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1 Introduction and Main Results

This article is based on a recent joint research with Professor Yihong Du(University of New England,
Australia) and Mr. Maolin Zhou(University of Tokyo, Japan) [7]. In this article we are interested
in the following free boundary problem:

$\{\begin{array}{ll}u_{t}-u_{xx}=f(u) , t>0, g(t)<x<h(t) ,u(t,g(t))=u(t, h(t))=0, t>0,g’(t)=-\mu u_{x}(t, g(t)) t>0,h’(t)=-\mu u_{x}(t, h(t)) , t>0,-g(O)=h(0)=h_{0},u(O, x)=u_{0}(x) , -h_{0}\leq x\leq h_{0},\end{array}$ (1)

where $x=h(t)$ and $x=g(t)$ are the moving boundaries to be determined together with $u(t, x),$ $\mu$

is a given positive constant, $f$ : $[0, \infty)arrow \mathbb{R}$ is $C^{1},$ $f(0)=0$ and is of monotstable, or bistable, or of
combustion type. The initial function $u_{0}$ belongs to $\mathscr{X}(h_{0})$ for some $h_{0}>0$ , where

竃 $(h_{0})$ $:=\{\phi\in C^{2}[-h_{0}, h_{0}]$ : $\phi(-h_{0})=\phi(h_{0})=0,$ $\phi’(-h_{0})>0,$

$\phi’(h_{0})<0,$ $\phi(x)>0$ in $(-h_{0}, h_{0})\}.$

For any $h_{0}>0$ and $u_{0}\in \mathscr{X}(h_{0})$ , a triple $(u(t, x), g(t), h(t))$ is $a$ (classical) solution to (1) for
$0<t\leq T$ if it belongs to $C^{1,2}(G_{T})\cross C^{1}[0, T]\cross C^{1}[0, T]$ and all the identities in (1) are satisfied
pointwisely, where

$G_{T}:=\{(t, x)|t\in(0, T], x\in[g(t), h(t)]\}.$

This problems with $f(u)=au-bu^{2}$ was introduced by Du and Lin [5] to describe the spreading
of a biological or chemical species, with the free boundaries representing the expanding fronts. $A$

deduction of the free boundary condition based on ecological assumption can be found in [4]. The
results in [5] were extended to monostable, bistable and combustion types of nonlinearities in Du
and Lou [6]. They showed that (1) has a unique solution which is defined for all $t>0$ , and as
$tarrow\infty$ , the interval $(g(t), h(t))$ converges either to a finite interval $(g_{\infty}, h_{\infty})$ , or to $\mathbb{R}$ . Moreover, in
the former case, $u(t, x)arrow 0$ uniformly in $x$ , while in the latter case, $u(t, x)arrow 1$ locally uniformly
in $x\in \mathbb{R}$ (except for a non-generic transition case when $f$ is of bistable or combustion type). The
situation that

$uarrow 0$ and $(g, h)arrow(g_{\infty}, h_{\infty})$

is called the vanishing case, and

$uarrow 1$ and $(g, h)arrow \mathbb{R}$

is called the spreading case.
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When spreading happens, it is shown in [6] that there exists $c^{*}>0$ such that

$\lim_{tarrow\infty}\frac{-g(t)}{t}=\lim_{tarrow\infty}\frac{h(t)}{t}=c^{*}$ . (2)

The number $c^{*}$ is called the asymptotic spreading speed determined by (1).
The main purpose of this article is to obtain a much better estimate for $g(t)$ and $h(t)$ for large

$t$ than (2), and describe how the solution approaches the semi-wave when spreading happens.
Before describing our main results, let us define three types of nonlinearities of $f$ mentioned

above:

$(f_{M})$ monostable case, $(f_{B})$ bistable case, $(f_{C})$ combustion case.
We call $f$ is monostable or $(f_{M})$ when $f$ is $C^{1}$ and it satisfies

$f(0)=f(1)=0, f’(O)>0, f’(1)<0, (1-u)f(u)>0foru>0, u\neq 1.$

A typical example is $f(u)=u(1-u)$ .
We call $f$ is bistable or $(f_{B})$ , when $f$ is $C^{1}$ and it satisfies

$\{\begin{array}{l}f(0)=f(\theta)=f(1)=0,f(u)<0 in (0, \theta), f(u)>0 in (\theta, 1), f(u)<0 in (1, \infty) ,\end{array}$

for some $\theta\in(0,1),$ $f’(O)<0,$ $f’(1)<0$ and

$\int_{0}^{1}f(s)ds>0.$

A typical example is $f(u)=u(u-\theta)(1-u)$ with $\theta\in(0, \frac{1}{2})$ .
We call $f$ is combustion type or $(f_{C})$ , when $f$ is $C^{1}$ and it satisfies

$f(u)=0$ in $[0, \theta],$ $f(u)>0$ in $(\theta, 1),$ $f’(1)<0,$ $f(u)<0$ in $[1, \infty)$

for some $\theta\in(0,1)$ , and there exists a small $\delta_{0}>0$ such that

$f(u)$ is nondecreasing in $(\theta, \theta+\delta_{0})$ .

