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Abstract
In the workshop, $I$ demonstrated that a certain evolution equation on a weighted

Riemannian manifold can be considered as a Wasserstein gradient flow (the talk was
based on [7], where we used the notions of the information geometry). In this note,

I discuss the usefulness of the information geometry in the Wasserstein geometry,
especially its gradient flow structure.

1 Introduction
In [7], under appropriate conditions, we regard the evolution equation

$\frac{\partial}{\partial t}\rho=div_{\omega}(\frac{\rho\nabla\rho}{\varphi(\rho)}+\rho\nabla\Psi)$

on a weighted Riemannian manifold $(M, \omega)$ as the gradient flow of the functional $E_{\varphi}^{\Psi}$ on
the Wasserstein space $(\mathcal{P}_{2}(M), W_{2})$ . Here $M=(M, g)$ is a Riemannian manifold and
$\omega=e^{-f}vo1_{g}$ is a positive measure on $M$ , where $f\in C^{\infty}(M)$ and $vo1_{g}$ is the Riemannian
volume measure on $(M, g)$ . The weighted divergence $div_{\omega}$ is defined for a vector field $X$ on
$M$ by $div_{\omega}(X)$ $:=div(X)-g(X, \nabla f)$ , where $\nabla$ is the gradient and $div$ is the divergence on
$(M, g)$ , respectively. In the right-hand side of the evolution equation, $\varphi$ is a continuous,
non-decreasing, positive function on $(0, \infty)$ and $\Psi$ is a function on $M$ . The Wasserstein
space $(\mathcal{P}_{2}(M), W_{2})$ is a pair of the space $\mathcal{P}_{2}(M)$ of probability measures on $(M, g)$ having
finite second moment with its distance function $W_{2}$ which has its root in the optimal
transport theory. The functional $E_{\varphi}^{\Psi}$ on $\mathcal{P}_{2}(M)$ is the summation of the internal energy
$E_{\varphi}$ generating by $f_{\varphi}(r)$ $:= \int_{0}^{r}\int_{1}^{t}1/\varphi(s)dsdt$ and the potential energy $E^{\Psi}$ generating by
$\Psi$ . To be precise, for $\mu=\rho\omega\in \mathcal{P}_{2}(M)$ , these energies are respectively defined by

$E_{\varphi}( \mu)=\int_{M}f_{\varphi}(\rho)d\omega, E^{\Psi}(\mu)=\int_{M}\Psi d\mu.$

It may be said that this interoperation of the evolution equation as a gradient flow is
obtained by generalizing the case of the heat equation which is the case of $\varphi(s)=s$ via
the information geometry. We expect that the use of the information geometry shall shed
new light on the analysis of evolution equations. In this note, we explain the notions of
the information geometry and its role in the Wasserstein gradient flow structure. For the
emphasis on the usefulness of the information geometry, we discuss only the Euclidean
case. Also some arguments are not rigorous for the sake of simplicity.
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2 Wasserstein geometry
In this section, we first give the definition and some basic properties of the Wasserstein
geometry, then review the Wasserstein gradient flow. The Wasserstein geometry is a
metric geometry on the space of probability measures over a complete, separable, metric
space. However, in this note, we restrict our attention to absolutely continuous probability
measures on $\mathbb{R}^{d}$ with respect to the $d$-dimensional Lebesgue measure, and we moreover
identify such a probability measure with its density function.

2.1 Basic properties
Let $\mathcal{P}^{d}$ be the space of non-negative, integrable functions on $\mathbb{R}^{d}$ having unit mass and
finite second moment, that is,

$\mathcal{P}^{d}:=\{\rho\in L^{1}(\mathbb{R}^{d})|\rho(x)\geq 0$ a.e. $x\in \mathbb{R}^{d},$ $\int_{\mathbb{R}^{d}}\rho(x)dx=1,$ $\int_{\mathbb{R}^{d}}|x|^{2}\rho(x)dx<\infty\}.$

In this note, the integrability on $\mathbb{R}^{d}$ is with respect to the $d$-dimensional Lebesgue measure
if not otherwise specified.

The $(L^{2_{-}})$ Wasserstein distance between $\rho,$
$\sigma\in \mathcal{P}^{d}$ is defined as

$W_{2}( \rho, \sigma)=\inf_{T}(\int_{\mathbb{R}^{d}}|x-T(x)|^{2}\rho(x)dx)^{1/2}$ (2.1)

where $T$ runs over all measurable maps on $\mathbb{R}^{d}arrow \mathbb{R}^{d}$ pushing $\rho$ forward to $\sigma$ . We say that
a measurable map $T:\mathbb{R}^{d}arrow \mathbb{R}^{d}$ pushes $\rho$ forward to $\sigma$ , denoted by $T_{\#}\rho=\sigma$ , if

$\int_{\mathbb{R}^{d}}\xi(x)\sigma(x)dx=\int_{\mathbb{R}^{d}}\xi(T(x))\rho(x)dx$

holds for any non-negative function $\xi$ on $\mathbb{R}^{d}$ . For any $\rho,$
$\sigma\in \mathcal{P}^{d}$ , there exist a unique

minimizer of the variational problem (2.1).

Theorem 2.1 ([2]) Given $\rho,$
$\sigma\in \mathcal{P}^{d}$ , there exist a measurable map $T:\mathbb{R}^{d}arrow \mathbb{R}^{d}$ such

that $T_{\#}\rho=\sigma$ and

$W_{2}( \rho, \sigma)=(\int_{\mathbb{R}^{d}}|x-T(x)|^{2}\rho(x)dx)^{1/2}$

In addition, this map $T$ is uniquely determined $\rho$ -almost everywhere.

A minimizer $T$ of the variational problem (2.1) is called an optimal transport between $\rho$

and $\sigma$ . Thus the variational problem (2.1) is solved, and moreover, $W_{2}$ is indeed a distance
function on $\mathcal{P}^{d}.$

Theorem 2.2 ([14, Theorem 7.3]) The pair $(\mathcal{P}^{d}, W_{2})$ is a metric space.
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It is known that any two points $\rho,$

$\sigma\in \mathcal{P}^{d}$ are joined by a unique length minimizing curve
with respect to the Wasserstein distance function. The unique curve is generating by the
optimal transport $T$ between them. To be precise, set $T_{t}(x)$ $:=(1-t)x+tT(x)$ and
$\rho_{t}:=T_{t\#}\rho$ . Then the curve $\{\rho_{t}\}_{t\in[0,1]}\subset \mathcal{P}^{d}$ is a unique length minimizing curve from $\rho$ to
$\sigma$ with respect to the Wasserstein distance function.

