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Abstract. This paper considers three continuous-time dynamic optimization problems on
one-dimensional state and control spaces. The three have a common feature — linear dynamics
and discounted quadratic criterion (LQ) —. The first problem is on deterministic dynamics.
The second and the third are on stochastic dynamics. The second dynamics is an
Ornstein-Uhlenbeck process. The third is a geometric Brownian motion. We discuss the
optimal solution from two reciprocal points of view. One is dynamics; from deterministic to
stochastic. The other is approach; evaluation-optimization versus Bellman equation. A
complete optimal solution is given. Each solution is expressed in terms of three parameters —
(1) discount-rate, (2) characteristics of dynamics and (3) diffusion coefficient —. The optimal
solutions have a common feature, too. The optimal control is proportional and the optimal
value functions are quadratic. Both the optimal proportional rate and the optimal value
functions are explicitly specified. Further we show a zero-sum property between optimal value
function and optimal proportional control. Sum of the optimal value and the optimal rate is
Z€ero.

Key words: proportional policy, proportional rate, evaluation-optimization, Bellman
equation, zero-sum, continuous-time, certainty equivalence principle

1 Introduction

This paper discusses a class of infinite-horizon discounted quadratic dyamic optimization
problems on one-dimensional state and control spaces. The class is classified under dy-
namics and approach. The dynamics are (a) deterministic and (b) stochastic. Two of the
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stochastic dyanmics are (b-1) Ornstein-Uhlenbeck process and (b-2) geometric Brownian
motion. Approaches are (i) evaluation-optimization and (ii) Bellman equation.

We are concerned with optimality of proportional policy, which is a stationary one.
Section 2 lists three dynamic optimization problems. The first problem is on a deter-
ministic dynamics. The second is on an Ornstein-Uhlenbeck process. The third is on a
geometric Brownian motion.

Section 3 gives explicit solutions of deterministic control problem through (i) evaluation-
optimization and (ii) Bellman equation. Each solution is expressed in terms of discount
rate, characteristic of dynamics and diffusion coefficient. Sections 4 and 5 solve the con-
tol problem on the Ornstein-Uhlenbeck process and on the geometric Brownian motion,
respectively. Section 6 derives Bellman equation both for deterministic control process
and for stochastic one.

It is shown that two approaches yield the same optimal solutions. A zero-sum prop-
erty between the quadratic coefficient of value function and optimal proportional rate is
derived. The property claims that the higher the optimal rate is in absolute value, the
higher the optimal value. This property is common to three optimal solutions.

2 Linear Quadratic Models

This section specifies three dynamic optimization problems we shall consider in the paper.
Throughout the paper, let p > 0 be a discount rate on ontinuous-time process (as for

discrete-time model, see [1-5,8-12]).
The deterministic problem is minimization of discounted quadratic criterion

o0
/ e P (z® +u?)dt
0
under a linear dynamics
t=br+u 0<t<oo, z(0)=c

where b (€ R!) represents a characteristic of dynamics and ¢ (€ R?) is an initial state. Let
C be the set of all continuous functions on the one-dimensional Euclidean space R! :

C ={r=2xz(t)|z: R" - R' continuous }.
For the sake of simplicity, we take trajectory z = z(-) in C* and control function u = u(-)

in R!, respectively.
The stochastic problem is minimization of expected value of discounted quadratic

criterion .
E, [/ e " (2® + u?)dt
0

under a stochastic dynamics

dz(t) = (bz(t) + u(t))dt + o(z(t))dw(t) 0<t<oo, z(0)=z



where {w(-)} is the standard one-dimensional Brownian motion. Here o(z) is a nonnega-
tive continuous function of z. We take two cases: (i) o(z) = o and (ii) o(z) = oz, where
o is a nonnegative constant. The cases (i) and (ii) lead an Ornstein-Uhlenbeck process

and a geometric Brownian motion, respectively.
Thus we take three problems as follows.