The asymptotic spreading speed $c^{*}$ mentioned above is determined by the following problem,

$\{\begin{array}{l}q"-cq’+f(q)=0 in (0, \infty) ,q(O)=0, q(\infty)=1, q(z)>0 in (0, \infty) .\end{array}$ (3)

Proposition 1.1 (Proposition 1.8 and Theorem 6.2 of [6]). Suppose that $f$ is of $(f_{M})$ , or $(f_{B})$ , or
$(f_{C})$ type. Then for any $\mu>0$ there exists a unique $c^{*}=c_{\mu}^{*}>0$ and a unique solution $q_{c^{*}}$ to (3)
with $c=c^{*}$ such that $q_{c^{*}}’(0)= \frac{c^{*}}{\mu}.$

We remark that this function $q_{c}*$ is shown in [6] to satisfy $q_{c^{*}}’(z)>0$ for $z\geq 0$ . We call $q_{c}*a$

semi-wave with speed $c^{*}$ , since the function $w(t, x);=q_{c}*(c^{*}t-x)$ satisfies

$\{\begin{array}{l}w_{t}=w_{xx}+f(w) for t\in \mathbb{R}^{1}, x<c^{*}t,w(t, c^{*}t)=0, -\mu w_{x}(t, c^{*}t)=c^{*}, w(t, -\infty)=1.\end{array}$

Our main result is the following theorem.
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Theorem A. Assume that $f$ is of $(f_{M}),$ $(f_{B})$ , or $(f_{C})$ type and $(u, g, h)$ is the unique solution to (1)
for which spreading happens. Let $(c^{*}, q_{c^{*}})$ be given by Proposition 1.1. Then there exist $\hat{H},\hat{G}\in \mathbb{R}$

such that

$\lim_{tarrow\infty}(h(t)-c^{*}t-\hat{H})=0,\lim_{tarrow\infty}h’(t)=c^{*},$

(4)
$\lim_{tarrow\infty}(g(t)+c^{*}t-\hat{G})=0,\lim_{tarrow\infty}g’(t)=-c^{*},$

and

lim $sup|u(t,x)-q_{c}*(h(t)-x)|=0,$
$tarrow\infty_{x\in[0,h(t)]}$

(5)
lim $sup|u(t, x)-q_{c}*(x-g(t))|=0.$

$tarrow\infty_{x\in[g(t),0]}$

Here we remark that estimates (4) are much sharper than (2) obtained by [6].
Now we recall that the corresponding Cauchy problem:

$\{\begin{array}{l}U_{t}=U_{xx}+f(U), t>0, x\in \mathbb{R},U(O, x)=U_{0}(x), x\in \mathbb{R}.\end{array}$ (6)

This problem have been extensively studied. For example, the classical paper of Aronson and
Weinberger [1] contains a systematic investigation of this problem (and [2] contains its higher-
dimensional extension). They have obtained various sufficient conditions for $hm_{tarrow\infty}U(t, x)=1$

(“spreading” or “propagation”) and for $\lim_{tarrow\infty}U(t, x)=0$ (“vanishing” or “extinction”) when $U_{0}$

is nonnegative and has compact support. [1, 2] show that when $\lim_{tarrow\infty}U(t, x)=1$ as $tarrow\infty$ locally
uniformly in $\mathbb{R}$ , there exists $c_{0}>0$ such that, for any small $\epsilon>0,$

$\lim_{tarrow\infty}\max_{\geq|x|(c_{0}+\epsilon)t}U(t, x)=0, \lim_{tarrow\infty}\max_{\leq|x|(c_{0}-\epsilon)t}|U(t,x)-1|=0.$

In this sense, the number $c_{0}$ is usually called the spreading speed determined by (6) and is determined
by the well-known problem of travelling wave

$\{\begin{array}{l}Q"-cQ’+f(Q)=0, Q>0, in \mathbb{R},Q(-\infty)=0, Q(+\infty)=1, Q(0)=1/2.\end{array}$ (7)

The relationship between the spreading speed $c^{*}$ which is determined by (1) and that $c_{0}$ determined
by (6) is given in Theorem 6.2 of [6].

As we will explain below, fundamental differences arise between the free boundary problem and
the Cauchy problem. First, for monostable case, (7) has multiple solutions while for bistable or
combustion case, (7) has a unique solution. More precisely, when $f$ is $(f_{M}),$ (7) has a solution $Q_{c}$

if and only if $c\geq c_{0}$ and when $f$ is $(f_{B})$ or $(f_{C}),$ $c_{0}>0$ is the unique value of $c$ such that (7) has
a solution $Q_{c}$ . Moreover, $Q_{c}$ is unique when it exists for a given $c$ . Second, there is an essential
difference in how the solution of (6) approaches the traveling waves. $A$ classical result of Fife and
McLeod [8] shows that for $f$ of type $(f_{B})$ , and for appropriate initial function $U_{0}$ , the solution $U$ to
(6) satisfies

$|U(t, x)-Q_{c_{0}}(c_{0}t-x+c_{+})|\leq Ke^{-\omega t}$ for $x>0,$

$|U(t, x)-Q_{c_{0}}(c_{0}t+x+C_{-})|\leq Ke^{-\omega t}$ for $x<0$
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for some $c_{\pm}\in \mathbb{R}$ . On the other hand, when $(f_{M})$ holds and furthermore $f(u)\leq f’(O)u$ for $u\in(0,1)$ ,
there exist constants $c_{\pm}$ such that

$\lim_{tarrow\infty}\max_{x\geq 0}|U(t, x)-Q_{c_{0}}(c_{0}t-\frac{3}{c_{0}}\logt-x+C_{+})|=0,$

$\lim_{tarrow\infty}\max_{x\leq 0}|U(t, x)-Q_{c_{0}}(c_{0}t-\frac{3}{c_{0}}\logt+x+C_{-})|=0$

Ourmainheoremclaimsthatthereisnotsuchadifferenceamong ($f_{M}),(f_{B})and(f_{C})$inourfreeTheterm$\frac{3}{c,t^{0}}\ln tisknownasthelogarithmicBramsoncorrection;see[3,9,11, 13]formoredetai1s.$

boundary problem.