We also mention the relation of convergences in $\mathcal{P}^{d}$ with respect to the Wasserstein
distance function and the weak topology. For a sequence $\{\rho_{n}\}_{n\in \mathbb{N}}\subset \mathcal{P}^{d}$ and $\rho_{\infty}\in \mathcal{P}^{d}$ , we
say that $\{\rho_{n}\}_{n\in \mathbb{N}}$ weakly converges to $\rho_{\infty}$ as $narrow\infty$ if it holds for any bounded continuous
function $\xi$ on $\mathbb{R}^{d}$ that

$\lim_{narrow\infty}\int_{\mathbb{R}^{d}}\xi(x)\rho_{n}(x)dx=\int_{\mathbb{R}^{d}}\xi(x)\rho_{\infty}(x)dx.$

Proposition 2.3 ([14, Theorem 7.12]) For a sequence $\{\rho_{n}\}_{n\in \mathbb{N}}\subset \mathcal{P}^{d}$ and $\rho_{\infty}\in \mathcal{P}^{d}$ , the
following two conditions (1) and (2) are equivalent to each other:

(1) $\lim_{narrow\infty}W_{2}(\rho_{n}, \rho_{\infty})=0.$

(2) $\{\rho_{n}\}_{n\in \mathbb{N}}$ weakly converges to $\rho_{\infty}$ as $narrow\infty$ and we have

$\lim_{narrow\infty}\int_{\mathbb{R}^{d}}|x|^{2}\rho_{n}(x)dx=\int_{\mathbb{R}^{d}}|x|^{2}\rho_{\infty}(x)dx.$

We remark that $(\mathcal{P}^{d}, W_{2})$ is not complete. For example, let us consider the fundamental
solution

$g_{t}(x):=(4 \pi t)^{-d/2}\exp(-\frac{|x|^{2}}{4t})$

of the heat equation. As $tarrow 0,$ $g_{t}$ converges to the Dirac measure supported at the origin
with respect to the Wasserstein distance function.

2.2 Gradient flow
As we mentioned in the previous subsection, any two points in $\mathcal{P}^{d}$ are joined by a unique
length minimizing curve with respect to the Wasserstein distance function. This enables
us to define the gradient of a functional on $(\mathcal{P}^{d}, W_{2})$ via directional derivative, and to
discuss its Wasserstein gradient flow. For a functional $F$ on $\mathcal{P}^{d}$ and $\rho\in \mathcal{P}^{d}$ , a curve
$\{\rho_{t}\}_{t\in[0,l)}\subset \mathcal{P}^{d}$ is the Wasserstein gradient flow of $F$ starting at $\rho$ if we have

$\frac{\partial}{\partial t}\rho_{t}=-gradF(\rho_{t})$

for any $t\in(0, l)$ and $\rho_{0}=\rho$ , where $gradF$ stands for the Wasserstein gradient of $F$ . For
example, see [9] for the details.

Let us first formulate tangent vectors at $\rho\in \mathcal{P}^{d}$ , that is, the velocities of curves
$\{\rho_{t}\}_{t\in(-\epsilon)}$ with $\rho_{0}=\rho$ at $t=0$ . For a curve $\{\rho_{t}\}_{t\in(-\epsilon,\epsilon)}\subset \mathcal{P}^{d}$ with $\rho_{0}=\rho$ , there exists a
unique (up to additive constant) function $\phi$ on $\mathbb{R}^{d}$ satisfying

$\int_{\mathbb{R}^{d}}\langle\nabla\xi(x), \nabla\phi(x)\rangle\rho(x)dx=\frac{d}{dt}|_{t=0}\int_{\mathbb{R}^{d}}\xi(x)\rho_{t}(x)dx$
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for all smooth functions $\xi$ on $\mathbb{R}^{d}$ with compact support, where $\nabla$ is the gradient on $\mathbb{R}^{d}.$

This can be interpreted as that $\phi$ is a solution of the elliptic equation of the form

$- div(\rho\nabla\phi)=\frac{\partial\rho_{t}}{\partial t}t=0$
’ (2.2)

where $div$ is the divergence on $\mathbb{R}^{d}$ . Conversely, for a suitable function $\phi$ on $\mathbb{R}^{d}$ and $\rho\in \mathcal{P}^{d},$

there exists a unique curve $\{\rho_{t}\}_{t\in(-\epsilon,\epsilon)}$ satisfying (2.2) and $\rho_{0}=\rho$ . This yields that the
velocity $\dot{\rho}_{0}$ of $\{\rho_{t}\}_{t\in(-\epsilon,\epsilon)}$ at $t=0$ , namely the tangent vector at $\rho$ , can be considered as
$-div(\rho\nabla\phi)$ with the solution $\phi$ of (2.2). We thus identify the tangent space $T_{\rho}\mathcal{P}^{d}$ with
the metric completion of the space defined by

{ $v:=-div(\rho\nabla\phi)|\phi$ : suitable function on $\mathbb{R}^{d}$ }
with respect to the norm $\Vert\cdot\Vert_{\rho}$ induced by the scalar product $\langle\cdot,$ $\cdot\rangle_{\rho}$ which is defined for
$v_{1}$ $:=-div(\rho\nabla\phi_{1})$ and $v_{2}:=-div(\rho\nabla\phi_{2})$ by

$\langle v_{1}, v_{2}\rangle_{\rho}:=\int_{\mathbb{R}^{d}}\langle\nabla\phi_{1}(x), \nabla\phi_{2}(x)\rangle\rho(x)dx.$

By Benamou-Brenier formula, the‘Riemannian’ distance function of $(\mathcal{P}^{d}, \langle\cdot, \cdot\rangle_{*})$ coincides
with the Wasserstein distance function $W_{2}.$

Theorem 2.4 ([1, Theorem 4.1]) For any $\rho_{0},$
$\rho_{1}\in \mathcal{P}^{d}$ with suitable conditions, we have

$W_{2}(\rho_{0}, \rho_{1})^{2}$

$= \inf\{\int_{0}^{1}\Vert\dot{\rho}_{t}\Vert_{\rho}^{2_{t}}dt|\{\rho_{t}\}_{t\in[0,1]}\subset \mathcal{P}^{d}$ is a curve from $\rho_{0}$ to $\rho_{1}$ with the velocity $\dot{\rho}_{t}$ at $t\}.$

Using this expression, let us explain the gradient of internal energies and potential
energies on $(\mathcal{P}^{d}, W_{2})$ .