o0
minimize / e " (z® + uz) dt
0

subject to (i) £=bzr+u

D 0<t<
© (i) ze€C% u(t)e Rt ~ >
(i) =z(0)=c
minimize F, [ / e Pt (:c2 + u2) dt
0
0(z) subject to (i) dz(t) = (bz + u)dt + odw(t) 0<t<
o0
’ (ii) ze€C, u(t) e R -
(i) z(0) ==z
minimize FE, [ / e Pt (x2 + uz) dt}
0
G(z) subject to (i) dz(t) = (bx + w)dt + oxdw(t) 0< <00

(i) ze€C, ut) € R
(iii) z(0) = z.

3 Deterministic dynamics

In this section, we solve a continuous-time dynamic optimization problem D(c) through
two methods — (i) evaluation-optimization and (ii) dynamic programming —. The
evaluation-optimization method consists of two steps. At the first step we evaluates
any proportional policy. At the second, of all the proportional policies, we find an opti-
mal solution by solving an associated one-variable fractional minimization problem. The
dynamic programming method solves Bellam equation in an analytic form.

Consider the deterministic dynamic optimization problem:

o0
minimize / e~ (z? +u2) dt
0
subject to (i) £ =bx +
ject to (i) = :cl u 0<t<oo
(i) zeC' u(t)eR
(i) z(0) =c.
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3.1 Evaluation-optimization
Any proportional control is specified by a control function
u(t) = uz(t) (u€R')

where u is called a proportional rate. There exists a one-to-one correspondence u(:) —— u
between the set of all proportional control functions and the set of all proportional rates.
The latter constitutes one-dimensional Euclidean space R!. Thus any proportional control
function u(t) = uz(t) is identified by a real number u € R! and vice versa.

We evaluate any proportional control and minimize the evaluated value over the set
of all proportional rates. The evaluation problem is written as follows.

evaluate / e P (m2 + uzxz) dt
0
D(c;u) subjectto (i) z=br4+ur 0<t<o

(i) z(0) =ec

The proportional control u(z) = ux is evaluated as follows. Let V,(u) denote the evaluated
value:

Then we have

Lemma 3.1

00 for p—2b—2u<0

— C 01 p - 2b 2 u ().

Proof. First we note that the control u(z) = uz yields
o]
Vo(u) = (1+ u2)/ e Pixidt.
0
Second the linear dynamics (i), (ii) is reduced to
z=(b+uz, z(0)=c

This has a unique solution
z(t) = ce®tt,

Hence

Vo(u) = ¢ (1+u2)/ e "dt
0



where v = p — 2b — 2u. Thus the control u is evaluated as follows.

00 for v<0
Ve(u) = ¢ 1442
¢ tu ¢ for > 0.
Y O

Since our concern is the minimization, it is enough to restrict v to p — 2b — 2u > 0.
Now let us consider the ratio minimization problem

1+u?
p—2b—2u

subject to (i) p—2b—2u > 0.

minimize

(R1)
Lemma 3.2 (See Fig.1) The problem (R1) has the minimum value m at 4, where

m=—i=b-Li/(6-2) +1. 1)

We call m and 4 optimal value and optimal rate, respectively.

Proof. Let us take

1+ u?
= = p — 2b. 2
g9(w) Taw 1P (2)
Then
1 1 n?/4+1
o) = g T
1 1 n?/4+1
= 4 —(p—2u)+ L2
51+ 70— 2u) + —