2 Basic and Known Results

In this section we give some basic and known results which will be frequently used later. The first
two results are for $f(u)$ more general than the three types of nonlinearities in Theorem 1.2. They
only require

$f$ is $C^{1}$ and $f(O)=0$ . (8)

Lemma 2.1 (Lemma 2.2 of [6]). Suppose that (8) holds, $T\in(0, \infty),\overline{g},$ $\overline{h}\in C^{1}[0, T],$ $\overline{u}\in C(\overline{D}_{T})\cap$

$C^{1,2}(D_{T})$ with $D_{T}=\{(t, x)\in \mathbb{R}^{2}:0<t\leq T, \overline{g}(t)<x<\overline{h}(t)\}$ , and

$\{\begin{array}{ll}\overline{u}_{t}\geq\overline{u}_{xx}+f(\overline{u}) , 0<t\leq T, \overline{g}(t)<x<\overline{h}(t) ,\overline{u}\geq u, 0<t\leq T, x=\overline{g}(t) ,\overline{u}=0, \overline{h}’(t)\geq-\mu\overline{u}_{x}, 0<t\leq T, x=\overline{h}(t) .\end{array}$

If
$\overline{g}(t)\geq g(t)$ $in$ $[0, T],$ $h_{0}\leq\overline{h}(0),$ $u_{0}(x)\leq\overline{u}(0,x)$ $in$ $[$9(0), $h_{0}],$

where $(u, g, h)$ is a solution to (1), then

$h(t)\leq\overline{h}(t)$ in $(0, T],$

$u(t, x)\leq\overline{u}(t, x)$ for $t\in(O, T] and \overline{g}(t)<x<h(t)$ .

The function 1, or the triple $(0,\overline{g}, \overline{h})$ in Lemma 2.1 is usually called an upper solution of (1). We
can define a lower solution by reversing the inequalities in the obvious places. There is a symmetric
version of Lemma 2.1, where the conditions on the left and right boundaries are interchanged. We
also have corresponding comparison results for lower solutions in each case.

Lemma 2.2 (Lemma 2.6 of [6]). Suppose that (8) holds, $(u, g, h)$ is a solution to (1) defined for
$t\in[0, T_{0})$ for some $T_{0}\in(0, \infty)$ , and there exists $C_{1}>0$ such that

$u(t, x)\leq C_{1}$ for $t\in[0, T_{0})$ and $x\in[g(t), h(t)].$

Then there exists $C_{2}$ depending on $C_{1}$ but independent of $T_{0}$ such that

$-g’(t), h’(t)\in(0, C_{2}] for t\in(O, T_{0})$ .

Moreover, the solution can be extended to some interval $(0, T)$ with $T>T_{0}.$
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Lemma 2.3 (Lemma 6.5 of [6]). Suppose that $f$ is of $(f_{M}),$ $(f_{B})$ , or $(f_{C})$ type. Let $(u, g, h)$ be the
unique solution of (1) for which spreading happens. For any $c\in(0, c^{*})$ there exist $\delta\in(0, -f’(1))$ ,
$T_{0}>0$ and $M>0$ such that for $t\geq T_{0},$

$[g(t), h(t)]\supset[-ct, d]$ , (9)

$u(t, x)\geq 1-Me^{-\delta t}$ for $x\in[-ct, ct]$ , (10)
$u(t, x)\leq 1+Me^{-\delta t}$ for $x\in[g(t), h(t)]$ . (11)

3 Outline of Proof of Theorem A

In this section we will give proof of Theorem A. Please see [7] for detailed proof. Throughout this
section we assume that $f$ is of type $(f_{M}),$ $(f_{B})$ , or $f_{C}$ and $(u, g, h)$ is a solution to (1) for which
spreading happens. $O$ur proof is divided into three parts:. Part 1: Boundedness of $|g(t)+c^{*}t|$ and $|h(t)-c^{*}t|.$. Part 2: We will prove that for any sequence $\{t_{n}\}$ with $\lim_{narrow\infty}t_{n}=\infty$ , there exists a subse-

quence $\{\tilde{t}_{n}\}$ and $\hat{H}\in \mathbb{R}$ such that

$h(\tilde{t}_{n}+\cdot)-c^{*}(\tilde{t}_{n}+\cdot)arrow\hat{H}$ in $C_{1oc}^{1}(\mathbb{R})$

$u(\tilde{t}_{n}, z+c^{*}\tilde{t}_{n})arrow q_{c}\cdot(\hat{H}arrow z)$

ae $narrow\infty.$. Part 3: We will prove Theorem A by constructing finer upper and lower solutions based on
the result in part 2.

In this article we will focus on Part 2. For other parts, please see [7].

3.1 Partl: Boundedness of $|g(t)+c^{*}t|$ and $|h(t)-c^{*}t|$

Proposition 3.1. There exists $C>0$ such that

$|g(t)+c^{*}t|,$ $|h(t)-c^{*}t|\leq C$ for all $t>0$ . (12)

This proposition is proved by constructing suitable upper and lower solutions.
Fix $c\in(0, c^{*})$ . Rom Lemma 2.3, there exist $\delta\in(0, -f’(1)),$ $M>0$ and $T_{0}>0$ such that for

$t\geq T_{0},$ (9) $,$ (10) and (11) hold. Since $0<\delta<-f’(1)$ we can find some $\eta>0$ such that

$\{\begin{array}{ll}\delta\leq-f’(u) for 1-\eta\leq u\leq 1+\eta,f(u)\geq 0 for 1-\eta\leq u\leq 1.\end{array}$

By enlarging $T_{0}$ we may assume that

$Me^{-\delta T_{0}}<\eta/2.$

We take $M’>M$ satisfying

$M’e^{-\delta T_{0}}\leq\eta.$
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Since $q_{\mathcal{C}^{*}}(z)arrow 0$ as $zarrow\infty$ , we can find $X_{0}>0$ such that

$(1+M’e^{-\delta T_{0}})q_{c^{*}}(X_{0})\geq 1+Me-\delta T_{0}.$

We now construct an upper solution $(I, g, \overline{h})$ to (1) as follows:

$\overline{g}(t):=g(t)$ ,
$\overline{h}(t):=c^{*}(t-T_{0})+\sigma M’(e^{-\delta T_{0}}-e^{-\delta t})+h(T_{0})+X_{0},$

$\overline{u}(t, x):=(1+M’e^{-\delta t}q_{c^{*}}(\overline{h}(t)-x)$ ,

where $\sigma>0$ is a positive constant to be determined. We have following lemma.
Lemma 3.2. For sufficiently large $\sigma>0,$ $u(t, x)$ and $h(t)$ satisfy

