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Abstract

In this paper we review known results on the $\beta$-expansions of algebraic numbers.
We also review applications to the transcendence of real numbers. Moreover, we
give a new flexible criterion for the algebraic independence of two real numbers.

1 Introduction
In this paper we study the $\beta$-expansions of real numbers. There is httle known on the
digits of the $\beta$-expansions of given real numbers. For instance, let $b$ be an integer greater
than 1. Borel [3] conjectured that any algebraic irrational numbers are normal in base-b.
However, there is no known examples of algebraic irrational number whose normality has
been proved.

The study of base-b expansions and generally $\beta$-expansions of algebraic numbers is
applicable to criteria for transcendence of real numbers. In this paper we introduce known
results on the transcendence of real numbers related to the $\beta$-expansions. Moreover, we
also study applications to algebraic independence of real numbers. In particular, in Section
2 we introduce criteria for algebraic independence. The criteria is flexible because it does
not depend on functional equations. We prove main results in Section 3.

For a real number $x$ , we denote the integral and hactional parts of $x$ by $\lfloor x\rfloor$ and $\{x\},$

respectively. We use the Landau symbol $0$ and the Vinogradov symbol $\ll$ with their
regular meanings.

Let $\beta>1$ be a real number. We recall the definition of the $\beta$-expansions of real
numbers introduced by R\’enyi [8]. Let $T_{\beta}$ : $[0,1)arrow[0,1)$ be the $\beta$-transformation defined
by $T_{\beta}(x)$ $:=\{\beta x\}$ for $x\in[0,1)$ . For a real number $\xi$ with $\xi\in[0,1)$ , the $\beta$-expansion of $\xi$

is defined by

$\xi=\sum_{n=1}^{\infty}t_{n}(\beta;\xi)\beta^{-n},$

where $t_{n}(\beta;\xi)=\lfloor\beta T_{\beta}^{n-1}(\xi)\rfloor$ for $n=1,2,$ $\ldots.$
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We introduce known results on the nonzero digits of the $\beta$-expansions of algebraic
numbers. Put

$S_{\beta}(\xi):=\{n\geq 1|t_{n}(\beta;\xi)\neq 0\}$

and, for a real number $x,$

$\lambda_{\beta}(\xi;x) :=Card(S_{\beta}(x)\cap[1, x])$ ,

where Card denotes the cardinality. If $\beta=b>1$ is an integer, then put, for any real
number $\xi>0,$

$S_{b}(\xi):=S_{b}(\{\xi\}), \lambda_{b}(\xi;x):=\lambda_{b}(\{\xi\};x)$

for convenience. Bailey, Borwein, Crandall and Pomerance [2] showed that if $\beta=2$ , then,
for any algebraic irrational number $\xi$ of degree $D$ , there exist positive constants $C_{1}$ and
$C_{2}$ , depending only on $\xi$ , satisfying

$\lambda_{2}(\xi;N)\geq C_{1}N^{1/D}$

for any integer $N\geq C_{2}$ . Note that $C_{1}$ is effectively computable but $C_{2}$ is not. Adam-
czewski, Faverjon [1], and Bugeaud [4] independently proved effective versions of lower
bounds for $\lambda_{b}(\xi;N)$ for an arbitrary integral base $b\geq 2$ . Namely, if $\xi>0$ is an algebraic
number of degree $D$ , then there exist effectively computable positive constants $C_{3}(b, \xi)$

and $C_{4}(b, \xi)$ such that

$\lambda_{b}(\xi;N)\geq C_{3}(b, \xi)N^{1/D}$

for any integer $N\geq C_{4}(b, \xi)$ .
Next, we consider the case where $\beta$ is a Pisot or Salem number. Recall that Pisot

numbers are algebraic integers greater than 1 whose conjugates except themselves have
absolute values less than 1. Salem numbers are algebraic integers greater than 1 such that
the conjugates except themselves have absolute values not greater than 1 and that at least
one conjugate has absolute value 1. Let $\beta$ be a Pisot or Salem number and $\xi\in[0,1)$ an
algebraic number such that there exists infinitely many nonzero digits in the $\beta$-expansion,
namely,