Thus hyperbolic curve y = g(u) has a unique minimum for —oo < u < —g— Differentiating

g, we get
2 _ -1 ,)72 + 4
) = o mmu=1 o M4
9'(u) CETER () =20

Letting the numerator of g’(u) be zero, we have the quadratic equation
w—nqu—-1=0. (3)
Solving this yields a minimum point
4 = g — VA +1.
From (3) we have the minimum value

g(@) = 211 _ 4 @
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a
Y
f(=) = c—2z : 1422 c
; min P s.t. x<§
1 ¢ cJ/a+1 '
=737 7% c—or attains a minimum —o
__1_ d _:1:2_—033___—1_ at T = a, where
2f(:1:)— (¢ —2z)? :
: c—Vc2+4
L= A | S
: c+Vet+4
§ = 2
: c
3 |9 % 8 R
f'(z) = 0 implies that 1
+ 2
= SEVEE s
a+fB=c af=-L -3
This z (ie «, (3) satisfies
1+ z? _
c—2x
. . 1+2? c )
Figl min — s.t. <5 (c=p—2bor p—o*—2b)

Thus we have the optimal control function with rate :

u(z) = dx
where
()
i 5 5 b) +1



The value function
v(z) = 0z* (D :=—10)

is optimal in the class of proportional policies.
Thus we have a remarkable property between optimal value ¢ and optimal rate :

Proposition 3.1 (Zero-sum property) It holds that

G+9 = 0. (5)

3.2 Dynamic programming

Let v(c) be the minimum value. Then the value function v : R — R! satisfies the Bellman
equation (which is derived in Section 4)

pv(z) = 1{161%} [#% + v + ' (z)(bx + u)] . (6)
We solve (6). From %[ -] =0, we get
pv(z) = 2° — %v'z(x) + bz’ (z), d(z) = —%v’(x).

The linear-quadratic scheme enables us to assume that v is quadratic v(z) = vz? (v > 0).
Substituting v'(z) = 2vz, we have

pvz? = 2? —v2? + 2wz e pv = 1—v?+ 2bv.
This yields the quadratic equation
v®—(2b—plv—1 = 0, (7

which has a unique positive solution

ﬁ:b—-‘21+ ,(b——gi)zﬂ. 8)

, Which is also called optimal value. We have the desired optimal solution
v(z) = 92%, A(z) = -0z (&= —D) (9)

Thus the zero-sum property between optimal value ¢ and optimal rate 4 holds true.

17
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4 Ornstein-Uhlenbeck processs

In this section, we solve the stochastic dynamic optimization problem O(z) through the

two methods.
Consider a dynamic optimization on an Ornstein-Uhlenbeck process as follows.

minimize F, [/0 e P (x2 + u2) dt]
subject to (i) dz(t) = (bx + u)dt + odw(t)
(i) z€C, u(t) € R
(i) z(0) ==z.

O(z) 0<t<oo

Here and frequently in the following we use a notation z with double meaning. One is
an initial state (0) = . The other is a process z = z(t). This double usage does not

matter.

4.1 Evaluation-optimization

We evaluate any proportional control u(z) = uz with proportional rate v and minimize
the expected value over all proportional rates.
Our evaluation problem is

x
evaluate E, [ / et (x2 + uzxz) dt]
0

O(z;w) subject to (1) dz(t) = (b+ u)zdt + odw(t) 0<t < oo

(i) z(0) ==z.
Then (i), (ii) is an Ornstein-Uhlenbeck process ( [6, p.358])
dr(t) = pzdt+odw(t) z(0)=z (p=>b+u). (10)
This has a unique solution
¢
z(t) = e <x+a/e"“’dw(s)) . (11)
0

Thus the proportional control f(z) = uz is evaluated as follows. Let V;(u) denote the
evaluated value:

Ve(uw) = E, [/ e (2® + u’x?) dt] .
0
Then we have

Lemma 4.1
00 for p—2b—-2u<0

Ve(u) = 2 2
———1l—<x2+%> for p—2b—2u>0.