We first consider the internal energy $E_{f}$ generating by $f\in C[O, \infty)\cap C^{2}(0, \infty)$ , which
is defined for $\rho\in \mathcal{P}^{d}$ by

$E_{f}( \rho):=\int_{\mathbb{R}^{d}}f(\rho(x))dx.$

For any curve $\{\rho_{t}\}_{t\in(-\epsilon,\epsilon)}\subset \mathcal{P}^{d}$ with $\rho_{0}=\rho$ and the velocity $\dot{\rho}_{0}=-div(\rho\nabla\phi)$ , we directly
compute

$\frac{d}{dt}E_{f}(\rho_{t})|_{t=0}=\int_{\mathbb{R}^{d}}[\frac{\partial}{\partial t}f(\rho_{t})|_{t=0}]dx=\int_{\mathbb{R}^{d}}[f’(\rho)\cdot\frac{\partial}{\partial t}\rho_{t}|_{t=0}]dx$

$=- \int_{\mathbb{R}^{d}}[f’(\rho)div(\rho\nabla\phi)]dx=\int_{\mathbb{R}^{d}}\langle\nabla f’(\rho), \nabla\phi\rangle\rho dx$

$=\langle-div(\rho\nabla f’(\rho)),\dot{\rho}_{0}\rangle_{\rho}.$

On the other hand, the Riemannian calculus gives

$\frac{d}{dt}E_{f}(\rho_{t})|_{t=0}=$ Diff$E_{f}|_{\rho}(\dot{\rho}_{0})=\langle gradE_{f},\dot{\rho}_{0}\rangle_{\rho},$
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where Di$ffE_{f}$ is the differential map of $E_{f}$ on $\mathcal{P}^{d}$ . Since the tangent vector $\dot{\rho}_{0}\in T_{\rho}\mathcal{P}^{d}$ is
arbitrary, we have

$gradE_{f}|_{\rho}=-div(\rho\nabla f’(\rho))$ .

We next consider the potential energy $E^{\Psi}$ generating by $\Psi\in C^{2}(\mathbb{R}^{d})$ , which is defined
for $\rho\in \mathcal{P}^{d}$ by

$E^{\Psi}( \rho):=\int_{\mathbb{R}^{d}}\Psi(x)\rho(x)dx.$

Similarly, for any curve $\{\rho_{t}\}_{t\in(-\epsilon,\epsilon)}\subset \mathcal{P}^{d}$ with $\rho_{0}=\rho$ and the velocity $\dot{\rho}_{0}=-div(\rho\nabla\phi)$ ,
we find that

$\frac{d}{dt}E^{\Psi}(\rho_{t})|_{t=0}=\int_{\mathbb{R}^{d}}[\Psi\cdot\frac{\partial}{\partial t}\rho_{t}|_{t=0}]dx=-\int_{\mathbb{R}^{d}}[\Psi div(\rho\nabla\phi)]dx=\int_{\mathbb{R}^{d}}\langle\nabla\Psi,$
$\nabla\phi\rangle\rho dx$

$=\langle-div(\rho\nabla\Psi),\dot{\rho}_{0}\rangle_{\rho},$

and

$\frac{d}{dt}E^{\Psi}(\rho_{t})t=0^{=DiffE^{\Psi}|_{\rho}(\dot{\rho}_{0})=\langle gradE^{\Psi},\dot{\rho}_{0}\rangle_{\rho}}$ ’

which implies
$gradE^{\Psi}|_{\rho}=-div(\rho\nabla\Psi)$ .

In this way, we find that, for a Wasserstein gradient flow $\{\rho_{t}\}_{t\in[0,l)}$ of $E_{f}^{\Psi}$ $:=E_{f}+E^{\Psi},$

$\frac{\partial}{\partial t}\rho_{t}=div(\rho_{t}\nabla f’(\rho_{t})+\rho_{t}\nabla\Psi)$

holds for any $t\in(0, l)$ .
We next discuss the convexity of a functional which plays an important role in an

asymptotic analysis in its gradient flow since if a functional is convex, then its gradient
flow has a contraction property (for instance, see [7] and references therein). To do this,

we define the lower bound of the Hessian of functionals on $(\mathcal{P}^{d}, W_{2})$ . Recall that, for
$\Psi\in C^{2}(\mathbb{R}^{d})$ and $K\in \mathbb{R}$ , the Hessian of $\Psi$ is bounded below by $K$ , namely

$Hess_{x}\Psi(v, v)\geq K|v|^{2}$

holds for any $x,$
$v\in \mathbb{R}^{d}$ if and only if we have

$\Psi((1-t)x+ty)\leq(1-t)\Psi(x)+t\Psi(y)-\frac{K}{2}t(1-t)|x-y|^{2}$

for any $x,$ $y\in \mathbb{R}^{d}$ and $t\in[0,1]$ (see [14, \S 2.1.3], for instance).

Definition 2.5 Given $K\in \mathbb{R}$ , we say that a functional $F$ : $\mathcal{P}^{d}arrow(-\infty, \infty]$ is dis-
placement $K$ -convexity, if, for any length minimizing curve $\{\rho_{t}\}_{t\in[0,1]}\subset \mathcal{P}^{d}$ with constant
speed,

$F( \rho_{t})\leq(1-t)F(\rho_{0})+tF(\rho_{1})-\frac{K}{2}(1-t)tW_{2}(\rho_{0}, \rho_{1})^{2}$

holds for all $t\in[0,1].$
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As for the displacement convexity of internal energies and potential energies, the following
criteria are known.

Theorem 2.6 ([6]) (1) Let $f$ be a positive, convex function on $(0, \infty)$ . Assume that $f$ is
$C^{2}$ on $(0, \infty)$ and satisfies $\lim_{r\downarrow 0}f(r)=0$ . If moreover the function defined by

$r \mapsto\frac{rf’(r)-f(r)}{r^{1-\frac{1}{d}}}$

is non-decreasing on $(0, \infty)$ , then the internal energy $E_{f}$ generating by $f$ is displacement
$0$ -convex on $\mathcal{P}^{d}.$

(2) For $\Psi\in C^{2}(\mathbb{R}^{d})$ , if the Hessian of $\Psi$ is bounded below by $K\in \mathbb{R}$ , then the potential
energy $E^{\Psi}$ generating by $\Psi$ is displacement $K$ -convex on $\mathcal{P}^{d}.$

For the internal energy $E_{f}$ generating by $f,$ $\psi_{f}(r)$ $:=rf’(r)-f(r)$ is called the pressure
function of $f$ . As mentioned in [10], the Wasserstein gradient flow of $E_{f}$ is written as

$\frac{\partial}{\partial t}\rho(t, x)=\triangle(\psi_{f}(\rho(t, x)))$ .