$\lim_{N_{arrow\infty}}\lambda_{\beta}(\xi;N)=\infty.$

Put $D$ $:=[\mathbb{Q}(\beta, \xi) : \mathbb{Q}(\beta)]$ which denotes the degree of a field extension. Then the author
[7] showed that there exist effectively computable positive constants $C_{5}(\beta, \xi)$ and $C_{6}(\beta, \xi)$

such that

$\lambda_{\beta}(\xi;N)\geq C_{5}(\beta, \xi)\frac{N^{1/(2D-1)}}{(\log N)^{1/(2D-1)}}$ (1.1)

for any integer $N\geq C_{6}(\beta, \xi)$ . The inequality (1.1) gives criteria for transcendence of real
numbers.
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THEOREM 1.1 ([7]). Let $\beta$ be a Pisot or Salem number and $\xi\in[0,1)$ a real number
such that

$\lim_{Narrow\infty}\lambda_{\beta}(\xi;N)=\infty.$

Assume for an arbitrary $\epsilon>0$ that

$\lim_{Narrow}\inf_{\infty}\frac{\lambda_{\beta}(\xi;N)}{N^{\epsilon}}=\infty.$

Then $\xi$ is transcendental.

If $\beta=b>1$ is an integer, then the transcendence of $\xi$ in Theorem 1.1 was essentially
proved by Bailey, Borwein, Crandall and Pomerance [2].

In what follows, we consider the transcendence of the values of the form

$\sum_{n=0}^{\infty}\alpha^{\lfloor f(n)\rfloor},$

where $\alpha$ is an algebraic number with $0<|\alpha|<1$ and $f$ is a nonnegative valued function
such that

$\lfloor f(n)\rfloor<\lfloor f(n+1)\rfloor$

for any sufficiently large integer $n$ . The transcendence of such values is known if $f(n)$

$(n=0,1, \ldots)$ is a lacunary sequence. In fact, Corvaja and Zannier [5] showed that if

$\lim_{narrow}\inf_{\infty}\frac{f(n+1)}{f(n)}>1,$

then, for any algebraic number $\alpha$ with $0<|\alpha|<1$ , the value $\sum_{n=0}^{\infty}\alpha^{\lfloor f(n)\rfloor}$ is transcen-
dental. For instance, let $h$ be a real number with $h>1$ . Then, for any algebraic number
$\alpha$ with $0<|\alpha|<1$ , the value

$\sum_{n=0}^{\infty}\alpha^{\lfloor h^{n}\rfloor}$ (1.2)

is transcendental. Note that if $h$ is an integer, then (1.2) is called a Fredholm series.
However, it is generally difficult to study the transcendence in the case where $f(n)$

$(n=0,1, \ldots)$ is not lacunary. Theorem 1.1 is apphcable for certain classes of functions $f$

which are not lacunary; assume for an arbitrary positive number $A$ that

$\lim_{narrow}\sup_{\infty}\frac{f(n)}{n^{A}}=\infty$ , (1.3)

then, for any Pisot or Salem number $\beta$ , the value $\sum_{n=0}^{\infty}\beta^{-\lfloor f(n)\rfloor}$ is transcendental. We
give examples of $f$ satisfying (1.3). For convenience, we denote

$\log^{+}x$ $:=$ log max$\{e, x\}$
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for a real number $x\geq 0$ . For any real numbers $\zeta$ and $\eta$ with $\zeta>0$ , or $\zeta=0$ and $\eta>0,$

put

$\psi(\zeta, \eta;x) := x^{(\log^{+}x)^{\zeta}(\log^{+}\log^{+}x)^{\eta}}$

$= \exp((\log^{+}x)^{1+\zeta}(\log^{+}\log^{+}x)^{\eta})$ .