Proof.  First we note that the control u(z) = uz yields
Vi(w) = (1+u?) / B, [ea?] dt.
0

Second we evaluate the discounted squared process e #'z? = e *z?(t). Taking expectation
of both sides

t 2 t t 2
(x + a/e‘“sdw(s)) = 7%+ QJx/e_“sdw(s) + o? (/ e‘“sdw(s)) ,
0 0 0

we have
t 2 t
E, (a:-f—o/e"“%w(s)) = 22+ 02/6'2‘”ds,
0 0

Here are two cases (i) u # 0 and (ii) u = 0.
First we assume that (i) x4 # 0. Then

! i 2, O 0% ot
E ! = — ] - —e",
x<x+a/oe w(s)) (:c+2u) 2ﬂe

Thus the expected value of e=**z%(%) is

E,[e"a?] = e~(o=2mt (12 o o\ _ U__26~pt.
2u 20

The integral part is evaluated as follows.

00 0,2 0o 0.2 o0
/ E, [e_ptx2] dt = (x2 + ——) / e~ (P2t —-/ e Ptdt
0 2u ) Jo 2u Jo

00 for p—2u<0

2
! (q:2+0—> for p—2p>0.
p—2u P

Second we take (ii) 4 = 0. Then

I

t 2
E, (m + a/e”“sdw(s)) = B, (x4 ow(t))? = z° + o°t.
0

Thus
E, [e_”txz] = e (x2 + azt) )

Thus the integral part is

o0 o0 o0
/ E,[e "] dt = 2° / e tdt + o’ / te~Ptdt
0 0 0

(%)
= = +—1.
p p

19
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Consequently in either case we have

00 for p—2u<0

o

/ E,[e Pz ]dt = 1 o?

0 $2+———) for p—2u > 0.
p—2u( p poh

Finally the control yields the desired evaluation:

00 for p—2u<0
Vo(u) = § 1422 (2 o?
¢+ — | for p—2u>0.
p—2p p) #

We reconsider the ratio minimization problem

1+ u?
p—2b—2u

subject to (i) p—2b—2u>0.

minimize

(R1)

From Lemma 3.2, (R1) has the minimum value m at 4, where

m=—u = b—%%-\/( ——/21)2—{-1.

Thus we have the optimal decision function with rate 4 :

The value function

v(z) = m (xz + fpi)

is optimal in the class of proportional policies.
As Proposition 3.1 claims, zero-sum property holds:

w+m = 0.

4.2 Dynamic programming

Let v(z) be the minimum value. Then the value function v : R' — R! satisfies the
Bellman equation (which is derived in Section 4)

2

pv(z) = mi}? 22 +u? + (br + u)v'(z) + %v”(x) . (12)
uER!
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Eq.(12) is solved as follows. _a%[ -+] = 0 implies
2 1 2 ! 02 " ~ 1 /
pv(z) = z° — 70 (z) + bxv'(z) + v (z), d(z) = —5v (z).

The stochastic dynamics enables us to assume that v is quadratic v(z) = vz? +w (v, w >
0). Substituting v'(z) = 2vz, v"(x) = 2v, we have

p(vz? +w) = 2* — 22 + 2bvz? + 0%
ie.
v =1-—24+2bw, pw=c.
This yields the quadratic equation (7) once again
v —(2b-p)v—1 = 0. (13)

But this time with the additional linear relation. Eq. (13) has a unique positive solution

-o- g o2y
D b2+ 2+.

Hence
. a
w o= —7.
P
Thus we have the desired optimal solution
v(z) = oz + W, U(r) = —oz.

We note that the optimal control function @ = 4(z) is identical with the optimal one
for the corresponding deterministic problem. This is called certainty equivalence principle
(as for discrete-time model, see [4,11]). This principle comes from the stochastic dynamics
(i) and the linear-quadratic scheme.

5 Geometric Brownian motion

In this section, we solve the stochastic dynamic optimization problem G(z) through the

two methods.
Let us now consider the dynamic optimization on geometric Brownian motion:

minimize F, [ / e P (2% +u?) dt
0
subject to (i) dz(¢) = (bz + u)dt + ozdw(t)
(ii) ze€C, ut)e R
(iii) z(0) = =z.

