THE APPROXIMATION PROPERTY AND THE CHAIN CONDITION

Toshimichi Usuba (薄葉 季路)
Organization of Advanced Science and Technology
Kobe University

1. THE APPROXIMATION PROPERTY

Definition 1.1. Let \mathbb{P} be a poset and κ a cardinal. We say that the poset \mathbb{P} has the κ-approximation property if for every ordinal τ and every $f \in (\tau^2)^V$, if $f|\tau \in V$ for every $x \in (|\tau|^\kappa)^V$, then $f \in V$.

It is known that for an uncountable κ, if \mathbb{P} is an atomless poset of size $< \kappa$ and \dot{Q} is a \mathbb{P}-name for a κ-closed poset, then $\mathbb{P} * \dot{Q}$ has the κ-approximation property (e.g., see Mitchell [1]). In this note, we show that the size assumption for a poset \mathbb{P} can be relaxed to the chain condition assumption.

Definition 1.2. Let κ be a regular uncountable cardinal. A poset \mathbb{P} satisfies the strong κ-chain condition (strong κ-c.c., for short) if \mathbb{P} satisfies the κ-c.c. and for every κ-Suslin tree T, \mathbb{P} does not add a cofinal branch of T.

Note 1.3. (1) If there is no κ-Suslin tree, then the κ-c.c. is equivalent to the strong κ-c.c.

(2) For a poset \mathbb{P}, if $\mathbb{P} \times \mathbb{P}$ satisfies the κ-c.c., then \mathbb{P} satisfies the strong κ-c.c.

Lemma 1.4. If a poset \mathbb{P} satisfies the μ-c.c. for some $\mu < \kappa$, then \mathbb{P} satisfies the strong κ-c.c. In particular, every poset of size $< \kappa$ satisfies the strong κ-c.c.

Proof. Suppose to the contrary that there is a κ-Suslin tree T such that $\models_\mathbb{P} "T$ has a cofinal branch $\dot{B}"$. Let $T' = \{ t \in T : p \models_\mathbb{P} "t \in \dot{B}" \text{ for some } p \in \mathbb{P} \}$. It is easy to check that T' is a downward closed subtree of T of height κ. Since \mathbb{P} satisfies the μ-c.c. and $\mu < \kappa$, each level of T' has size $< \mu$. Now, by Kurepa's theorem, T' has a cofinal branch. Then this branch is a cofinal branch of T, this is a contradiction. \hfill \Box

The following is a main result of this note:

Lemma 1.5. Let κ be a regular uncountable cardinal. Let \mathbb{P} be an atomless poset which satisfies the strong κ-c.c. Let \dot{Q} be a \mathbb{P}-name for a κ-closed poset (trivial poset is possible). Then $\mathbb{P} * \dot{Q}$ has the κ-approximation property.
Proof. Let \tilde{Q} be a term poset of \hat{Q}, that is, \hat{Q} is the set of all P-names \dot{q} with $\Vdash_{P} "\dot{q} \in \hat{Q}"$. For $\dot{q}_0, \dot{q}_1 \in \hat{Q}$, define $\dot{q}_0 \leq \dot{q}_1$ if $\Vdash_{P} "\dot{q}_0 \leq \dot{q}_1 \in \hat{Q}"$. Since \hat{Q} is a name for a κ-closed poset, \hat{Q} is κ-closed.

Let \dot{x} be a $P \star \hat{Q}$-name such that $\Vdash "\dot{x} \in V"$. We say that a condition $\langle p, \dot{q} \rangle \in P \star \hat{Q}$ decides \dot{x} if there is y with $\langle p, \dot{q} \rangle \Vdash "\dot{x} = y"$.

Claim 1.6. Let τ be an ordinal and \dot{f} be a $P \star \hat{Q}$-name such that $\Vdash "\dot{f} : \tau \rightarrow 2$ and $\dot{f}|x \in V$ for every $x \in ([\tau]^{<\kappa})^{V}"$. Let $\langle p, \dot{q} \rangle \in P \star \hat{Q}$ and $x \in [\tau]^{<\kappa}$. Then there are $\dot{q}^* \leq \dot{q}$ and $F \subseteq 2$ such that:

1. $|F| < \kappa$.
2. For every $g \in F$, there is $p' \leq p$ such that $\langle p', \dot{q}^* \rangle \Vdash "\dot{f}|x = g"$.
3. For every $p' \leq p$, there is $p'' \leq p'$ and $g \in F$ such that $\langle p'', \dot{q}^* \rangle \Vdash "\dot{f}|x = g"$.