In particular, put

$\varphi(x) := \psi(1,0;x)=x^{\log^{+}x})$

$\psi(x) := \psi(0,1;x)=x^{\log^{+}\log^{+}x}.$

If $\beta$ is a Pisot or Salem number, then the number

$\sum_{n=0}^{\infty}\beta^{-\lfloor\psi(\zeta,\eta;n)\rfloor}$

is transcendental for any real numbers $\zeta$ and $\eta$ with $\zeta>0$ , or $\zeta=0$ and $\eta>0$ . In fact,

$\lim_{narrow}\sup_{\infty}\frac{\psi(\zeta,\eta;n)}{n^{A}}=\infty$

for any positive real number $A$ . Note that $\psi(\zeta, \eta;n)(n=0,1, \ldots)$ is not lacunary because

$\lim_{narrow\infty}\frac{\psi(\zeta,\eta;n+1)}{\psi(\zeta,\eta;n)}=1.$

In Section 2 we investigate the algebraic independence of real numbers in the case where
$\beta=b>1$ is an integer. In particular, Corollary 2.4 implies that

$\sum_{n=0}^{\infty}b^{-\lfloor\psi(n)\rfloor},\sum_{n=0}^{\infty}b^{-\lfloor\varphi(n)\rfloor}$

are algebraically independent.

2 Main results
We introduce the criteria for algebraic independence in [6]. Let $S$ be a nonempty subset
of $\mathbb{N}$ and $k$ a nonnegative integer. Put

$kS:=\{\begin{array}{ll}\{0\} (k=0) ,\{s_{1}+\cdots+s_{k}|s_{i}\in S for any i=1, \ldots, k\} (k\geq 1) .\end{array}$

For any real number $x$ with $x> \min\{n\in S\}$ , let

$\theta(x;S) :=\max\{n\in S|n<x\}.$

Moreover, let $r$ be a positive integer. Then, for any nonempty subsets $S_{1},$
$\ldots,$

$S_{r}$ of $\mathbb{N}$ and
$k_{1},$

$\ldots,$
$k_{r}\in \mathbb{N}$ , we set

$k_{1}S_{1}+\cdots+k_{r}S_{r}$ $:=\{t_{1}+\cdots+t_{r}|t_{i}\in k_{i}S_{i}$ for any $i=1,$ $\ldots,$
$r\}.$
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THEOREM 2.1 (Theorem 2.1 in [6]). Let $r\geq 2$ be an integer and $\xi_{1},$

$\ldots,$
$\xi_{r}$ positive

real numbers satisfying the following three assumptions:

1. For any $\epsilon>0$ , we have, as $x$ tends to infinity,

$\lambda_{b}(\xi_{1};x) = o(x^{\epsilon})$ , (2.1)
$\lambda_{b}(\xi_{i};x)$ $=$ $o(\lambda_{b}(\xi_{i-1};x)^{e})$ for $i=2,$ $\ldots,$

$r$ . (2.2)

2. There exists a positive constant $C_{7}$ such that

$S_{b}(\xi_{r})\cap[C_{7}x, x]\neq\emptyset$ (2.3)

for any sufficiently large $x\in \mathbb{R}.$

3. Let $k_{1},$
$\ldots,$

$k_{r-1},$ $k_{r}$ be nonnegative integers. Then there exist a positive integer $\tau=$

$\tau(k_{1}, \ldots, k_{r-1})$ and a positive constant $C_{8}=C_{8}(k_{1}, \ldots, k_{r-1}, k_{r})$ , both depending
only on the indicated parameters, such that

$x \prod_{i=1}^{r}\lambda_{b}(\xi_{i};x)^{-k_{i}}$

$>x-\theta(x;k_{1}S_{b}(\xi_{1})+\cdots+k_{r-2}S_{b}(\xi_{r-2})+\tau S_{b}(\xi_{r-1}))$

for any $x\in \mathbb{R}$ with $x\geq C_{8}.$

The first assumption of Theorem 2.1 implies that, for any $\epsilon>0$ , we have,

$\lambda_{b}(\xi_{h};x)=o(x^{\epsilon})$ for $i=1,$ $\ldots,$
$r$

as $x$ tends to infinity. Thus, the transcendence of $\xi_{1},$

$\ldots,$
$\xi_{r}$ follows from Theorem 1.1.

