approach using games, but use these games to much the same end as the rank function is used in [2]. It should be noted that our games are very closely related to the games independently introduced by Guzmán, Hrušák, and Martínez [3], also in the context of a proof of $\text{Con}(\mathbf{b} < \mathbf{a})$.

Let $\tau = \tau_{\beta}$.

DEFINITION 7. Given $\tau \in \mathcal{T}$, the τ nominalisation exercise is the following game. There are two players, Sensei and Student. On turn 0, Sensei chooses an $m \in \omega$ and $t_0 \in [\omega]^{<\omega}$. At odd stages 2d + 1, Student plays a filter set $F(d) \in \mathcal{F}$ and a compact set $K(d) \in \mathcal{K}_{\beta}$. At even stages 2d + 2, Sensei plays an element t_{d+1} of $[\omega]^{<\omega}$ such that

- t_{d+1} end-extends t_d
- $t_{d+1} \smallsetminus t_d \subseteq F(d)$
- $t_{d+1} \setminus t_d$ meets every member of K(d).

If there is $s \subseteq t_{d+1}$ end extending t_0 such that $(s,m) \in \text{dom}(\tau)$, Sensei declares Student to have passed and the game ends. If the game continues for infinitely many stages, then (clearly) Student has failed.

Note that, since \mathcal{G}_{β} is a filter, and by compactness of K(d), a t_{d+1} satisfying the requirements always exists. Also notice that if Student wins, he wins after finitely many steps. Hence the game is open and, by the classical Gale-Stewart Theorem, determined.

As in [2], we now distinguish two cases (in [2] they are *Subcases*), corresponding to options (KILL) and (SEAL) above.

3.1. Case a. There are $m \in \omega$ and $t_0 \in [\omega]^{<\omega}$ such that Sensei has a winning strategy in the τ nominalisation exercise with 0th move (m, t_0) : play will continue for infinitely many steps. In this case we

shall choose \mathcal{H}_{β} in such a way that (KILL) holds: τ will not correspond to a name for a function $\omega \to \omega$ in the generic extension. The reader may wish to remember which case is which by the mnemonic "the τ that can be named is not the eternal τ ."

We shall actually work in the extension of such the intermediate model by one further Cohen function $c: \omega \to \omega$.

Consider the tree T of all possible sequences of plays $(t_0, t_1, t_2, ...)$ for Sensei according to his strategy, corresponding to all possible plays of Student. Note that T is infinitely branching since \mathcal{F} extends the Frechet filter. Use the Cohen function c to choose a branch through T, and denote the union of the t_i of this branch by G. There is no (s, m) with m from Sensei's first move and $t_0 \subseteq_{ee} s \subseteq G$ such that $(s, m) \in \text{dom}(\tau_{\beta})$. Indeed otherwise, the τ_{β} nominalisation exercise would have ended once Sensei played t_d sufficiently long to cover s. Thus, for any filter $\mathcal{H} \ni G$, $\tau \neq \tau_{g}$ for any total $\mathbb{M}(\mathcal{H})$ name \dot{g} . We may therefore simply take $\mathcal{H}_{\beta} = \{G\}$ in order to satisfy (KILL). To check that $\{G\} \cup \mathcal{G}_{\beta}$ generates a filter, consider any $F \in \mathcal{F}$ and $G' \in \mathcal{G}'_{\beta}$, say G' is in the compact set $K \in \mathcal{K}_{\beta}$. For every $t_d \in T$, there is a successor node t_{d+1} in the tree T that is Sensei's response, according to his strategy, to Student playing F and K, and so in particular this t_{d+1} meets the intersection of F and every member of K. Thus, by Cohen genericity we have that $|G \cap F \cap G'| = \omega$, completing Case a. (Note that G' may not belong to the intermediate model; this, however, is irrelevant for it is sufficient that K does. By genericity the Cohen real c will produce infinitely many d such that clearly absolute and thus also holds for G'.)

3.2. Case b. The negation of Case a: for every 0th move (m, t_0) by Sensei, Student has a winning strategy in the τ_{β} nominalisation exercise. In this case we wish to choose \mathcal{H}_{β} in such a way that (SEAL) holds.