Proof. It is easy to check that the set $\{p' \leq p : \exists \dot{q}' \langle p', \dot{q}' \rangle \leq \langle p, \dot{q} \rangle \text{ and } \langle p', \dot{q}' \rangle \text{ decides } \dot{f}|x \rangle \}$ is predense below p. Take a maximal antichain A which is contained in this set. Since P satisfies the κ-c.c., we know that $|A| < \kappa$. Then for each $r \in A$, there are \dot{q}_r and g_r such that $\langle r, \dot{q}_r \rangle \leq \langle p, \dot{q} \rangle$ and $\langle r, \dot{q}_r \rangle \Vdash "\dot{f}|x = g_r"$. Let $F = \{g_r : r \in A\}$ and one can take \dot{q}^* such that $\dot{q}^* \leq \dot{q}$ and $r \Vdash "\dot{q}_r = \dot{q}^*"$ for every $r \in A$. Then \dot{q}^* and F work. \Box[Claim]

In order to show that $P \star \hat{Q}$ has the κ-approximation property, take $\langle p, \dot{q} \rangle \in P \star \hat{Q}$, an ordinal τ, and a name \dot{f} such that $\langle p, \dot{q} \rangle \Vdash "\dot{f} : \tau \rightarrow 2$ and $\dot{f}|x \in V$ for every $x \in ([\tau]^{<\kappa})^{V}"$. Suppose to the contrary that $\langle p, \dot{q} \rangle \Vdash "\dot{f} \notin V"$.

By induction on $\alpha < \kappa$, we would find $x_\alpha, \dot{q}_\alpha, F_\alpha (\alpha < \kappa)$ such that:

1. $x_\alpha \in [\tau]^{<\kappa}$ and $\langle x_\alpha : \alpha < \kappa \rangle$ is \subseteq-increasing.
2. $\langle \dot{q}_\alpha : \alpha < \kappa \rangle$ is decreasing in \hat{Q} and $\dot{q}_0 \leq \dot{q}$.
3. $F_\alpha \subseteq 2$ and $|F_\alpha| < \kappa$.
4. For every $g \in F_\alpha$, there is $p' \leq p$ such that $\langle p', \dot{q}_\alpha \rangle \Vdash "\dot{f}|x_\alpha = g"$.
5. For every $p' \leq p$ there are $p'' \leq p'$ and $g \in F_\alpha$ such that $\langle p'', \dot{q}_\alpha \rangle \Vdash "\dot{f}|x_\alpha = g"$, i.e., the set $\{p' \leq p : \langle p', \dot{q}_\alpha \rangle \Vdash "\dot{f}|x_\alpha = g" \text{ for some } g \in F_\alpha\}$ is predense below p.
6. For every $g \in F_\alpha$, there are $g_0, g_1 \in F_{\alpha+1}$ such that $g \subseteq g_0, g_1$ and $g_0 \neq g_1$.

When $\alpha = 0$, pick an arbitrary $x_0 \in [\tau]^{<\kappa}$. Then we can find required $\dot{q}_0 \leq \dot{q}$ and F_0 by Claim 1.6.

Let $\alpha > 0$ and suppose $x_\beta, \dot{q}_\beta, F_\beta$ are defined for all $\beta < \alpha$.

Case 1: α is limit. We can find $x_\alpha \in [\tau]^{<\kappa}$ such that $x_\beta \subseteq x_\alpha$ for $\beta < \alpha$. Since \hat{Q} is κ-closed, we can find $\dot{q}^* \leq \dot{q}_\beta$ for every $\beta < \alpha$. Then take $\dot{q}_\alpha \leq \dot{q}^*$ and F_α by Claim 1.6.

Case 2: α is successor, say $\alpha = \beta + 1$. Pick a maximal antichain $A \subseteq P$ below p such that for every $p' \in A$ there is $g \in F_\beta$ such that $\langle p', \dot{q}_\beta \rangle \Vdash "\dot{f}|x_\beta = g"$. Note
that $|A| < \kappa$, and, for every $g \in F_\beta$, there is $p' \in A$ with $\langle p', \dot{q}_\beta \rangle \models \langle g \rangle^*_{x_\beta} = g$. Since $|A| < \kappa$ and $\langle p, \dot{q}_\beta \rangle \models \langle f \notin V \rangle$, we can find $x_\alpha \in [\tau]^{<\kappa}$ such that $x_\beta \subseteq x_\alpha$ for $\beta < \alpha$, but $\langle p', \dot{q}_\beta \rangle$ does not decide $\langle f \rangle^*_{x_\alpha}$ for every $p' \in A$.