Using Theorem 2.1, we deduce the following:

THEOREM 2.2 (Theorems 1.3 and 1.4 in [6]). Let $b$ be an integer greater than 1.
(1) The continuum set

$\{\sum_{n=0}^{\infty}b^{-\psi(\zeta,0;n)}\zeta\geq 1, \zeta\in \mathbb{R}\}$

is algebraically independent.
(2) For any distinct positive real numbers $\zeta$ and $\zeta’$ , the numbers

$\sum_{n=0}^{\infty}b^{-\psi(\zeta,0;n)}$ and $\sum_{n=0}^{\infty}b^{-\psi(\zeta’,0;n)}$

are algebraically independent.
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In the rest of this section we consider algebraically independence of two real numbers.
We call the third assumption of Theorem 2.1 Assumption A. We give another condition
for Assumption A as follows: Let $k$ be any nonnegative integer. Then there exists a
positive integer $\sigma=\sigma(k)$ , depending only on $k$ , such that

$x\lambda_{b}(\xi_{1};x)^{-k}>x-\theta(x;\sigma S(\xi_{1}))$

for any sufficiently large $x$ . We call the condition above Condition B. We show that if the
first assumption of Theorem 2.1 holds, then assumption A is equivalent to Condition B.
First, Assumption A implies Condition $B$ , by taking $k_{1}=k$ and $k_{2}=0$ . Conversely, we
assume that Condition $B$ holds. Let $k_{1}$ and $k_{2}$ be nonnegative integers. Then the first
assumption of Theorem 2.1 implies that

$x\lambda_{b}(\xi_{1};x)^{-k_{1}}\lambda_{b}(\xi_{2};x)^{-k_{2}}>x\lambda_{b}(\xi_{1};x)^{-1-k_{1}}$

for any sufficiently large $x\in \mathbb{R}$ . Thus, using Condition $B$ with $k=1+k_{1}$ , we get

$x\lambda_{b}(\xi_{1};x)^{-k_{1}}\lambda_{b}(\xi_{2)}\cdot x)^{-k_{2}}>x-\theta(x;\sigma S(\xi_{1}))$

for any sufficiently large $x\in \mathbb{R}$ , where $\sigma=\sigma(1+k_{1})$ . Hence, we checked Assumption A.
We give criteria for algebraic independence of two real numbers. Let $f$ be a nonnegative

valued function defined on $[0, \infty)$ . We call $f$ ultimately increasing if there exists a positive
$M$ such that $f$ is strictly increasing on $[M, \infty)$ .

THEOREM 2.3. Let $f(x)$ and $u(x)$ be ulhmately increasing nonnegative valued func-
tions defined on $[0, \infty)$ . Let $g(x)$ and $v(x)$ be the inverse functions of $f(x)$ and $u(x)$ ,
respectively. Suppose that

$\lfloor f(n+1)\rfloor>\lfloor f(n)\rfloor, \lfloor u(n+1)\rfloor>\lfloor u(n)\rfloor$ (2.4)

for any sufficiently large integer $n$ . Assume that $f$ satisfies the following two assumptions:

1. The function $(\log f(x))/(\log x)$ is ultimately increasing. Moreover,

$\lim_{xarrow\infty}\frac{\log f(x)}{\log x}=\infty$ . (2.5)

2. The function $f(x)$ is differentiable. Moreover, there exists a positive real number $\delta$

such that

$(\log f(x))’<x^{-\delta}$ (2.6)

for any sufficiently large $x\in \mathbb{R}.$

Moreover, suppose that $u(x)$ fulfills the following two assumptions:

1. There exists a positive constant $C_{9}$ such that

$\frac{u(x+1)}{u(x)}<C_{9}$ (2.7)

for any sufficiently large $x\in \mathbb{R}.$
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2.