3 Example
In this section, we see the evolution equation of the form

$\frac{\partial}{\partial t}\rho=\frac{1}{2-q}\triangle(\rho^{2-q})+div(\rho\nabla\Psi)$

on $\mathbb{R}^{d}$ , where $d\geq 2,$ $q\in(0, (d+1)/d)$ and $\Psi\in C^{2}(\mathbb{R}^{d})$ . If $\Psi$ is a constant function,
namely without drift, the evolution equation is called the the fast diffusion equation for
$q>1$ , the porous medium equation for $q<1$ , and the heat equation for $q=1$ . We
remark that, in [5], the heat equation is regarded as a Wasserstein gradient flow, where
they used a time-discrete iterative variational scheme. On the other hand, in [8], the fast
diffusion equation, the porous medium equation, and the heat equation are interpreted as
Wasserstein gradient flows by using the Riemannian structure of the Wasserstein space,
where the interpretation of the Riemannian structure differs from one given in Section 2.

3.1 Heat equation
Take $f(r)$ $:=r\log(r)$ . We then have

$\psi_{f}(r):=rf’(r)-f(r)=r,$

and the function
$r \mapsto\frac{\psi_{f}(r)}{r^{1-1/d}}=r^{1/d}$

is trivially non-decreasing on $(0, \infty)$ . Thus the internal energy

$E_{f}( \rho):=\int_{\mathbb{R}^{d}}\rho\log(\rho)dx$
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is displacement $0$-convex. In this case, $E_{f}$ is called the Boltzmann entropy with negative
$sign$ . Recall that a minimizer of $E_{f}$ on $\mathcal{P}^{d}$ with the mean and the covariance constraints
is a Gaussian measure, which is characterized by the exponential function. Needless to
say, the exponential function $\exp(t)$ is a solution of the ordinary differential equation

$\frac{d}{dt}y(t)=y(t) , y(0)=1.$

A typical example of Gaussian densities is the fundamental solution

$(4 \pi t)^{-\frac{d}{2}}\exp(-\frac{|x|^{2}}{4t})$

of the heat equation
$\frac{\partial}{\partial t}u(t, x)=\triangle u(x, t)$ (3.1)

on $\mathbb{R}^{d}.$

More generally, for any function $\Psi\in C^{2}(\mathbb{R}^{d})$ whose Hessian is bounded below by
$K>0$ , there exists $c\in \mathbb{R}$ such that $\sigma$ $:=\exp(-\Psi+c)\in \mathcal{P}^{d}$ and

$\inf_{\rho\in \mathcal{P}^{d}}E_{f}^{\Psi}(\rho)\geq E_{f}^{\Psi}(\sigma)$

holds, where we set $E_{f}^{\Psi}$ $:=E_{f}+E^{\Psi}.$

The functional $H_{f}^{\Psi}$ on $\mathcal{P}^{d}$ defined by

$H_{f}^{\Psi}( \rho):=E_{f}^{\Psi}(\rho)-E_{f}^{\Psi}(\sigma)=\int_{\mathbb{R}^{d}}\rho\log(\frac{\rho}{\sigma})dx$

is called the relative entropy of $\rho$ with respect to $\sigma$ . The non-negativity of $H_{f}^{\Psi}$ also follows
from the convexity of $f$ since we have

$H_{f}^{\Psi}( \rho)=\int_{\mathbb{R}^{d}}[f(\rho)-f(\sigma)-f’(\sigma)(\rho-\sigma)]dx.$

The relative entropy $H_{f}^{\Psi}$ is displacement $K$-convex and its Wasserstein gradient flow is a
solution of the Fokker-Planck equation given by

$\frac{\partial}{\partial t}\rho(t, x)=\Delta\rho+div(\rho\nabla\Psi)$ . (3.2)

Formally, $H_{f}^{\Psi}$ is decreasing along its Wasserstein gradient flow $\rho_{t}$ in time $t>0$ and any
Wasserstein gradient flow of $H_{f}^{\Psi}$ asymptotically approaches to $\sigma.$

If we take $\Psi(x)=|x|^{2}/2$ , then $c=-\log(2\pi)^{d/2}$ and $\sigma$ is the Lebesgue density of
the standard Gaussian measure. In this case, for a solution $\rho(t, x)$ of the $Fokker-Planck$
equation (3.2), the function

$u(t, x) :=(1+2t)^{-d/2} \cdot\rho(\frac{1}{2}\log(1+2t), \frac{x}{\sqrt{1+2t}})$

is a solution of the heat equation (3.1). This time-dependent scaling is well-known, how-
ever recently, a different time-dependent scaling is used to analyze asymptotic behavior
of certain evolution equations (see [3] and Section 5 below).
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3.2 Porous Medium Equation/Fast Diffusion Equation
Fix $q\in(0,1)\cup(1,2)$ and set the function $f_{q}$ on $[0$ , oo $)$ by

$f_{q}(r):= \frac{r^{2-q}-(2-q)r}{(2-q)(1-q)}.$

Note that $f_{q}$ is convex and $f_{q}(r)arrow r\log r$ as $qarrow 1$ . The direct computation yields

$\psi_{f_{q}}(r):=rf_{q}’(r)-f_{q}(r)=\frac{r^{2-q}}{2-q}$

and the function
$r \mapsto\frac{\psi_{f_{q}}(r)}{r^{1-\frac{1}{d}}}=\frac{r^{1-q+\frac{1}{d}}}{2-q}$

is non-decreasing on $(0, \infty)$ if $q\leq(d+1)/d$ . We remark that $E_{f_{q}}$ is related to the
$(2-q)$ -Tsallis entropy with negative $sign$ (see [13]).

For $q\in(O, 1)\cup(1, (d+4)/(d+2))$ , a minimizer of $E_{f_{q}}$ on $\mathcal{P}^{d}$ under the mean and the co-
variance constraints is called the $q$-Gaussian measure and characterized the $q$-exponential
function $\exp_{q}$ given by

$\exp_{q}(t):=[1+(1-q)t]_{+}^{1/(1-q)},$

where we set $[t]_{+};= \max\{t, 0\}$ and by convention $0^{a}$ $:=\infty$ for $a<0$ . The assumption
$q<(d+2)/(d+4)$ ensures the finiteness of the second moment of $q$-Gaussian measures.
Note that $\exp_{q}(t)arrow\exp(t)$ as $qarrow 1$ . The $q$-exponential function is a solution of the
ordinary differential equation given by

$\frac{d}{dt}y(t)=y(t)^{q}, y(0)=1.$

A typical example of $q$-Gaussian densities is the self-similar solution

$ct^{-\frac{d}{d(1-q)+2}} \cdot\exp_{q}(-\lambda|x|^{2}/t\frac{2}{d(1-q)+2})$

of the following evolution equation

$\frac{\partial}{\partial t}u(t, x)=\frac{1}{2-q}\triangle(u(x, t)^{2-q})$ (3.3)

on $\mathbb{R}^{d}$ , where $c,$
$\lambda\in \mathbb{R}$ are constants depending on $q$ and $d$ (for instance, see [11]).