G(z) 0<t<o



5.1 Evaluation-optimization
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First we evaluate any proportional control f(z) = ux with proportional rate u. Second

we minimize the expected value over all rates.
Now our problem is

evaluate FE, I: / ooe"’t (:E2 + u2x2) dt
G(z; u) subject to (i) de(t) = (b+u)zdt + oxdw(t) 0<t< o0
(i) z(0) ==z.
Then (i), (ii) is a geometric Brownian process ( [6, p.349 |, [7])
dz(t) = pzdt+ozdw(t) z(0)=z (p=>b+u).
This has a unique solution

CC(t) - xe(,u— %a’z)H—aw(t) )

Thus the proportional control u(z) = uz yields the evaluated value:

i = B[ [ (e ety

Then
Lemma 5.1
00 for p—0?—2b—2u<0

Va(u) = 1+u?
p—02—2b—2u

Proof.  As in Ornstein-Uhlenbeck process, the control f with rate u yields

22 for p—0%—2b—2u>0.

o0
Ve(w) = (1 +u2)/ E, [e"z] dt.
0
The discounted squared process e **z? = e *'z%(t) is evaluated as follows. Since
E, [ eZaw(t)] - e2a2t

we have the expected value of z*(¢) as follows.

—a? 2
Ez [$2] — x2e(2u o?)t+20 t

The integral part becomes
[e ] o0 2
/ e P E,[z%]dt = :172/ e~ (P2t gy
0 0

00 for p—0?—-2u<0

1
2 for p—o? —2u>0.

p—0o*—2pu

(14)

(15)
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Thus we have the desired evaluation

00 for p—0?2-2u<0
Ve(u) = 14 u? 9

p~—0'2~2,ux for p—o%—2u>0.

Now let us consider the ratio minimization problem

1+u?
p—o02—2b—2u

subject to (i) p—o®—2b—2u> 0.

minimize

(R2)
Lemma 5.2 (See Fig.1) The problem (R2) has the minimum value m at 4, where

y o> p 2 p\’
m——u—b+—2~———é—+ (b+—2—~‘5) +1.

Proof.  The proof is the same as in (R1). A difference is the appearance of constant o2.
The fractional scheme is unchanged. a

We note that 4 is the negative solution to
w4+ (2b+0%—plu—1 = 0.

Thus we have the optimal control function with rate u:

The value function
v(z) = mz?

is optimal in the class of proportional controls.
We note that zero-sum property holds true even now:

u+m = 0.

5.2 Dynamic programming

The value function v : R! — R! satisfies the Bellman equation

o2z?

pu(z) = 1I}g}xzr} [:r2 +u? + (bx + u)v'(z) + v”(x)] : (16)
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d
Eq.(16) is solved as follows. First E[ --] = 0 implies that
2,2
pv(z) = 2% — i—v’z(a:) + bz (z) + %v”(x), w(zx) = —%v’(a:).

This linear-quadratic scheme enables us to assume that v is quadratic v(z) = vz? (v > 0).
Substituting v'(z) = 2vz, v"(z) = 2v, we have

pvz? = 1% — v’2? + 2bvz? + o?va?
ie.
pv = 1—0%+(2b+ o?)v.
This yields the quadratic equation
v —(2b+0*—pv—1 = 0. (17)

Here we note that this equation is similar to Egs.(7) in D(c) and (13) in O(z). A
difference is the appearance of o2.
Eq.(17) has a unique positive solution

Thus we have the desired optimal solution
v(z) = 922, d(z) = —dz.

We note that the certainty equivalence principle does not holds true for ¢ > 0. When
in particular ¢ = 0, it holds that ¥ = ¥, where

o=b—§+ @—§Y+1

is given both in deterministic dynamics and in Ornstein-Uhlenbeck process.