$\lim_{xarrow\infty}\frac{\log g(x)}{\log v(x)}=\infty$ . (2.8)

Then, for any integer $b\geq 2$ , the numbers

$\sum_{n=0}^{\infty}b^{-\lfloor f(n)\rfloor}, \sum_{n=0}^{\infty}b^{-\lfloor u(n)\rfloor}$

are algebraically independent.

The assumptions on $f$ in Theorem 2.3 give a sufficient condition for Condition B.
Note that (2.5) and (2.6) are easy to check because these depend only on the asymptotic
behavior of $\log f(x)$ . We deduce examples of algebraic independent real numbers as
follows:

COROLLARY 2.4. For any integer $b\geq 2$ , the numbers

$\sum_{n=0}^{\infty}b^{-\lfloor\psi(n)\rfloor}, \sum_{n=0}^{\infty}b^{-\lfloor\varphi(n)\rfloor}$

are algebraically independent.

The following corollary is a generalization of the second statement of Theorem 2.2 and
Corollary 2.4.

COROLLARY 2.5. Let $\zeta,$ $\zeta’,$
$\eta,$

$\eta’$ be real numbers. Suppose that $\zeta>0$ , or $\zeta=0,$ $\eta>0$

and that $\zeta’>0$ , or $\zeta’=0,$ $\eta’>0$ . If $(\zeta, \eta)\neq(\zeta’, \eta’)$ , then for any integer $b\geq 2$ , the
numbers

$\sum_{n=0}^{\infty}b^{-\lfloor\psi(\zeta,\eta,n)\rfloor}, \sum_{n=0}^{\infty}b^{-\lfloor\psi(\zeta’,\eta’;n)\rfloor}$

are algebraically independent.

Theorem 2.3 is applicable to the algebraic independence of two real numbers including
Fredholm series.

COROLLARY 2.6. Let $\zeta,$
$\eta$ , be real numbers with $\zeta>0$ , or $\zeta=0,$ $\eta>0$ . Let $h$ be a

real number with $h>1$ . Then, for any integer $b\geq 2$ , the numbers

$\sum_{n=0}^{\infty}b^{-\lfloor\psi(\zeta,\eta;n)\rfloor}, \sum_{n=0}^{\infty}b^{-\lfloor h^{n}\rfloor}$

are algebraically independent.
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3 Proof of main results
In this section we verify Theorem 2.3, using Theorem 2.1. We also show the corollaries of
Theorem 2.3.

Proof of Theorem 2.3. Put

$\xi_{1}:=\sum_{n=0}^{\infty}b^{-\lfloor f(n)\rfloor}, \xi_{2}:=\sum_{n=0}^{\infty}b^{-\lfloor u(n)\rfloor}.$

We verify that $\xi_{1}$ and $\xi_{2}$ satisfy the assumptions of Theorem 2.1. If necessary, changing
finite terms of $f(n)$ , we may assume that $S_{b}(\xi_{1})\ni 0$ . First, (2.1) and (2.2) follow from
(2.5) and (2.8), respectively. In fact, we see

$\lim_{xarrow\infty}\frac{\log\lambda_{b}(\xi_{1};x)}{\log x}=\lim_{xarrow\infty}\frac{\log g(x)}{\log x}=0$

and

$\lim_{xarrow\infty}\frac{\log\lambda_{b}(\xi_{2},x)}{\log\lambda_{b}(\xi_{1},\cdot x)}=\lim_{xarrow\infty}\frac{\log v(x)}{\log g(x)}=0.$

Moreover, we see (2.3) by (2.7). Thus, we checked the first and second assumptions of
Theorem 2.1. In what follows, we prove the third assumption. As we mentioned after
Theorem 2.1, it suffices to check Condition B.
LEMMA 3.1. For any positive integer $l$ , we have

$R-\theta(R;lS_{b}(\xi_{1}))\ll Rg(R)^{-l\delta/2}$ (3.1)

for any $R\geq 1.$

Proof. We show (3.1) by induction on $l$ . First we consider the case of $l=1$ . By (2.6) and
the mean value theorem, there exists $\iota=\iota(x)\in(0,1)$ such that