In the rest of this subsection, we always assume $q\in(0,1)\cup(1, (d+1)/d)$ and $d\geq 2,$

which guarantees the displacement $0$-convexity of $E_{f_{q}}$ on $\mathcal{P}^{d}$ and the finiteness of the
second moment of $q$-Gaussian measures on $\mathbb{R}^{d}$ . For any function $\Psi\in C^{2}(\mathbb{R}^{d})$ whose
Hessian is bounded below by $K>0$ , there exists $c\in \mathbb{R}$ such that $\sigma$ $:=\exp_{q}(-\Psi+c)\in \mathcal{P}^{d}$

and
$E_{f_{q}}^{\Psi}(\rho)\geq E_{f_{q}}^{\Psi}(\sigma)$

holds for any $\rho\in \mathcal{P}^{d}$ whose support is contained in the support of $\sigma$ , where we set
$E_{f_{q}}^{\Psi}$ $:=E_{f_{q}}+E^{\Psi}$ . The functional $H_{f_{q}}^{\Psi}$ on $\mathcal{P}^{d}$ defined by

$H_{f_{q}}^{\Psi}(\rho):=E_{f_{q}}^{\Psi}(\rho)-E_{f_{q}}^{\Psi}(\sigma)$
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is called the $q$ -relative entropy of $\rho$ with respect to $\sigma$ . In the case of $\rho\in \mathcal{P}^{d}$ whose support
is contained in the support of $\sigma$ , the non-negativity of $H_{f_{q}}^{\Psi}$ also follows from the convexity
of $f_{q}$ since we have

$H_{f_{q}}^{\Psi}( \rho)=\int_{\mathbb{R}^{d}}[f_{q}(\rho)-f_{q}(\sigma)-f_{q}’(\sigma)(\rho-\sigma)]dx.$

The $q$-relative entropy $H_{f_{q}}^{\Psi}$ is displacement $K$-convex and its Wasserstein gradient flow is
a solution of the following evolution equation:

$\frac{\partial}{\partial t}\rho(t, x)=\frac{1}{2-q}\Delta(\rho^{2-q)}+div(\rho\nabla\Psi)$ . (3.4)

Formally, $H_{f_{q}}^{\Psi}$ is decreasing along its Wasserstein gradient flow $\rho_{t}$ in time $t>0$ and any

Wasserstein gradient flow of $H_{f_{q}}^{\Psi}$ asymptotically approaches to $\sigma.$

If we take $\Psi(x)=|x|^{2}/2$ , then $\sigma$ is the Lebesgue density of a $q$-Gaussian measure.
Moreover, for a solution $\rho(t, x)$ of the evolution equation (3.4), the function

$u(t, x):=(1+ \frac{t}{\alpha})^{-d\alpha}\cdot\rho(\alpha\log(1+\frac{t}{\alpha}), x/(1+\frac{t}{\alpha})^{\alpha})$ (3.5)

is a solution of the evolution equation (3.3), where $\alpha=\alpha(q, d)$ $:=1/(d(1-q)+2)$ .
When $qarrow 1$ , the evolution equation (3.3) and its self-similar solution recover the heat
equation (3.1) and its fundamental solution, respectively. Since $\alpha(1, d)=1/2$ , this time-
dependent scaling (3.5) can be extended to the case of $q=1.$

4 Information geometry
In the previous section, we discus a certain evolution equation from the viewpoint of
the Wasserstein gradient flow of the functional $E_{f}^{\Psi}$ consisting of the internal energy $E_{f}$

generating by $f$ and the potential energy $E^{\Psi}$ generating by $\Psi$ , where $f$ satisfies the
condition in Theorem 2.6(1) and the Hessian of $\Psi$ is bounded below by $K>0$ . Although
there are many choice of $f$ , in this section, we introduce the method to generalize $f(r)=$

$r\log(r)$ , which is the internal density of the Boltzmann energy, by using the information
geometry associated to $\varphi$ . We refer to [7] and references therein for the details.

In this section, a function $\varphi$ : $(0, \infty)arrow(0, \infty)$ is always assumed to be continuos,
non-decreasing, positive function with

$\varphi(0):=\lim_{s\downarrow 0}\varphi(s)=0, \varphi(1)=1.$

Define the $\varphi$-logarithmic function by

$\ln_{\varphi}(t):=l^{t}\frac{1}{\varphi(s)}ds$
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for $t\in(O, \infty)$ . Since the function $\ln_{\varphi}$ is clearly increasing, there exists its inverse function
on $\ln_{\varphi}((O, \infty))$ . We extend the inverse function to the whole of $\mathbb{R}^{d}$ by

$\exp_{\varphi}(\tau):=\{\begin{array}{ll}0 if\tau\leq l_{\varphi},\ln_{\varphi}^{-1}(\tau) if \tau\in(l_{\varphi}, L_{\varphi}) ,\infty if \tau\geq L_{\varphi},\end{array}$

where we set

$l_{\varphi}:= \inf_{t>0}\ln_{\varphi}(t)=\lim_{t\downarrow 0}\ln_{\varphi}(t) ,L_{\varphi}:=\sup_{t>0}\ln_{\varphi}(t)=\lim_{t\uparrow\infty}\ln_{\varphi}(t)$ .

We call $\exp_{\varphi}$ the $\varphi$-exponential function. Note that $\exp_{\varphi}$ is a solution of the ordinary
differential equation given by

$\frac{d}{dt}y(t)=\varphi(y(t)) , y(0)=1.$

We define a kind of the differentiable coefficient of $\varphi$ as

$\theta_{\varphi}:=\sup_{s>0}\{\frac{S}{\varphi(s)}\cdot\lim_{\epsilon\downarrow}\sup_{0}\frac{\varphi(s+\epsilon)-\varphi(s)}{\epsilon}\}\geq 0.$

If $\theta_{\varphi}<2$ , then the function on $(0, \infty)$ defined as

$f_{\varphi}(r):= \int_{0}^{r}\ln_{\varphi}(t)dt$

is well-defined (see [7, Lemma 2.8]). The function $f_{\varphi}$ is clearly convex and $f_{\varphi}(O)=0$ . Set

$\psi_{\varphi}(r):=rf_{\varphi}’(r)-f_{\varphi}(r)=\int_{0}^{r}\int_{t}^{r}\frac{1}{\varphi(s)}dsdt=\int_{0}^{r}\frac{s}{\varphi(s)}ds$

as the pressure function of $f_{\varphi}.$

Proposition 4.1 ([7, Theorem 3.5]) If $\theta_{\varphi}\leq q<2$ , then

$r \mapsto\frac{\psi_{\varphi}(r)}{r^{1-(q-1)}}$

is non-decreasing on $r\in(O, \infty)$ .