Claim 1.7. For each $p' \in A$, there are $p'_0, p'_1 \leq p'$, $g'_0, g'_1 : x_\alpha \rightarrow 2$, and \(\dot{r} \leq \dot{q}_\beta \) such that $g'_0 \neq g'_1$ and $\langle p'_i, \dot{r} \rangle \models \langle f \rangle^*_{x_\alpha} = g_i$.

Proof. Since $\langle p', \dot{q}_\beta \rangle$ does not decide $\langle f \rangle^*_{x_\alpha}$, we can take $(p'_0, \dot{q}_0), (p'_1, \dot{q}_1) \leq (p', \dot{q}_\beta)$, and $g'_0, g'_1 : x_\alpha \rightarrow 2$ such that $g'_0 \neq g'_1$ and $\langle p'_i, \dot{q}_i \rangle \models \langle f \rangle^*_{x_\alpha} = g_i$'. We may assume that p'_0 is incompatible with p'_1; if p'_0 and p'_1 have a common extension p_2, take $p'_0, p'_1 \leq p_2$ such that $p'_0 \perp p'_1$ and replace p'_1 by p'_0.

Now take $\dot{r} \leq \dot{q}_\beta$ such that $p'_i \models \langle \dot{r} = \dot{q}_i \rangle$. Clearly p'_i, g'_i and \dot{r} work. \square[Claim]

For each $p' \in A$, pick $\dot{q}_\alpha \leq \dot{q}_\beta$ such that there are $p'_0, p'_1 \leq p'$, $g'_0, g'_1 : x_\alpha \rightarrow 2$ with $g'_0 \neq g'_1$ and $\langle p'_i, \dot{r}_p' \rangle \models \langle f \rangle^*_{x_\alpha} = g_i$'.

Then pick $q^* \leq q_\beta$ such that $p' \models \langle q^* = \dot{r}_p \rangle$ for every $p' \in A$. Finally, take $\dot{q}_\alpha \leq \dot{q}^*$ and $F_\alpha \subseteq F_{\alpha 2}$ as in Claim 1.6. The following claim shows that x_α, \dot{q}_α, and $F_{\alpha 2}$ work well:

Claim 1.8. For each $g \in F_\beta$, there are $g_0, g_1 \in F_{\alpha 2}$ such that $g_0 \neq g_1$ and $g \subseteq g_0, g_1$.

Proof. Take $p' \in A$ so that $\langle p', \dot{q}_\beta \rangle \models \langle f \rangle^*_{x_\beta} = g$. Then we can take $p'_0, p'_1 \leq p'$ and $g'_0, g'_1 : x_\alpha \rightarrow 2$ such that $g'_0 \neq g'_1$ and $\langle p'_i, \dot{q}^*_i \rangle \models \langle f \rangle^*_{x_\alpha} = g_i$. Clearly $g \subseteq g_0, g_1$. By the choice of $F_{\alpha 2}$ and \dot{q}_α, for each $i < 2$, one can take $p_i \leq p'_i$ and $g_i \in F_{\alpha 2}$ such that $\langle p_i, \dot{q}_\alpha \rangle \models \langle f \rangle^*_{x_\alpha} = g_i$. Since $\dot{q}_\alpha \leq \dot{q}^*$, each $\langle p_i, \dot{q}_\alpha \rangle$ is compatible with $\langle p'_i, \dot{q}^*_i \rangle$. This means that $g'_i = g_i$, so $g_0 \neq g_1$ and $g \subseteq g_0, g_1$. \square[Claim]

Suppose $\dot{q}_\alpha, x_\alpha, F_{\alpha 2}$ are defined for $\alpha < \kappa$. Note that, for every $\alpha < \beta < \kappa$ and $g \in F_\beta$, we have $g|x_\alpha \in F_{\alpha 2}$; take $p' \leq p$ such that $\langle p', \dot{q}_\beta \rangle \models \langle f \rangle^*_{x_\beta} = g$. Then one can pick $p'' \leq p'$ and $h \in F_{\alpha 2}$ such that $\langle p'', \dot{q}_\alpha \rangle \models \langle f \rangle^*_{x_\alpha} = h$. $\langle p', \dot{q}_\beta \rangle$ is compatible with $\langle p'', \dot{q}_\alpha \rangle$. So $h = g|x_\alpha$.