$u(t, x)\leq\overline{u}(t, x)$ for $t>T_{0},$ $x\in[g(t), h(t)],$

$h(t)\leq\overline{h}(t)$ for $t\geq T_{0}.$

To prove this lemma, we check that $(\overline{u},g, \overline{h})$ satisfies

$\overline{u}_{t}-\overline{u}_{xx}\geq f(\overline{u})$ for $t>T_{0},$ $\overline{g}(t)<x<\overline{h}(t)$ ,
$\overline{u}(t,\overline{g}(t))\geq g(t,\overline{g}(t))$ for $t\geq T_{0},$

$\overline{u}(t, \overline{h}(t))=0,$ $\overline{h}’(t)\geq-\mu\overline{u}_{x}(t, \overline{h}(t))$ for $t\geq T_{0},$

$h(T_{0})\leq\overline{h}(T_{0}),$ $u(T_{0}, x)\leq\overline{u}(T_{0}, x)$ for $x\in[\overline{g}(T_{0}),\overline{h}(T_{0})]$

for sufficiently large $\sigma>0$ . Please see [7] for detail.
Next we construct a lower solution $(\underline{u}, g,\underline{h})$ to bound $u$ and $h$ from below. Let $c,$ $M$ and $\delta$ be

as before. We now define $\underline{g}(t),$ $h(t)$ and $\underline{u}(t^{-}x)$ as follows:

$\underline{g}(t)=-ct,$

$\underline{h}(t)=c^{*}(t-T_{0})+cT_{0}-\sigma M(e^{-\delta T_{0}}-e^{-\delta t})$ .
$\underline{u}(t, x)=(1-Me^{-\delta t})q_{c^{*}}(\underline{h}(t)-x)$ .

Lemma 3.3. For sufficiently large $\sigma>0,$ $u(t, x)$ and $h(t)$ satish
$\underline{u}(t, x)\leq u(t, x)$ for $t>T_{0},$ $x\in[\underline{g}(t), h(t)],$

$\underline{h}(t)\leq h(t)$ for $t\geq T_{0}.$

To prove this lemma, we check that $(\underline{u}, \underline{g}, \underline{h})$ satisfies

$\underline{u}_{t}-\underline{u}_{xx}\leq f(\underline{u})$ for $t>T_{0},$ $\underline{g}(t)<x<\underline{h}(t)$ ,
$\underline{u}(t,\underline{g}(t))\leq g(t, g(t))$ for $t\geq T_{0},$

$\underline{u}(t,\underline{h}(t))=0,$ $\underline{h}’(t)\leq-\mu\underline{u}_{x}(t, h(t))$ for $t\geq T_{0},$

$\underline{h}(T_{0})\leq h(T_{0}),\underline{u}(T_{0}, x)\leq u(T_{0}, x)$ for $x\in[\overline{g}(T_{0}), \overline{h}(T_{0})]$

for sufficiently large $\sigma>0$ . Please see [7] for detail.
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Proof of Proposition 3.1. From Lemmas 3.2 and 3.3 we have

$(c-c^{*})T_{0}-\sigma M(e^{-\delta T_{0}}-e^{-\delta t})\leq h(t)-c^{*}t$

$-c^{*}T_{0}+\sigma M’(e^{-\delta T_{0}}-e^{-\delta t})+h(T_{0})+X_{0},$

for $t\geq T_{0}$ . Hence if we define

$C:= \max\{-c^{*}T_{0}+\sigma M’e^{-\delta T_{0}}+h(T_{0})+X_{0}, (c^{*}-c)T_{0}+\sigma Me^{-\delta T_{0}}, t\in[0,T_{0}]\max|h(t)-c^{*}t|\}$

then

$|h(t)-c^{*}t|\leq C$ for all $t>0.$

This complete the proof of Proposition 3.1. $\square$

3.2 Part 2: Convergence along a subsequence of $\{t_{n}\}$ with $\lim_{narrow\infty}t_{n}=\infty.$

Set

$v(t, x) :=u(t,x+c^{*}t), H(t)=h(t)-c^{*}t.$

We note that $H$ and $H’$ are bounded function by Proposition 3.1 and Lemma 2.2. By Lemmas 3.2
and 3.3 we have

$(1-Me^{-\delta t})q_{c^{*}}(\underline{h}(t)-x)\leq u(t, x)\leq(1+M’e^{-\delta t})q_{c}\cdot(\overline{h}(t)-x)$

for $t\geq T_{0}$ and $x\in[-ct, h(t)]$ , where we have assumed that $q_{c^{*}}(z)=0$ for $z\leq 0$ . Since $f’(1)<0$ we
have

$|1-q_{c^{*}}(z)|\leq Ce^{-\gamma z}$ for some $C>0$ and $\gamma>0$ (13)

(see [8] and [7]). Using this and the boundedness of the functions $\underline{h}(t)-c^{*}t$ and $\overline{h}(t)-c^{*}t$ , we easily
see that there exists some $C’>0$ such that

$|1-v(t, z)|\leq C’(e^{\gamma z}+e^{-\delta t})$ (14)

for $t\geq T_{0}$ and $z\in[-(c+c^{*})t, H(t)].$

Following proposition is key proposition to prove our main theorem.