This yields that, for $\varphi$ satisfying
$\theta_{\varphi}-1\leq\frac{1}{d},$

the internal energy $E_{\varphi}$ $:=E_{f_{\varphi}}$ is displacement $0$-convex on $\mathcal{P}^{d}.$
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Example 4.2 (1) The case of $\varphi(s)=s$ is the most important case. In this case, the
$\varphi$-logarithmic (resp. $\varphi$-exponential) function is the usual logarithmic (resp. exponential)
function and

$l_{\varphi}=-\infty, L_{\varphi}=\infty, \theta_{\varphi}=1.$

The convex function $f_{\varphi}$ and its pressure function $\psi_{\varphi}$ are respectively given by

$f_{\varphi}(r)=r\log(r)-r, \psi_{\varphi}(r)=r.$

(2) Another important case is $\varphi_{q}(s)$ $:=\mathcal{S}^{q}$ for $q\in(0,1)\cup(0,2)$ , where the $\varphi$-logarithmic
and the $\varphi$-exponential functions are power functions of the form

$\ln_{q}(t):=\ln_{\varphi_{q}}(t)=\frac{t^{1-q}-1}{1-q}, \exp_{q}(\tau):=\exp_{\varphi_{q}}(\tau)=[1+(1-q)\tau]^{\frac{1}{+1-q}}.$

Since $\ln_{q}(t)arrow\log(t)$ and $\exp_{q}(\tau)arrow\exp(\tau)$ hold as $qarrow 1$ , we denote $\ln_{1}(t)$ $:=\log(t)$ and
$\exp_{1}(\tau)$ $:=\exp(\tau)$ for convenience. It is easy to check

$l_{q}:=l_{\varphi_{q}}=\{$
$- \frac{1}{\infty 1-q}-$

$ifq<ifq>11,$
$L_{q}:=L_{\varphi_{q}}=\{\begin{array}{ll}\infty if q<1,-\frac{1}{1-q} if q>1,\end{array}$ $\theta_{\varphi_{q}}=q,$

and
$f_{q}(r):=f_{\varphi_{q}}(r)= \frac{r^{2-q}-(2-q)r}{(2-q)(1-q)}, \psi_{q}(r):=\psi_{\varphi_{q}}(r)=\frac{r^{2-q}}{2-q}.$

It follows from [7, Lemma 2.10] with [11, Proposition 3.2] that, for any $\theta_{\varphi}-1<2/(d+2)$

and $c>0$ , there exists $\lambda\in(l_{\varphi}, L_{\varphi})$ such that $\exp_{\varphi}(\lambda-c|x|^{2})\in \mathcal{P}^{d}.$

In the rest of this section, we assume that $\theta_{\varphi}-1<1/d$ and $d\geq 2$ . Then by Propo-
sition 4.1, the internal energy $E_{\varphi}$ generating by $f_{\varphi}$ is displacement $0$-convex. Recall that
$E_{\varphi}$ is a functional on $\mathcal{P}^{d}$ defined by

$E_{\varphi}( \rho):=\int_{\mathbb{R}^{d}}f_{\varphi}(\rho(x))dx.$

Fix any function $\Psi\in C^{2}(\mathbb{R}^{d})$ whose Hessian is bounded below by $K>0$ and

$\inf_{x\in \mathbb{R}^{d}}\Psi\geq-L_{\theta_{\varphi}}.$

Due to [7, Lemma 4.5], we may assume that $\sigma;=\exp_{\varphi}(-\Psi)\in \mathcal{P}^{d}$ without loss of
generality. Note that the support $supp(\sigma)$ of $\sigma$ coincides with the closure of $\Psi^{-1}(-L_{\varphi}, -l_{\varphi})$

and $\sigma$ is the unique minimize of

$E_{\varphi}^{\Psi}( \rho):=E_{\varphi}(\rho)+E^{\Psi}(\rho)=\int_{\mathbb{R}^{d}}[f_{\varphi}(\rho(x))+\Psi(x)\rho(x)]dx$

on the convex subset $\mathcal{P}_{\Psi,\varphi}^{d}$ of $(\mathcal{P}^{d}, W_{2})$ defined by

$\mathcal{P}_{\Psi,\varphi}^{d}$ $:=$ { $\rho\in \mathcal{P}^{d}|$ the support of $\rho$ is contained in the closure of $\Psi^{-1}(-L_{\varphi}, -l_{\varphi})$ }.
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The minimality of $E_{\varphi}^{\Psi}(\sigma)$ follows from the strict convexity of $f_{\varphi}$ and the fact $\tau=$

$\ln_{\varphi}(\exp_{\varphi}(\tau))=f_{\varphi}’(\exp(\tau))$ for $\tau\in(l_{\varphi}, L_{\varphi})$ . Precisely, we compute

$E_{\varphi}^{\Psi}( \rho)-E_{\varphi}^{\Psi}(\sigma)=\int_{\sup p(\sigma)}[f_{\varphi}(\rho)-f_{\varphi}(\sigma)+\Psi(\rho-\sigma)]dx$

$= \int_{\sup p(\sigma)}[f_{\varphi}(\rho)-f_{\varphi}(\sigma)-f_{\varphi}’(\sigma)(\rho-\sigma)]dx\geq 0.$

This means that, under the mean and the covariance constraints (with support condition),
the minimizer of $E_{\varphi}$ is characterized by the $\varphi$-exponential function.

We mention the amount given by

$D_{\varphi}( \rho_{0}|\rho_{1}):=\int_{\mathbb{R}^{d}}[f_{\varphi}(\rho_{0})-f_{\varphi}(\rho_{1})-f_{\varphi}’(\rho_{1})(\rho_{0}-\rho_{1})]dx$

is called the divergence in the information geometry, which behaves like the squared
distance function. In this note, we call the functional on $\mathcal{P}_{\Psi,\varphi}^{d}$ defined by

$H_{\varphi}^{\Psi}(\rho):=D_{\varphi}(\rho|\sigma)=E_{\varphi}^{\Psi}(\rho)-E_{\varphi}^{\Psi}(\sigma)\geq 0$

the $\varphi$ -relative entropy with respect to $\sigma.$

Remark 4.3 Take $\varphi(s)=s$ $($ resp. $\varphi_{q}(s)=s^{q})$ , then $H_{\varphi}^{\Psi}$ coincides with the classical
relative entropy (resp. $q$-relative entropy).