Since Sensei chooses his moves from a countable set, there are clearly only countable many filter sets $F_{\ell} \in \mathcal{F}, \ell \in \omega$, which appear as F(d) in some 2d + 1st move of Student playing according to his strategy.

Suppose that for all but less than λ many members A of \mathcal{A} , there is $G \in \mathcal{G}'_{\beta}$ such that $A \cap G$ is finite. Then, adding less than λ many sets of the form $\omega \setminus A$, $A \in \mathcal{A}$, to \mathcal{G}'_{β} results in a K_{λ} filter containing \mathcal{F} . This contradicts our initial assumption. Hence, for λ many $A \in \mathcal{A}$, $A \cap G$ is infinite for all $G \in \mathcal{G}'_{\beta}$. Let $A_j, j \in \omega$, be countably many

such A's such that for each j and ℓ , A_j is almost contained in F_{ℓ} : this is possible because \mathcal{F} is the dual filter of the mad family \mathcal{A} .

For each $G' \in \mathcal{G}'_{\beta}$, $k \in \omega$, $j \in \omega$, and finite subset T of $[\omega]^{<\omega}$, we define a function $f_{G',k,j,T} : \omega \to \omega$ as follows.

$$f_{G',k,j,T}(m) = \min\{n \mid \text{for any partition } A_j = \bigcup_{i < k} B_i \text{ there is } i < k \text{ s.t.} \\ \forall t \in T \exists s \supset_{ee} t(s \smallsetminus t \subseteq B_i \cap G' \land \tau_\beta(s,m) \le n) \}.$$

LEMMA 8. For every $G' \in \mathcal{G}'_{\beta}$, $k, j \in \omega$, and $T \in [[\omega]^{<\omega}]^{<\omega}$, $f_{G',k,j,T}$ is well-defined.

PROOF. Fix $m \in \omega$. Given a partition $\{B_i \mid i < k\}$ of A_j , let "n suffices for $\{B_i \mid i < k\}$ " mean the natural thing in the context of the definition of $f_{G',k,j,T}$, namely, that there is i < k such that for every $t \in T$ there is $s \supset_{ee} t$ with $s \setminus t \subseteq B_i \cap G'$ and $\tau_\beta(s,m) \leq n$. So now fix a partition $\{B_i \mid i < k\}$ of A_j ; we shall show that there is a $n \in \omega$ that suffices for it. Let i < k be such that $|B_i \cap G' \cap G| = \omega$ for every $G \in \mathcal{G}'_\beta$: such an i must exist, since A_j has infinite intersection with every member of the filter \mathcal{G}'_β . Finally, fix $t \in T$.

Consider a play of the τ_{β} naming exercise in which Student follows his strategy, Sensei's 0th move is (m, t_0) with $t_0 = t$, and his later moves always satisfy the additional requirement $t_{d+1} \setminus t_d \subseteq B_i \cap G'$. Since B_i is almost contained in all F(d) played by Student according to his strategy and since B_i has infinite intersection with all $G \in \mathcal{G}'_{\beta}$, Sensei always has a valid such move.

So we have that eventually Sensei plays a t_d such that

$$\exists n_t \in \omega \exists s \subseteq t_d (s \supset_{ee} t \land \tau_\beta(s, m) = n_t).$$

Of course, by the construction of the game, $s \setminus t_0 \subseteq B_i \cap G'$. Taking such an n_t for each $t \in T$ and setting $n = \max_{t \in T}(n_t)$, we have that n suffices for $\{B_i \mid i < k\}$.

Now, with k still fixed but allowing the partition $\{B_i \mid i < k\}$ to vary, let us denote by $n(\{B_i \mid i < k\})$ the least n that suffices for $\{B_i \mid i < k\}$. The space of partitions of A_j into k pieces can be identified with k^{A_j} and thus when endowed with the product topology is a compact topological space. Moreover, with this topology on the space of partitions, the function n sending $\{B_i \mid i < k\}$ to $n(\{B_i \mid i < k\})$ is clearly pseudocontinuous, since n being sufficient for $\{B_i \mid i < k\}$ is witnessed by finitely many finite tuples $s \setminus t$ from B_i , which of course define an open set in k^{A_j} . Thus by Lemma 3 the image of the function n is bounded below ω . The least such upper bound will be $f_{G',k,j,T}(m)$, and it follows that $f_{G',k,j,T}$ is well-defined. \dashv

LEMMA 9. There exists an $\alpha < \lambda$ such that for all $G' \in \mathcal{G}'_{\beta}$, $k, j \in \omega$ and $T \in [[\omega]^{<\omega}]^{<\omega}$, $f_{\alpha} \not\leq^* f_{G',k,j,T}$.