Let $T = \bigcup_{\alpha < \kappa} F_{\alpha 2}$. T with the inclusion forms a κ-tree, and each node of T has at least two immediate successors.

Claim 1.9. T has no antichain of size κ.

Proof. For each $g \in T$, there are p_g and $\alpha_g < \kappa$ such that $\langle p_g, \dot{q}_{\alpha_g} \rangle \models \langle f \rangle^*_{x_{\alpha_g}} = g$. For g, g' in T, if g and g' are incompatible in T, then p_g is incompatible with p_g' in P. This means that if T has an antichain of size κ, then P also has an antichain of size κ. This is impossible, hence T does not have an antichain of size κ. \square[Claim]

Hence T is a κ-Suslin tree. We finish the proof by showing the following claim, which contradicts the strong κ-c.c. of P:
Claim 1.10. \(p \vDash_{\mathbb{P}} \text{"T has a cofinal branch".} \)

Proof. Take a \((V, \mathbb{P})\)-generic \(G \) with \(p \in G \) and work in \(V[G] \). Let \(\alpha < \kappa \). Since \(\{p' \leq p : \langle p', \dot{q}_\alpha \rangle \vDash \text{"} f|_x = g \text{"} \text{ for some } g \in F_\alpha \} \) is predense below \(p \), we can find \(p_\alpha \in G \) and \(g_\alpha \in F_\alpha \subseteq T \) such that \(\langle p_\alpha, \dot{q}_\alpha \rangle \vDash \text{"} f|_x = g_\alpha \text{"} \). Now, for \(\alpha < \beta < \kappa \), \(p_\alpha \) is compatible with \(p_\beta \) and \(\dot{q}_\beta \leq \dot{q}_\alpha \). So \(\langle p_\alpha, \dot{q}_\alpha \rangle \) is compatible with \(\langle p_\beta, \dot{q}_\beta \rangle \). This means that \(g_\alpha \subseteq g_\beta \), so \(\{g_\alpha : \alpha < \kappa \} \) is a cofinal branch of \(T \). \(\square \)[Claim]

Note 1.11. If \(\mathbb{P} \) satisfies the \(\kappa \)-c.c. but does not the strong \(\kappa \)-c.c., then \(\mathbb{P} \) cannot have the \(\kappa \)-approximation property.

2. Applications

We consider some applications of Lemma 1.5.

Definition 2.1. Let \(\kappa \) be a regular uncountable cardinal and \(\lambda \geq \kappa \) a cardinal. A set \(X \subseteq \mathcal{P}_{\kappa} \lambda \) has the strong tree property if for every \(\langle d_x : x \in X \rangle \) with \(d_x \subseteq x \), if \(|\{d_x \cap a : x \in X\}| < \kappa \) for every \(a \in \mathcal{P}_{\kappa} \lambda \), then there is \(D \subseteq \lambda \) such that for every \(a \in \mathcal{P}_{\kappa} \lambda \) the set \(\{x \in X : d_x \cap a = D \cap a\} \) is unbounded in \(\mathcal{P}_{\kappa} \lambda \).

Fact 2.2 (Viale-Weiss [3]). (1) The following are equivalent:

- (a) \(\mathcal{P}_{\kappa} \lambda \) has the strong tree property.
- (b) There is some unbounded set \(X \subseteq \mathcal{P}_{\kappa} \lambda \) such that \(X \) has the strong tree property.
- (c) Every unbounded subset of \(\mathcal{P}_{\kappa} \lambda \) has the strong tree property.

(2) \(\kappa \) has the tree property if and only if \(\mathcal{P}_{\kappa} \kappa \) has the strong tree property.

(3) \(\kappa \) is strongly compact if and only if \(\kappa \) is inaccessible and \(\mathcal{P}_{\kappa} \lambda \) has the strong tree property for every \(\lambda \geq \kappa \).

(4) Suppose Proper Forcing Axiom. Then \(\mathcal{P}_{\omega_2} \lambda \) has the strong tree property for every \(\lambda \geq \omega_2 \).

Viale-Weiss [3] showed that for an inaccessible \(\kappa \), if a standard \(\kappa \)-stage iteration satisfying the \(\kappa \)-c.c. forces that \(\text{"} \kappa = \omega_2 \text{ and Proper forcing axiom"} \), then \(\kappa \) must be strongly compact in the ground model. The following is a slight improvement of their result.