6 Bellman Equation

Let us now derive Bellman equation both for deterministic control process and for stochas-
tic one under existence of optimal process. In this section we assume that f, g : R? — R!
are continuous.
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6.1 Deterministic control process

We consider a general control process with discounted cost function :

minimize / e P f(z,u)dt
0
subject to (i) z = g(z,u)
(i) z€C,, ueU(z)
(i) z(0) =z

D(z)

where C’I} is the set of all continuously differentiable functions except for a finite set of
points. Let v(z) be the minimum value. Then the value function v : R* — R! satisfies
the Bellman equation :

pv(z) = H%}I{l) [f(z,u) +2'(2)g(z,u)] =€ R. (18)
uelU(z
This has been derived by applying intuitively Priciple of Optimality (see [1-3]).
Now we derive Eq.(18) under assumption:
1. ve CL

2. There exists a feasible process (z,u) such that
o0
v(r) = / e ”f(z,u)ds Vre R (19)
0
The feasibility denotes a solution to differential equation (i) — (iii). A process (z, u)

satisfying (19) is called optimal process.

We take any feasible paired process (z,u). Let us take any small A > 0. Then we define
a new process (y, z) as follows :

y(t) ==zt + A), 2(t) :==u(t+A), tel0,00).
Then the process y = {y(-)}(0,0c) satisfies
®)" 9=g(yw)
(i) yeCl, zeU(y)
(iii)” y(0) = z(A).
Conversely, concatenating the process (z,u) on time-interval [0, A] for any process(y, z)

satisfying (i)’ — (iii)’, we can construct a (z,u)-process on the interval [0,00) satisfying
conditions (i) ~ (iii). Then the « is in C.

0<t< @
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First we take the feasible process (z,u) in (19). From the discounted stationary
accumulation, we get for any A(> 0)

v(z) = /OAe_”’f(x,u)ds+/:oe_”’f(x,u)ds
A 0
= / e”"’f(a:,u)ds-i—e_pA/ e Pf(y, w)ds
0 0

A
= [ ePtm s+ e o)), (20)
0
From the mean value theorem, there exists §(0 < 6 < 1) satisfying

/OAe_’”f(:r, u)ds = h(fA)A
where h(s) = e™**f(z(s), u(s)). It holds that
e =1-pA+o(A).
We note that
z(A) = z+g(z,u)A + o(A)
where z = £(0), u = u(0). This implies that
v(z(A)) = v(z) + ' (x) [g(z,u)A + o(A)] + o(A).
Hence we obtain
/OAe"”f(x, u)ds + e PPu(z(D))
= h(0A)A +v(z)(1 — pA) + V'(z)g(z, u) A + o(A). (21)
Combining (20) and (21), we get
v(z) = h(A)A +v(x)(1 — pA) + V' (z)g(z, u)A + o(A).
Subtracting v(z), dividing it by A and letting A tend to zero, we have the equality
pv(z) = f(z,u) + g(z, u)v'(z). (22)

On the other hand, let (z,u) be any feasible process. We take any A( > 0). From the
definition of v(zx), we have

’U(x) < /(;Ae_psf(x’ U)dS + e—pA ‘/O‘ooe—psf(,y, ’lU)dS (23)



The inequality (23) holds for any feasible process (z, u) on [0, 0o). We note that

v(y) = min [/oooe"p"f(y, w)ds | y(0) = y]

where the minimization is over all feasible processes on [0, c0). We have assumed the
existence of a “minimum” process. A monotonicity works. From (23), we have

A
v(r) < / e P f(z,u)ds + e"’Av(:v(Av)). (24)
0
Then again, we get
/Ae""’f(x, u)ds + e PPo(z(A))
0

= h(0A)A + v(z)(1 — pA) + V' (z)g(z,u)A + o(A). (25)
From (24) and (25), we have
v(z) < h(BA)A +v(z)(1 — pA) + V' (z)g(z,u)A + 0(A)  Vu = u(0).
This in turn leads to
pv(z) < f(z,u) +g(z,u)'(z) Vu. (26)
A combination of (22) and (26) yields the desired forward equation. O