$\log(\frac{f(x+1)}{f(x)})<(x+\iota)^{-\delta}<1.$

Thus,

$f(x+1)<ef(x)$ (3.2)

for any sufficiently large $x$ . Using (2.6) and the mean value theorem again, we see for any
sufficiently large $x$ that there exists $\rho=\rho(x)\in(0,1)$ such that

$f(x+1)-f(x)=f’(x+ \rho)<\frac{f(x+\rho)}{(x+\rho)^{\delta}}$ . (3.3)

Combining (3.2) and (3.3), we get

$f(x+1)-f(x) \ll\frac{f(x+1)}{(x+1)^{\delta}}\ll\frac{f(x)}{(x+1)^{\delta}}$ . (3.4)
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By (2.4), if $R$ is sufficiently large, then there exists a unique integer $m\geq 0$ such that

$\lfloor f(m)\rfloor<R\leq\lfloor f(m+1)\rfloor$ . (3.5)

Hence, using (3.4), we obtain

$R-\theta(R;S_{b}(\xi_{1})) = R-\lfloor f(m)\rfloor$

$\leq f(m+1)-f(m)+1\ll\frac{f(m)}{(m+1)^{\delta}},$

where we use $f(m)>(m+1)^{\delta}$ for the last inequality. By (3.5), we deduce for any
sufficiently large $R$ that

$R- \theta(R;S_{b}(\xi_{1}))\ll\frac{R}{g(f(m+1))^{\delta}}\leq\frac{R}{g(R)^{\delta}}$ , (3.6)

which implies (3.1) with $l=1.$

Next, we assume that $l\geq 2$ . Put

$R’:=R-\theta(R;(l-1)S_{b}(\xi_{1}))$ .

Since $S_{b}(\xi_{1})\ni 0$ , we have $(l-1)S_{b}(\xi_{1})\subset lS_{b}(\xi_{1})$ and so

$R-\theta(R;lS_{b}(\xi_{1}))\leq R’.$

Hence, for the proof of (3.1), we may assume that

$R’\geq Rg(R)^{-l\delta/2}.$

In particular, (2.5) imphes that if $R$ is sufficiently large, then

$R’\geq R^{1/2}$ . (3.7)

The inductive hypothesis implies that

$R’\ll Rg(R)^{-(l-1)\delta/2}$ . (3.8)

Observe that

$\theta(R;(l-1)S_{b}(\xi_{1}))+\theta(R’;S_{b}(\xi_{1}))\in lS_{b}(\xi_{1})$

and that

$\theta(R;(l-1)S_{b}(\xi_{1}))+\theta(R’;S_{b}(\xi_{1}))$

$<\theta(R;(l-1)S_{b}(\xi_{1}))+R’=R$

by the definition of $R’$ . Thus, we see

$R-\theta(R;lS_{b}(\xi_{1}))$

$\leq R-\theta(R;(l-1)S_{b}(\xi_{1}))-\theta(R’;S_{b}(\xi_{1}))$

$=R’- \theta(R’;S_{b}(\xi_{1}))\ll\frac{R’}{g(R’)^{\delta}}$ (3.9)
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by (3.6). Combining (3.7), (3.8), and (3.9), we obtain for any sufficiently large $R$ that

$R-\theta(R;lS_{b}(\xi_{1})) \ll R’g(R^{1/2})^{-\delta}$

$\ll Rg(R)^{-(l-1)\delta/2}g(R^{1/2})^{-\delta}$ . (3.10)

We use the assumption that the function $(\log f(x))/(\log x)$ is ultimately increasing. Con-
sidering the cases of $x=g(R)$ and $x=g(R^{1/2})$ , we see

$\frac{\log R}{\log g(R)}\geq\frac{\log R^{1/2}}{\log g(R^{1/2})}=\frac{1}{2}\frac{\log R}{\log g(R^{1/2})}.$

Thus, we obtain

$\log g(R^{1/2})\geq\frac{1}{2}\log g(R)$ ,

and so

$g(R^{1/2})\geq g(R)^{1/2}$ (3.11)

for any sufficiently large $R$ . Hence, combining (3.10) and (3.11), we deduce for any
sufficiently large $R$ that

$R-\theta(R;lS_{b}(\xi_{1}))\ll Rg(R)^{-l\delta/2},$

which implies (3.1) $\square$

Lemma 3.1 implies that $\xi_{1}$ satisfies Condition B. Finally, we proved Theorem 2.3. $\square$

In what follows, we prove the corollaries of Theorem 2.3. Since Corollary 2.4 follows
from Corollary 2.5, we only verify Corollaries 2.5 and 2.6.