PROOF. We first note that, given k, j, T, and compact $K \in \mathcal{K}_{\beta}$, the function $f_{\cdot,k,j,T}$ sending G' to $f_{G',k,j,T}$ is pseudocontinuous from K to ω^{ω} , by much the same argument as in the proof of Lemma 8. Indeed, fixing m and n, $\{G' \mid f_{G',k,j,T}(m) \leq n\}$ is open in K.

We thus have from Lemma 3 that for each $K \in \mathcal{K}_{\beta}$, $f_{\cdot,k,j,T}$ "K is bounded in ω^{ω} , say by h_K . Since \mathcal{K}_{β} has fewer than λ many elements, there is an $\alpha < \lambda$ such that f_{α} is not eventually dominated by any of the h_K , and hence not by any $f_{G',k,j,T}$.

We now show that α as given by Lemma 9 will make (SEAL) hold for an appropriate choice of \mathcal{H}_{β} . Given $t \in [\omega]^{<\omega}$, $G \in \mathcal{P}(\omega)$, and $m \in \omega$, let

$$g_{t,G}^{\beta}(m) = \min\{n \mid \exists s \supseteq_{ee} t(s \setminus t \subseteq G \land \tau_{\beta}(s,m) = n)\}$$

if the set on the right hand side is non-empty, and otherwise put $g_{t,G}^{\beta}(m) = \omega$. Thus, $g_{t,G}^{\beta}$ is a function in $(\omega + 1)^{\omega}$. Let $\alpha < \lambda$ be such that f_{α} is not dominated by any $f_{G',k,j,T}$, as given by Lemma 9, and define

$$\mathcal{H}_{\beta} = \{ H \subseteq \omega \mid \exists t \in [\omega]^{<\omega} (g_{t,\omega \smallsetminus H}^{\beta} \geq^* f_{\alpha}) \}.$$

Note that given $t \in [\omega]^{<\omega}$ and $m_0 \in \omega$, the set

$$\left\{ H \subseteq \omega \mid \forall m \ge m_0 \left(g_{t,\omega \smallsetminus H}^\beta(m) \ge f_\alpha(m) \right) \right\}$$

is closed in $\mathcal{P}(\omega)$, and hence compact. Therefore, \mathcal{H}_{β} is a K_{σ} set.

To see that this set is an appropriate choice of \mathcal{H}_{β} as called for above, we check the following.

CLAIM 10. Any filter $\mathcal{H} \supseteq \mathcal{H}_{\beta}$ satisfies (SEAL).

PROOF. Let $\mathcal{H} \supseteq \mathcal{H}_{\beta}$ be a filter, and assume $\tau_{\beta} = \tau_{\dot{g}}$ for some $\mathbb{M}(\mathcal{H})$ -name \dot{g} for a function in ω^{ω} . Suppose there were $(t, G) \in \mathbb{M}(\mathcal{H})$ and $m_0 \in \omega$ such that

$$(t,G) \Vdash_{\mathbb{M}(\mathcal{H})} \forall m \ge \check{m}_0 (\dot{g}(m) \ge \dot{f}_\alpha(m)).$$

By the definition of $g_{t,G}^{\beta}$, we must then also have $g_{t,G}^{\beta}(m) \geq f_{\alpha}(m)$ for all $m \geq m_0$. So $\omega \smallsetminus G \in \mathcal{H}_{\beta} \subseteq \mathcal{H}$, contradicting the fact that \mathcal{H} is a filter.

CLAIM 11. $\mathcal{H}_{\beta} \cup \mathcal{G}_{\beta}$ generates a filter.