Proposition 3.4. For any sequence $\{t_{n}\}\subset \mathbb{R}$ satisfying $\lim_{narrow\infty}t_{n}=\infty$ , there exists as subsequence
$\tilde{t}_{n}\subset\{t_{n}\}$ such that

$\lim_{narrow\infty}H(\tilde{t}_{n}+\cdot)=\hat{H}$ $in$ $C_{1oc}^{1}(\mathbb{R})$

for some constant $\hat{H}\in \mathbb{R}$ and

$\lim \sup |v(\tilde{t}_{n}, z)-q_{c^{*}}(\hat{H}-z)|=0.$

$narrow\infty z\in[-(c+c^{*}),\hat{H}]$

Here we have used the convention that $q_{c}*(z)=0$ for $z\leq 0$ and $v(t, z)=0$ for $z\geq H(t)$ .
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First we can easily check that $v$ satisfies

$\{\begin{array}{ll}v_{t}=v_{zz}+c^{*}v_{z}+f(v) , t>0, z\in(g(t)-c^{*}t, H(t)) ,v(t, H(t))=0, t>0,H’(t)=-\mu v_{z}(t, H(t)) , t>0.\end{array}$ (15)

By using (14), standard parabolic $L^{p}$ estimate, Sobolev imbedding and parabolic Schauder estimates([10]
and [12] $)$ , we obtain that there exists some $C”>0$ such that

$|v_{z}(t, z)|,$ $|v_{zz}(t, z)|\leq C"(e^{-\gamma z}+e^{-\delta t})$ for $t\geq T_{0}$ , and $z\in(g(t)-c^{*}t, H(t))$ . (16)

We will need the following energy functional

$E(t):= \int_{g(t)-c^{*}t}^{h(t)-c^{*}t}e^{c^{*}z}\{\frac{1}{2}v_{z}^{2}-F(v)\}dz,$

where

$F(v)= \int_{0}^{v}f(s)ds.$

We have following lemma.

Lemma 3.5. The functional $E(t)$ is bounded from below and satisfies

$E’(t)=- \frac{h(t)^{2}}{2\mu^{2}}(h’(t)-c^{*})e^{(h(t)-c^{*}t)}+\frac{g’(t)^{2}}{2\mu^{2}}(g’(t)-c^{*})e^{c^{*}(g(t)-c^{*}t)}$

$- \int_{g(t)-c^{*}t}^{h(t)-c^{*}t}e^{c^{*}z}\{v_{zz}+c^{*}v_{z}+f(v)\}^{2}dz.$

We can easily show that $E(t)$ is bounded from below by using estimate (14). The identity for
$E’(t)$ follows from a direct calculation, integration by parts and (15). Please see [7] for details.

Let us define

$E_{0}(t):= \frac{1}{2\mu^{2}}\int_{0}^{t}e^{c^{*}(h(s)-c^{*}s)}h’(s)^{2}(h’(s)-c^{*})ds$

and

$\tilde{E}(t):=E(t)+E_{0}(t)$ .
Since

$h’(s)^{2}\{h’(s)-c^{*}\}-(c^{*})^{2}\{h’(s)-c^{*}\}=\{h’(s)+c^{*}\}\{h’(s)-c^{*}\}^{2}\geq 0,$

we have

$E_{0}(t) \geq\frac{1}{2\mu^{2}}\int_{0}^{t}e^{c^{*}(h(s)-c^{*}s)}(c^{*})^{2}(h’(s)-c^{*})ds$

$= \frac{c^{*}}{2\mu^{2}}\int_{0}^{t}\frac{d}{ds}\{e^{c^{*}(h(s)-c^{*}s)}\}ds$

$= \frac{c^{*}}{2\mu^{2}}(e^{c^{*}H(t)-c^{*}h_{0}})\geq-C_{0}$
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for some $C_{0}>0$ independent of $t$ . Thus $\tilde{E}(t)$ is bounded from below and $\tilde{E}’(t)\leq 0$ . Hence we have

$\lim_{tarrow\infty}\tilde{E}(t)=E_{\infty}>-\infty.$

We have following lemma.

Lemma 3.6. $\lim_{tarrow\infty}\tilde{E}’(t)=0.$

Proof. If $\tilde{E}’(t)$ is uniformly continuous, then we necessarily have $\lim_{tarrow\infty}\tilde{E}’(t)=0$ . In fact, if $\tilde{E}’(t)$

does not converge to $0$ as $tarrow\infty$ , there exists $\{t_{n}\}$ with $\lim_{narrow\infty}t_{n}=\infty$ and $\epsilon>0$ such that
$\tilde{E}’(t_{n})\leq-\epsilon$ . Since $\tilde{E}(t)$ is uniformly continuous, $\tilde{E}’(t)\leq-\epsilon/2$ for $t\in[t_{n}, t_{n}+\delta]$ for some $\delta>0$

independent of $n$ . Then we have, by passing to a subsequence of $\{t_{n}\}$ if necessary,

$E_{\infty}- \tilde{E}(t_{1})=\int_{t_{1}}^{\infty}\tilde{E}’(t)dt$

$\leq\int_{\bigcup_{n=1}^{\infty}[t_{n},t_{n}+\delta]}\tilde{E}’(t)dt=-\infty.$

This contradicts $E_{\infty}>-\infty.$

Since

$\lim_{tarrow\infty}\frac{g’(t)^{2}}{2\mu^{2}}(g’(t)-c^{*})e^{c^{*}(g(t)-c^{*}t)}=0$

we only have to show that the second term of $\tilde{E}’(t)$

$- \int_{g(t)-c^{*}t}^{h(t)-c^{*}t}e^{c^{*}z}\{v_{zz}+c^{*}v_{z}+f(v)\}^{2}dz$

is uniformly continuous in $t$ for large $t$ . Rom (16), this will be done by showing that for any $L>0,$

$v,$ $v_{z}$ and $v_{zz}$ are uniformly continuous in $t$ for $z\in[-L, H(t)].$

We first consider problem (15) over the domain $[t_{0}-1, t_{0}+1]\cross[-L-1, H(t_{0})-\eta/3]\subset \mathbb{R}^{2}$ for
$t_{0}\in \mathbb{R},$ $L>0$ and $\eta>0$ . Since $\Vert v\Vert_{\infty}$ and $\Vert f(v)\Vert_{\infty}$ are bounded, we can apply the parabolic $L^{p}$

estimate(see, for example [10] or [12]) to obtain

$\Vert v\Vert_{W_{p}^{1,2}([t_{0}-1/2,t_{0}+1]\cross[-L-1/2,H(t_{0})-\eta/2])}\leq C$

for some $C>0$ which does note depend on $t_{0}$ . Here we note that $H(t_{0})$ has a bound independent
of $t_{0}>0$ . By Sobolev imbedding (see [10]) we have