Since the $\varphi$-relative entropy is displacement $K$-convex on $\mathcal{P}_{\Psi,\varphi}^{d}$ , its Wasserstein gradi-
ent flow

$\frac{\partial}{\partial t}\rho=div(\rho\nabla f_{\varphi}’(\rho))+div(\rho\nabla\Psi)=\triangle(\psi_{\varphi}(\rho))+div(\rho\nabla\Psi)$

may have the $K$-contraction property with respect to the Wasserstein distance function.
In other words, it holds

$W_{2}(\rho_{t},\tilde{\rho}_{t})\leq e^{-Kt}W_{2}(\rho_{0},\tilde{\rho}_{0})$

for any solutions $\rho_{t}(x)=\rho(t, x),\tilde{\rho}_{t}(x)=\tilde{\rho}(t, x)$ of the above evolution equation and
$t>0$ . Moreover, $H_{\varphi}^{\Psi}$ is decreasing along its Wasserstein gradient fl$ow$ in time $t>0$ . In [7,
Sections 8,9], we discuss it in the setting of a weighted Riemannian manifold and there
are many researches in the setting of the Euclidean case (without notions of information
theory). For example, see [4].

We close this section with comments of the advantage obtained by using the infor-
mation geometry. As mentioned before, the $\varphi$-relative entropy behaves as the squared
distance functiOn in the context of the information geometry. Then it is natural to com-
pare the two ‘distance’ functions, the Wasserstein distance function $W_{2}$ and the square
roof to the $\varphi$-relative entropy. Assume that $\varphi$ satisfies the condition in Theorem 2.6(1) and
the Hessian of $\Psi\in C^{2}(\mathbb{R}^{d})$ is bounded below by $K>0$ , which guarantees the existence
of a unique minimizer $\sigma$ of $E_{\varphi}^{\Psi}$ on $\mathcal{P}_{\Psi,\varphi}^{d}$ . We then have

$W_{2}(\rho, \sigma)^{2}\leq\sqrt{\frac{2}{K}H_{\varphi}^{\Psi}(\rho)}$ (4.1)

109



for any $\rho\in \mathcal{P}_{\Psi\varphi}^{d}$ (for the proof, see [7, Section 6]). In the case of $\varphi(s)=s$ , namely $H_{\varphi}^{\Psi}$ is
the classical $rei_{ative}$ entropy, the inequality (4.1) is the Talagrand inequality from which
we derive the Gaussian concentration inequality for $\sigma$ . In a similar way, the inequality (4.1)
provides the $q$-Gaussian concentration inequality for $\sigma$ , where $q$ depends on $\varphi$ . There
are several researches in which the inequality (4.1) was proved without notions of the
information geometry, however we may not find such a concentration inequality for the
minimizer $\sigma$ of $E_{\varphi}^{\Psi}$ unless we use the information geometry.

As similar as the variant of Talagrand inequality, the displacement $K$-convexity of
$H_{\varphi}^{\Psi}$ provides a variant of logarithmic Sobolev inequality which compares the $\varphi$-relative
entropy and the $\varphi$ -Fisher information $I_{\varphi}^{\Psi}$ defined for $\rho\in \mathcal{P}_{\Psi,\varphi}^{d}$ by

$I_{\varphi}^{\Psi}( \rho) :=\int_{\mathbb{R}^{d}}|\nabla[\ln_{\varphi}(\rho(x))-\ln_{\varphi}(\sigma(x))]|^{2}\rho(x)dx.$

To be precise, we have

$H_{\varphi}^{\Psi}( \rho)\leq\frac{1}{2K}I_{\varphi}^{\Psi}(\rho)$

for any $\rho\in \mathcal{P}_{\Psi,\varphi}^{d}$ . If we take $\varphi(s)=s$ , we then find

$I_{\varphi}^{\Psi}( \rho)=\int_{\mathbb{R}^{d}}|\nabla\log(\frac{\rho(x)}{\sigma(x)})|^{2}\rho(x)dx=4\int_{\mathbb{R}^{d}}|\nabla\sqrt{\frac{\rho(x)}{\sigma(x)}}|^{2}\sigma(x)dx,$

that is $I_{\varphi}^{\Psi}$ coincides with the classical Fisher information, and the $\varphi$-logarithmic Sobolev
inequality recovers the classical logarithmic Sobolev inequality of the form

$\int_{\mathbb{R}^{d}}(\frac{\rho}{\sigma})\log(\frac{\rho}{\sigma})\sigma dx\leq\frac{1}{2K}\int_{\mathbb{R}^{d}}|\nabla\log(\frac{\rho}{\sigma})|^{2}\rhodx.$

Note that if the reference probability measure $\sigma$ satisfies some convexity condition,
then the classical Talagrand inequality and the classical logarithmic Sobolev inequality
are equivalent to each other (see [9, Theorem 1]).

In this way, if we introduce the notions of the information geometry to a evolution
equation which is realized as the Wasserstein gradient flow of a displacement $K$-convex
functional for $K>0$ , we can easily find its entropy functional and describe the stationary
solution. Moreover, we generalize functional inequalities and estimate the concentration
function of the stationary solution.

5 Remarks on time-dependent scaling

This section is devoted to explain the time-dependent scaling given in [3] in terms of
push-forward by dilations on $\mathbb{R}^{d}$ . Continuously, let $\varphi$ : $(0, \infty)arrow(0, \infty)$ be a continuous,
non-decreasing, positive function such that $\theta_{\varphi}-1<1/d$ for some $d\in \mathbb{N}$ with $d\geq 2$ . Set
$f_{\varphi}$ and $\psi_{\varphi}$ as the internal energy density and its pressure function defined in Section 4. We
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discuss the time-dependent scaling of a Wasserstein gradient flow of the internal energy
$E_{\varphi}$ , that is a solution of the evolution equation given by

$\frac{\partial}{\partial t}u(x, t)=\triangle(\psi_{\varphi}(u(x, t)))$ . (5.1)

Roughly speaking, this time-dependent scaling is the projection from $\mathcal{P}^{d}$ to the unit sphere
$\mathbb{S}(\mathcal{P}^{d})$ with center at the Dirac measure supported at the origin of $\mathbb{R}^{d}$ in the Wasserstein
space, that is,

$\mathbb{S}(\mathcal{P}^{d}):=\{\rho\in \mathcal{P}^{d}|\int_{R^{d}}|x|^{2}\rho(x)dx=1\}.$

The key of the proof is that the dilation on $\mathbb{R}^{d}$ induces the dilation on $\mathcal{P}^{d}$ via the push-
forward (see [12]).