PROOF. We take $F \in \mathcal{F}, G' \in \mathcal{G}'_{\beta}$, and for some $k < \omega, H_i \in \mathcal{H}_{\beta}$ for i < k, and argue that $F \cap G' \cap \bigcap_{i < k} H_i$ has cardinality ω . Assume for the sake of contradiction that $F \cap G' \subseteq^* \bigcup_{i < k} \omega \setminus H_i$. For each i < k, fix $t_i \in [\omega]^{<\omega}$ such that $g_{t_i,\omega \smallsetminus H_i}^{\beta} \ge^* f_{\alpha}$. Also fix j such that $A_j \subseteq^* F$. Without loss of generality, we may take $a < \omega$ such that $A_j \smallsetminus a \subseteq F, \ F \cap G' \smallsetminus a \subseteq \bigcup_{i < k} \omega \smallsetminus H_i \ ext{and} \ \max(t_i) \ge a \ ext{for every}$ i < k (if necessary by extending each t_i with a sufficiently large element of $\omega \setminus H_i$: this can only increase the values of $g_{t_i,\omega \setminus H_i}^{\beta}$). Fix $m_0 \in \omega$ such that $g_{t_i, \omega \setminus H_i}^{\beta}(m) \geq f_{\alpha}(m)$ for all $m \geq m_0$ and i < k. Let $T = \{t_i \mid i < k\}$ and let $\{B_i \mid i < k\}$ be a partition of A_j such that $B_i \cap G' \smallsetminus a \subseteq \omega \smallsetminus H_i$ for all i < k. By the definition of f_{α} , there is some $m > m_0$ such that $f_{\alpha}(m) > f_{G',k,j,T}(m)$; take such a m, and denote $f_{G',k,j,T}(m)$ by n. By the definition of $f_{G',k,j,T}$, there is an *i* such that for all $t \in T$, there is $s \supset_{ee} t$ such that $\tau_{\beta}(s, m) \leq n$ and $s \\ t$ is a subset of the intersection of G' and B_i . In particular, $\min(s \setminus t_i) > \max(t_i) \ge a, \ s \setminus t_i \subset B_i \cap G', \ \text{and} \ \tau_{\beta}(s,m) \le n.$ Thus $s \setminus t_i \subseteq \omega \setminus H_i$, from which we have $g_{t_i,\omega \setminus H_i}^{\beta}(m) \leq n < f_{\alpha}(m)$, contradicting the choice of m_0 .

This completes the construction of $\mathcal{G}_{\beta+1}$ from \mathcal{G}_{β} , and hence the proof of Theorem 6.

We are now ready for the consistency of $\mathbf{b} < \mathbf{a}$. Recall from the beginning of this section that our ground model V satisfies $\mathbf{c} = \lambda$ is regular, $2^{\lambda} = \lambda^{+}$, and $\langle f_{\alpha} : \alpha < \lambda \rangle$ is unbounded <*-well-ordered.

THEOREM 12. There is a ccc forcing \mathbb{P} such that

 $\Vdash_{\mathbb{P}} \mathfrak{a} = \lambda^+ \text{ and } \langle f_\alpha : \alpha < \lambda \rangle \text{ is still unbounded.}$

In particular, $\mathbf{b} \leq \lambda < \lambda^+ = \mathbf{a}$ is consistent.

PROOF. Perform a finite support iteration of orderings of type $\mathbb{P}(\mathcal{A})$ of length λ^+ , going through all (names for) mad families along the way by a bookkeeping argument (this is possible by the assumption $2^{\lambda} = \lambda^+$). The unboundedness of $\langle f_{\alpha} : \alpha < \lambda \rangle$ is preserved in the successor step of the iteration by Theorem 6 and in the limit step, by standard preservation results.

REFERENCES

[1] ANDREAS BLASS, TAPANI HYTTINEN, and YI ZHANG, Mad families and their neighbors, preprint.

[2] JÖRG BRENDLE, Mob families and mad families, Archive for Mathematical Logic, vol. 37 (1998), pp. 183–197.

[3] OSVALDO GUZMÁN, MICHAEL HRUŠÁK, and ARTURO ANTONIO MATÍNEZ, Canjar filters, preprint.

GROUP OF LOGIC, STATISTICS AND INFORMATICS, GRADUATE SCHOOL OF SYSTEM INFORMATICS, KOBE UNIVERSITY ROKKO-DAI 1-1, NADA, KOBE, 657-8501 JAPAN *E-mail*: brendle@kurt.scitec.kobe-u.ac.jp

E-mail: andrewbt@kurt.scitec.kobe-u.ac.jp