$\Vert v\Vert_{c^{1\nu_{1+\nu}},([t_{0}-1/2,t_{0}+1]\cross[-L-1/2,H(t_{0})-\eta/2])}+\leq C’.$

Using this and the Schauder estimate (see [12]) we obtain

$\Vert v\Vert_{c^{1+g_{2+\alpha}},([t_{0},t_{0}+1]\cross[-L,H(t_{0})-\eta])}\leqC"$ (17)

for some $C”>0$ which does not depend on $t_{0}$ (Please see [7] for detail).
Next we consider the domain $\{(t, z)|t\in[t_{0}-1, t_{0}+1], z\in[H(t)-L, H(t)]\}$ for $L>0$ . We first

straighten the boundary $z=H(t)$ . Let

$z=y+H(t), w(t, y)=v(t, y+H(t))$.
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Then $w$ satisfies

$\{\begin{array}{ll}w_{t}=w_{yy}+(H’(t)+c^{*})w_{y}+f(w) , t>0, y\in(g(t)-c^{*}t-H(t), 0) ,w(t, 0)=0, t>0,H’(t)=-\mu w_{y}(t, 0)-c^{*}, t>0.\end{array}$ (18)

Since $\Vert w\Vert_{\infty},$ $\Vert f(w)\Vert_{\infty}$ , and $\Vert H’\Vert_{\infty}$ are bounded we can apply the parabolic estimate [10, 12] to
obtain

$\Vert w\Vert_{W_{p}^{1,2}([t_{0}-1/2,t_{0}+1]\cross[-3L/2,0])}\leq C$

for some $C>0$ which does not depend on $t_{0}$ . By Sobolev imbedding (see [10]) we have

$\Vert w\Vert_{C^{1\nu_{1+\nu}}([t_{0}-1/2,t_{0}+1]\cross[-3L/2,0])}+,\leq C’$

for some $\nu\in(0,1)$ and $C’>0$ which do not depend on $t_{0}$ . This implies that $H’$ and $f(w)$ are
H\"older continuous and by the parabolic Schauder estimate we obtain

$\Vert w\Vert_{C^{1+\S,2+\alpha}([t_{0},t_{0}+1]\cross[-L,0])}\leq C"$ (19)

for some $\alpha\in(0,1)$ and $C”>0$ which do not depend on $t_{0}.$

From (16) and (19) we see that $v,$ $v_{z}$ and $v_{zz}$ are uniformly continuous in $t$ for $z\in[-L, H(t)].$

This completes the proof. $\square$

Now we prove following lemma.

Lemma 3.7. For any sequence $\{t_{n}\}$ satisfying $\lim_{narrow\infty}t_{n}=\infty$ and any $K>0$ there exists a
subsequence $\{\tilde{t}_{n}\}\subset\{t_{n}\}$ such that

$\lim_{narrow\infty}H(\tilde{t}_{n}+\cdot)=\hat{H}$ $in$ $C_{1oc}^{1}(\mathbb{R})$

for some $\hat{H}\in \mathbb{R}$ and

$\lim_{narrow\infty} \sup |v(\tilde{t}_{n}, z)-q_{c^{*}}(\hat{H}-z)|=0.$

$z\in[-K,\hat{H}]$

Proof. Without loss of generality we assume that $\{t_{n}\}$ is an increasing sequence of positive numbers
satisfying $\lim_{narrow\infty}t_{n}=\infty$ . Define

$v_{n}(t, z):=v(t+t_{n}, z), w_{n}(t+t_{n}, y):=w(t+t_{n}, y)$ ,
$H_{n}(t) :=H(t+t_{n}), \overline{G}_{n}(t) :=g(t+t_{n})-c^{*}(t+t_{n})-H_{n}(t)$ .

By (18) we have

$\{\begin{array}{ll}\frac{\partial w_{n}}{\partial t}=\frac{\partial^{2}w_{n}}{\partial y^{2}}+(H_{n}’(t)+c^{*})\frac{\partial w_{n}}{\partial y}+f(w_{n}) , t>-t_{n}, y\in(\overline{G}_{n}(t), 0) ,w_{n}(t, 0)=0, t>-t_{n},H_{n}’(t)=-\mu\frac{\partial w_{n}}{\partial y}(t, 0)-c^{*}, t>-t_{n}.\end{array}$ (20)
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Since $\Vert w_{n}\Vert_{\infty},$ $\Vert f(w_{n})\Vert_{\infty}$ and $\Vert H_{n}’\Vert_{\infty}$ are bounded, we can use the parabolic $L^{p}$ estimate, Sobolev
imbedding and Schauder estimate to deduce that $\{w_{n}\}$ is bounded in $C^{1+\frac{\alpha}{2},2+\alpha}([-R, R]\cross[-R, 0])$

for any $R>0$ , Hence $H_{n}’$ is uniformly bounded in $C^{\alpha}(I)$ for any bounded interval $I\subset \mathbb{R}$ . Hence
there exists a subsequence of $\{t_{n}\}$ , still denoted by $\{t_{n}\}$ such that

$H_{n}’arrow\tilde{H}$ in $C_{1oc}^{\alpha’}(\mathbb{R})$

for some $\alpha’\in(0, \alpha/2)$ . By using parabohc Schauder estimates again for the equation in (23), we
can see that

$w_{n}arrow\hat{w}$ in $C_{1oc}^{1+\frac{\alpha’}{2},2+\alpha’}(\mathbb{R}\cross(-\infty,0])$ , (21)

along a further subsequence, and $\hat{w}$ satisfies

$\{\begin{array}{ll}\hat{w}_{t}=\hat{w}_{yy}+(\tilde{H}(t)+c^{*})\hat{w}_{y}+f(\hat{w}) , t\in \mathbb{R}, y<0,\hat{w}(t, 0)=0, t\in \mathbb{R},\tilde{H}(t)=-\mu\hat{w}_{y}(t, 0)-c^{*}, t\in \mathbb{R}.\end{array}$ (22)

Since

$H_{n}(t)=H_{n}(0)+ \int_{0}^{t}H_{n}’(s)ds$

and $H_{n}’arrow$ fi in $C_{1oc}^{\alpha’}(\mathbb{R})$ , we obtain

$H_{n}(t) arrow\hat{H}(t):=\tilde{H}(0)+\int_{0}^{t}\tilde{H}(s)ds$ a$s$ $narrow\infty$ in $C_{1oc}^{1+\alpha’}(\mathbb{R})$ .