Proposition 2.3. Let \(\kappa \) be a regular uncountable cardinal. Suppose that there is a poset \(\mathbb{P} \) which has the strong \(\kappa \)-c.c. and forces that \(\text{"} \mathcal{P}_{\kappa} \lambda \) has the strong tree property for every \(\lambda \geq \kappa \text{"} \). Then \(\mathcal{P}_{\kappa} \lambda \) has the strong tree property for every \(\lambda \geq \kappa \) in the ground model.
Proof. We check that $\mathcal{P}_{\kappa}\lambda$ has the strong tree property for every $\lambda \geq \kappa$. Fix $\lambda \geq \kappa$ and take $\langle d_{x} : x \in \mathcal{P}_{\kappa}\lambda \rangle$ such that $d_{x} \subseteq x$ and $|\{d_{x} \cap a : x \in \mathcal{P}_{\kappa}\lambda\}| < \kappa$ for every $a \in \mathcal{P}_{\kappa}\lambda$. Take a (V, \mathbb{P})-generic G and work in $V[G]$. In $V[G]$, $\mathcal{P}_{\kappa}^{V}\lambda$ is unbounded in $\mathcal{P}_{\kappa}\lambda$ since \mathbb{P} satisfies the κ-c.c. By the strong tree property of $\mathcal{P}_{\kappa}^{V}\lambda$ in $V[G]$, we can find $D \subseteq \lambda$ such that $\{x \in \mathcal{P}_{\kappa}^{V}\lambda : d_{x} \cap a = D \cap a\}$ is unbounded in $\mathcal{P}_{\kappa}\lambda$ for every $a \in \mathcal{P}_{\kappa}\lambda$. We see $D \in V$, this completes the proof. For each $a \in \mathcal{P}_{\kappa}^{V}\lambda$, there is $x \in \mathcal{P}_{\kappa}^{V}\lambda$ with $D \cap a = d_{x} \cap a \in V$. Thus, by the κ-approximation property of \mathbb{P}, we have $D \in V$. \hfill \Box

Next we look at the indestructibility of weak compactness.

Definition 2.4. Let κ be weakly compact. If every κ-directed closed forcing preserves the weak compactness of κ, then κ is said to be indestructibly weakly compact.

The existence of an indestructibly weakly compact cardinal is consistent (Laver [2]). The following theorem suggests that the consistency of the existence of an indestructibly weakly compact cardinal might be at least strongly compact cardinal.

Proposition 2.5. Let κ be a regular uncountable cardinal. If there is a poset which satisfies the strong κ-c.c. and forces that "κ is indestructibly weakly compact", then κ is strongly compact.

Proof. Take $\lambda \geq \kappa$. We see that $\mathcal{P}_{\kappa}\lambda$ has the strong tree property. Take $\langle d_{x} : x \in \mathcal{P}_{\kappa}\lambda \rangle$ with $d_{x} \subseteq x$ and $|\{d_{x} \cap a : x \in \mathcal{P}_{\kappa}\lambda\}| < \kappa$ for every $a \in \mathcal{P}_{\kappa}\lambda$.

Take a (V, \mathbb{P})-generic G, and a $(V[G], \text{Col}(\kappa, \lambda))$-generic H. We work in $V[G][H]$. Fix a bijection $\pi : \lambda \rightarrow \kappa$. We know that $\{\pi^{-1}x : x \in \mathcal{P}_{\kappa}^{V}\lambda\}$ is unbounded in $\mathcal{P}_{\kappa}\kappa$. Since κ is weakly compact in $V[G][H]$, by the tree property of κ, there is $C \subseteq \kappa$ such that $\{\pi^{-1}x \in \mathcal{P}_{\kappa}\kappa : \pi^{-1}(d_{x}) \cap a = C \cap a\}$ is unbounded for all $a \in \mathcal{P}_{\kappa}\kappa$. Put $D = \pi^{-1}C$. Then for every $a \in \mathcal{P}_{\kappa}\lambda$, the set $\{x \in \mathcal{P}_{\kappa}^{V}\lambda : d_{x} \cap a = D \cap a\}$ is unbounded in $\mathcal{P}_{\kappa}\lambda$. We know $D \in V$ since $\mathbb{P} \ast \text{Col}(\kappa, \lambda)$ has the κ-approximation property by Lemma 1.5. \hfill \Box

References

(T. Usuba) Organization of Advanced Science and Technology, Kobe University, Rokko-dai 1-1, Nada, Kobe, 657-8501 Japan
E-mail address: usuba@people.kobe-u.ac.jp