Given any $s>0$ , the dilation $\delta[s]$ of scale $s$ on $\mathbb{R}^{d}$ is a map from $\mathbb{R}^{d}$ to $\mathbb{R}^{d}$ defined
by $\delta[s]x=sx$ for $x\in \mathbb{R}^{d}$ . Similarly, for $s>0$ , we define the map $D[s]$ : $\mathcal{P}^{d}arrow \mathcal{P}^{d}$ by
$D[s](\rho)=\delta[s]_{\#}\rho$ and call the dilation of scale $s$ on $\mathcal{P}^{d}$ . By the change of variables, we
easily check that, for $\rho\in \mathcal{P}^{d},$

$u_{s}$ $:=D[s](\rho)$ satisfies

$\rho(x)=s^{d}\cdot u_{s}(sx)$

for $\rho$-almost every $x\in \mathbb{R}^{d}$ , or equivalently

$s^{-d}\cdot\rho(x/s)=u_{s}(x)$ .

Remark 5.1 Using the dilations, we rewrite the time-dependent scaling (3.5) as

$u_{t}:=D[(1+ \frac{t}{\alpha})^{\alpha}](\rho_{\alpha\log(1+\frac{t}{\alpha})})$ ,

where we denote $u_{t}(x)$ $:=u(t, x)$ and $\rho_{\alpha\log(1+\frac{t}{\alpha})}(x)$ $:= \rho(\alpha\log(1+\frac{t}{\alpha}), x)$ .

We now see the scaling given in [3], which depends not only time but also initial data.
They used the temperature (second moment) of solutions. For any $\rho\in \mathcal{P}^{d}$ , define its
inverse temperature $\beta[\rho]$ by

$\beta(\rho):=(\int_{\mathbb{R}^{d}}\frac{|x|^{2}}{2}\rho(x)dx)^{-1}$

We then compute

$\int_{\mathbb{R}^{d}}\frac{|x|^{2}}{2}D[\beta(\rho)^{\frac{1}{2}}](\rho)(x)dx=\int_{\mathbb{R}^{d}}\frac{|\beta(\rho)^{\frac{1}{2}}x|^{2}}{2}\rho(x)dx=1,$

which means $D[\beta(\rho)^{1/2}](\rho)\in \mathbb{S}(\mathcal{P}^{d})$ . In what follows, we assume that the set $S^{d}$ given by

{ $u\in \mathbb{S}(\mathcal{P}^{d})|$ there exists a unique global Wasserstein gradient flow of $E_{\varphi}$ starting at $u$ }
is not empty. For $t>0$ , we define the renormalized flow map $S[t]$ at time $t$ from $\mathcal{S}^{d}$ to
$\mathbb{S}(\mathcal{P}^{d})$ by

$S[t](u) :=D[\beta(u_{t})^{\frac{1}{2}}](u_{t})$ ,
where $u_{t}(x);=u(t, x)$ is the global Wasserstein gradient flow of $E_{\varphi}$ starting at $u.$
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Remark 5.2 Even in the case of $\varphi(s)=s^{q}$ for $q\in(O, (d+1)/d)$ , this scaling is generally
different from the inverse of the time-dependent scaling (3.5). However, the both scaling
for the self-similar solution are similar to each other. For example, if we consider the heat
equation, which corresponds to the case of $\varphi(s)=s$ , and

$u(x):=( \frac{4\pi}{d})^{-\frac{d}{2}}\exp(-\frac{d|x|^{2}}{4})$ .

Then the Wasserstein gradient flow $u_{t}(x)$ $:=u(t, x)$ of $E_{\varphi}$ starting at $u$ is the self-similar
solution, that is

$u_{t}(x)=( \frac{4\pi(1+dt)}{d})^{-\frac{d}{2}}\exp(-\frac{d|x|^{2}}{4(1+dt)})$

and its inverse temperature is $\beta(u_{t})=1/(1+dt)$ . Therefore we have

$D[\beta(u_{t})^{\frac{1}{2}}](u_{t})\equiv u.$

On the other hand, if we take

$v(x):=(2 \pi)^{-\frac{d}{2}}\exp(-\frac{|x|^{2}}{2})$ ,

which is the stationary solution of

$\frac{\partial}{\partial t}\rho=\triangle\rho+div(\rho x)$ ,

then the Wasserstein gradient flow $v_{t}(x)$ $:=v(t, x)$ of $E_{\varphi}$ starting at $v$ is given by

$v_{t}(x)=(2 \pi(1+2t))^{-\frac{d}{2}}\exp(-\frac{|x|^{2}}{2(1+2t)})$ .

Applying the inverse time-dependent scaling (3.5), we have

$D[(1+2t)^{-\frac{1}{2}}](v_{t})\equiv v.$

Usually, the long time asymptotics of the evolution equation (5.1) cannot be character-
ized by self-similar solutions. However, in [3], they characterized a universal asymptotic
profile by fixed points of $S[t]$ . To do this, they assumed the following condition:

( $NL$2) there exists $c>0$ and $m>(d-2)/d$ such that it holds for all $r>0$ that

$\psi_{\varphi}’(r)=\frac{r}{\varphi(r)}\geq cr^{m-1}.$

Theorem 5.3 ([3, Theorem 2]) Suppose $(NL2)$ . There exist $t_{*}>0$ and a curve $\{v_{t}\}_{t>t_{*}}\subset$

$S^{d}$ such that, $S[t](v_{t})=v_{t}$ for $t>t_{*}$ and it holds

$\lim_{tarrow\infty}W_{2}(v_{t}, S[t](u))=0$

for any $u\in S^{d}.$
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In the proof, they used an $L^{1}-L^{\infty}$ regularizing property which is derived from the
condition ($NL$2).

Theorem 5.4 ([3, Theorem 1]) If we assume ($NL$2), then for any $u\in S^{d}$ , the global
Wasserstein gradient flow $u_{t}(x)$ $:=u(t, x)$ of $E_{\varphi}$ staring at $u$ belongs to $L^{\infty}(\mathbb{R}^{d})$ . More-
over, there exists $C>0$ , which does not depend on $u$ , such that

$\Vert u_{t}\Vert_{\infty}\leq Ct^{-\frac{d}{d(m-1)+2}}$

holds for any $t>0.$

It is thus important to find such an $m$ in the condition ($NL$2). From the viewpoint of
the information geometry, we may use $2-\theta_{\varphi}$ instead of $m$ since we have

$\psi_{\varphi}’(r)=\frac{r}{\varphi(r)}\geq\frac{r^{1-\theta_{\varphi}}}{\varphi(1)}$

for $r>1$ according to the following property.

Lemma 5.5 ([7, Lemma 2.10]) The function $r\mapsto r^{\theta_{\varphi}}/\varphi(r)$ is non-decreasing on $(0, \infty)$ .

Remark 5.6 In [3], they required another conditions on $\psi_{\varphi}$ . However, under the as-
sumption $\theta_{\varphi}-1<1/d$ and $S^{d}\neq\emptyset,$ $\psi_{\varphi}$ verifies such conditions.

Thus if we use the notions of the information geometry, we may give natural example of
$\psi_{\varphi}$ which satisfies the conditions in [3].
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