Thus $\tilde{H}(s)=\hat{H}’(t)$ and $\hat{w}$ satisfies

$\{\begin{array}{ll}\hat{w}_{t}=\hat{w}_{yy}+(\hat{H}’(t)+c^{*})\hat{w}_{y}+f(\hat{w}) , t\in \mathbb{R}, y<0,\hat{w}(t,0)=0, t\in \mathbb{R},\hat{H}’(t)=-\mu\hat{w}_{y}(t, 0)-c^{*}, t\in \mathbb{R}.\end{array}$

Next we examine $v_{n}$ . From (15) we can see that $v_{n}$ satisfies

$\{\begin{array}{ll}\frac{\partial v_{n}}{\partial t}=\frac{\partial^{2}v_{n}}{\partial y^{2}}+c^{*}\frac{\partial v_{n}}{\partial y}+f(v_{n}) , t>-t_{n}, z<H_{n}(t) ,v_{n}(t, H_{n}(t))=0, t>-t_{n},H_{n}’(t)=-\mu\frac{\partial v}{\partial y}(t, H_{n}(t))-c^{*}, t>-t_{n}.\end{array}$ (23)

For any $\epsilon>0$ we consider (23) over

$\Omega_{\epsilon}:=\{(t, z)|t\in[-\epsilon^{-1},\epsilon^{-1}], z\in[-\epsilon^{-1},\hat{H}-\epsilon]\}.$

Applying the parabolic Scauder estimate, we have by passing to a subsequence

$v_{n}arrow\hat{v}$ in $C^{1+\frac{\alpha’}{2},2+\alpha’}(\Omega_{\epsilon})$
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and $\hat{v}$ satisfies

$\hat{v}=\hat{v}_{zz}+c^{*}\hat{v}_{z}+f(\hat{v})$ in $\Omega_{\epsilon}.$

Since $\epsilon>0$ is arbitrary, by using the diagonal argument we have along a further subsequence we
may assume $v_{n}arrow\hat{v}$ in $C_{1oc}^{1+\frac{\alpha’}{2},2+\alpha’}(\Omega_{0})$ with $\Omega_{0}=\{(t, z)|t\in \mathbb{R}, z<\hat{H}(t)\}.$

Nest we show $\hat{v}\equiv 0$ and $\hat{v}(t, z)\equiv\hat{v}$ . By Lemma 3.6 we have

$\tilde{E}’(t+t_{n})=\frac{g’(t+t_{n})^{2}}{2\mu^{2}}(g’(t+t_{n})-c^{*})e^{c^{*}[g(t+t_{n})-c^{*}(t+t_{n})]}$

$- \int_{g(t+t_{n})-c^{*}(t+t_{n})}^{H(t+t_{n})}e^{c^{*}z}\{(v_{n})_{zz}+c^{*}(v_{n})_{z}+f(v_{n})\}^{2}dzarrow 0$

as $narrow\infty$ . Since

$g’(t+t_{n})^{2}$

$\overline{2\mu^{2}}(g’(t+t_{n})-c^{*})e^{c^{*}[g(t+t_{n})-c^{*}(t+t_{n})]}arrow0$

as $narrow\infty$ , we have for any $K>0$ and $\epsilon>0,$

$0 \leq\int_{-K}^{\hat{H}(t)-\epsilon}e^{c^{*}z}\{\hat{v}_{zz}+c^{*}\hat{v}_{z}+f(\hat{v})\}^{2}dz$

$\lim_{narrow\infty}\int_{g(t+t_{n})-c^{*}(t+t_{n})}^{H(t+t_{n})}e^{c^{*}z}\{(v_{n})_{zz}+c^{*}(v_{n})_{z}+f(v_{n})\}^{2}dz=0.$

Since $\epsilon,$ $K>0$ are arbitrarily, we obtain

$\hat{v}_{zz}+c^{*}\hat{v}_{z}+f(\hat{v})=0$ in $\Omega_{0}.$

Hence $\hat{v}_{t}\equiv 0$ and $\hat{v}(t, z)\equiv\hat{v}(z)$ .
To determine the boundary condition of $\hat{v}$ at $z=\hat{H}(t)$ , we consider $\hat{v}$ on

$\{(t, z)|t\in[-\epsilon^{-1}, \epsilon^{-1}], z\in[\hat{H}(t)-\epsilon,\hat{H}(t)]\}.$

Rom the relation

$v_{n}(t, z)=v(t+t_{n}, z)=w(t+t_{n}, z-\hat{H}(t+t_{n}))=w_{n}(t, z-H_{n}(t))$

and by (21) we see

$\lim \sup |w_{n}(t, z-H_{n}(t))-\hat{w}(t, z-\hat{H}(t))|=0$
$narrow\infty z\in[\hat{H}(t)-\epsilon,\hat{H}(t)]$

if we define $w_{n}(t, y)=0$ for $y\geq 0$ and $\hat{w}(t, y)=0$ for $y\geq 0$ . It follows that $\hat{v}(t, z)\equiv\hat{w}(t, z-\hat{H}(t))$ .
Hence $\hat{v}(t,\hat{H}(t))=0$ and