Proof of Corollary 2.5. Without loss of generality, we may assume that $\zeta<\zeta’$ , or $\zeta=\zeta’$

and $\eta<\eta’$ . Put

$f(x):=\psi(\zeta, \eta;x), u(x):=\psi(\zeta’, \eta’;x)$ .

For any sufficiently large $x$ , we have

$\frac{\log f(x)}{\log x}=(\log x)^{\zeta}($ log log $x)^{\eta},$

which imphes that the first assumption on $f$ in Theorem 2.3 holds since $\zeta>0$ , or $\zeta=0$

and $\eta>0$ . Moreover, using

$(\log f(x))’$

$=\{\begin{array}{ll}(1+\zeta)(\log x)^{\zeta}/x (\eta=0) ,(\log x)^{\zeta}(log log x)^{\eta-1}\cdot(\eta+(1+\zeta)\log\log x)/x (\eta\neq 0) .\end{array}$

Thus, we checked the second assumption on $f$ in Theorem 2.3. Similarly, since

$(\log u(x))’<1$
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for any sufficiently large $x\in \mathbb{R}$ , we see (2.7).
In what follows, we prove (2.8). Since $g(x)$ and $v(x)$ are inverse functions of $f(x)$ and

$u(x)$ , respectively, we have

$(\log g(x))^{1+\zeta}($ log log $g(x))^{\eta}$ $=\log x$ (3.12)
$(\log v(x))^{1+\zeta’}(\log\log v(x))^{\eta’} = \log x$ (3.13)

First we assume that $\zeta<\zeta’$ . Let $d:=\zeta’-\zeta>0$ . Using (3.12) and (3.13), we get, for any
sufficiently large $x,$

$(\log v(x))^{1+\zeta+(2d)/3}<\log x<(\log g(x))^{1+\zeta+d/3},$

and so

$\lim_{xarrow\infty}\frac{\log g(x)}{\log v(x)}=\infty.$

Next we consider the case of $\zeta=\zeta’$ and $\eta<\eta’$ . We see by (3.12) and (3.13) that

$\frac{(\log\log v(x))^{\eta’}}{(\log\log g(x))^{\eta}}=(\frac{\log g(x)}{\log v(x)})^{1+\zeta}$ (3.14)

Taking the logarithms of both sides of (3.14), we get

$\eta’$ log log $\log v(x)-\eta\log\log\log g(x)$

$=(1+\zeta)$ log log $g(x)-(1+\zeta)\log\log v(x)$ (3.15)

Since $g(x)\geq v(x)$ for any sufficiently large $x$ , dividing both sides of (3.15) by log log $g(x)$ ,
we get

$\lim_{xarrow\infty}\frac{\log\log v(x)}{\log\log g(x)}=1$ . (3.16)

Thus, by $\eta’>\eta$ , we obtain by (3.14) and (3.16) that

$\lim_{xarrow\infty}\frac{\log g(x)}{\log v(x)}=\infty.$

Finally, we verffied (2.8). $\square$

Proof of Corollary 2.6. In the proof of Corollary 2.5, We checked that (2.5) and (2.6) are
satisfied. Moreover, (2.7) and (2.8) are easily seen because $u(x)=h^{x}$ and

$v(x)= \log_{h}x=\frac{\log x}{\log h}$ . (3.17)

In fact, comparing (3.12) and (3.17), we see

$\lim_{xarrow\infty}\frac{\log g(x)}{\log v(x)}=\infty.$

$\square$
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