$\hat{H}’(t)=-\mu\hat{v}_{z}(t,\hat{H}(t))-c^{*}, t\in \mathbb{R}.$

From $0=\hat{v}(t,\hat{H}(t))=\hat{v}(\hat{H}(t))$ and the fact that $\hat{v}(z)\geq 0$ for $z<\hat{H}(t)$ . We obtain by the strong
maximum principle $\hat{v}(z)>0$ for $z<H(t)$ and by the Hopf lemma $\hat{v}_{z}(\hat{H}(t))<0$ . On the other hand
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, from $0=\hat{v}(\hat{H}(t))$ we deduce $0=\hat{v}_{z}(\hat{H}(t))\hat{H}’(t)$ . Therefore $\hat{H}’(t)\equiv 0$ and $\hat{H}(t)\equiv\hat{H}$ . It follows
that $c^{*}=-\mu\hat{v}_{z}(H)$ . Hence $\hat{v}$ satisfies

$\{\begin{array}{l}\hat{v}_{zz}+c^{*}\hat{v}_{z}+f(\hat{v})=0, z<\hat{H},\hat{v}(\hat{H})=0,\hat{v}_{z}(\hat{H})=-c^{*}/\mu.\end{array}$

This implies, by the uniqueness of solution to initial value problem, we can conclude that $\hat{v}(z)=$

$q_{c}\cdot(\hat{H}-z)$ . The proof is now complete. $\square$

Now we are ready to prove Proposition 3.4.

Proof of Proposition 3.4. Rom (14) we have

$|v(t_{n}, z)-1|\leq C’(e^{\gamma z}+e^{-\delta t_{n}})$ for $z\in[-(c+c^{*})t_{n}, H(t_{n})].$

Therefore, from (13) it holds that for any $\epsilon>0$ , there exists $K>0$ and $T>0$ such that

$\sup |v(t_{n}, z)-q_{c^{*}}(\hat{H}-z)|<\epsilon$

$z\in[-(c+c^{*})t_{n},-K]$

for $t_{n}>T$ . On the other hand from Lemma 3.7, for large $t_{n},$

$\sup |v(t_{n}, z)-q_{\mathcal{C}^{*}}(\hat{H}-z)|<\epsilon$

$z\in[-K,\hat{H}]$

and

$|h(t_{n})-c^{*}t_{n}-\hat{H}|<\epsilon$ . (24)

Hence we have

$\sup |v(t_{n}, z)-q_{c}\cdot(\hat{H}-z)|<\epsilon$ (25)
$z\in[-(c+c^{*})t_{n},\hat{H}]$

for all large $n$ . This complete of the proof of the proposition. $\square$

3.3 Part 3: Completion of the proof of Theorem A

In this section we prove Theorem A by constructed finer upper and lower solution as we constructed
in part 1. We first present how we construct the upper solution. Take an arbitrary $\epsilon>0$ and fix $t_{n}$

such that (24) and (25) hold and $e^{-\delta t_{n}}\leq\epsilon$ . Rom (24) and (25) we have

$v(t_{n}, z)\leq q_{c^{*}}(\hat{H}-z)+\epsilon$ for $z\in[-(c+c^{*}),\hat{H}],$

$H(t_{n})=h(t_{n})-c^{*}t_{n}\leq\hat{H}+\epsilon$

Hence we have

$v(t_{n}, z)\leq q_{c^{*}}(\hat{H}+\epsilon-z)+\epsilon$ for $z\in[-(c+c^{*})t,\hat{H}+\epsilon].$

We note that we can find $N>1$ independent of $\epsilon>0$ such that

$(1+N\epsilon)q_{c}*(\hat{H}+N\epsilon-z)\geq q_{c^{*}}(\hat{H}+\epsilon-z)+\epsilon$ for $z\leq\hat{H}+\epsilon$
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(Please see [7] for detail).
Now we define an upper solution $(0, g, \overline{h})$ as follows:

$\overline{u}(t, x)=(1+N\epsilon e^{-\delta(t-t_{n})}q_{c}*(\overline{h}(t)-x)$ ,
$\overline{h}(t)=\hat{H}+c^{*}t+N\epsilon+N\epsilon\sigma(1-e^{-\delta(t-t_{n})})$,
$\overline{g}(t)=g(t)$ .

As in the proof of Lemma 3.2 we can check $(0,\overline{g},\overline{h})$ satisfies the condition in Lemma 2.1 for $t\geq t_{n}$

(see [7]). Hence we obtain

$u(t, x)\leq q_{c}\cdot(\hat{H}+N\epsilon(1+\sigma)+c^{*}t-x)+\epsilon Ne^{-\delta(t-t_{n})}$ , (26)
$h(t)-c^{*}t-\hat{H}\leq N\epsilon(1+\sigma)$ (27)

for $t\geq t_{n}$ and $x\in[\overline{g}(t), h(t)]=[g(t),g(t)],$

Similarly we can obtain by constructing a lower solution that for some $c\in(0, c^{*})$ and some
$N>1$

$q_{c}*(\hat{H}-N\epsilon(1+\sigma)+c^{*}t-x)-\epsilon Ne^{-\delta(t-t_{n})}\lequ(t, x)$ , (28)
$-N\epsilon(1+\sigma)\leq h(t)-c^{*}t-\hat{H}$ (29)

for $t\geq t_{n}$ and $x\in[\underline{g}(t), \underline{h}(t)]=[-ct, h(t)]$ where

$\underline{h}(t)=\hat{H}+c^{*}t-N\epsilon-N\epsilon\sigma(1-e^{-\delta(t-t_{n})})$ .

(Please see [7]). From (26) to (29), we can easily conclude that

$|u(t, x)-q_{c^{*}}(h(t)-x)|\leq C\epsilon$ for $x\in[-ct, h(t)]$

$|h(t)-c^{*}t-\hat{H}|\leq C\epsilon$

for $t\geq t_{n}$ . This completes the proof of Theorem A.
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