6.2 Stochastic control process

Let {w(:)} be the one-dimensional standard Brownian motion and o : R! — [0, 0o)
be continuous. We consider a general control process with discounted criterion e #f =
e # f(z,u) and stochastic dynamics dz(t) = g(z,u)dt + o(z)dw(t) on an infinite time-
period [0, 00):

minimize F, [ / ooe"’t f(z, u)dt}
0
subject to (i) dz(t) = g(z,w)dt + o(z)dw(t)
(i) ze€C, ueU(x)
(i) z(0)=1=z

S(z)

where z € R! is a given initial state.

Now we derive a Bellman equation for S(z) through forward approach. Let v(z) be
the minimum value of S(z). Then the value function v : R! — R! satisfies the Bellman
equation

pv(z) = urerlljlgc) flz,u) + g(z, u)'(z) + %az(x)v”(x)] z € R. (27)

Eq.(27) is derived under assumption:

27
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1. ve C2

2. There exists a feasible policy function u : R! — R! such that the feasible process
(z,u) = (z(t), u(z(t)) satisfies

v(z) = E; [/Oooe_”’f(a:,u)ds] vz € R. (28)

The feasible policy function denotes u(z) € U(z) for any x € R'. The feasible
process denotes a solution to stochastic differential equation (i) — (iii).

Let us take any small A > 0. For any feasible paired process (z,u) for S(z), we define a
paired process (y, z) on [0, co) by

y(s) :=z(s+ A), z(s):=u(s+A), se€[0,00).
Then the stochastic process y = {y(-)}jo,.c) With any fixed initial state y € R' satisfies

1) dy(s) = g(y, 2)ds + a(y)dw(s)
(il yeC, zeU(y)
(iii) y(0) =y.

The process (z,u) on [0,00) induces a family of of processes (y, z) on [0, 00) with initial
state y(0) = y, where the family is the set of all paired processes parametrized with
y € R*. Conversely, let a family of processes (y, z) satisfying (i)’ — (iii)’ be given. Then,
concatenating the process (z,u) on interval [0,A) for the family, we can construct a
process (z,u) on [0, 00) satisfying conditions (i) — (iii).

First we take the feasible process (z,u) in (28). From the Markov property and the
discounted stationary accumulation, we get for any A( > 0)

v(z) = E, [/OAe_’”f(:v, u)ds+/:oe_""’f($, u)ds]

= E, /OAe"”sf(x, u)ds + e P2E {/Oooe"psf(y, Z)d3|$(A)} ]

A
= 5[ [Ceriads + o) | (29)
0
From the mean value theorem, there exists (0 < 8 < 1) satisfying
A
/ e Pf(z,u)ds = h(fA)A as. P,
0

where h(s) = e ?°f(x(s), u(s)). It holds that

e = 1—pA+o(A).



Since
z(A) = z+ g(z,u)A + o(z)(w(A) — w(0)) + o(A) as. P, (z==z(0), u=u(0))
it follows that

v(z(A)) = v(z) +v'(z) [9(z, w)A + o(z)w(A)]
4 —é—v”(w) [9(z, u)A + o(@)w(A) | + o(A)  as. P,
From
Fu[w(d)] = B [w(A)A] =0, B [w(A)w(A)] = 4,

we obtain

E, [ /0 S u)ds + e"'Av(x.(A))J

= f(z,u)A +v(z)(1 — pA) + ' (z)g(z, u)A + —;—v”(x)UQ(a:)A +o(A).  (30)
Combining (29) and (30), we get
v(z) = flz,u)A +v()(1 - pA) +v'(z)g(z, u) A + %v"(x)az(x)A + o(A).
Subtracting v(z), dividing it by A and letting A tend to zero, we have the equality
po(a) = f(z,u) + oo u'(2) + 5 A0 (@), (31)

On the other hand, let (x,u) be any feasible process. We take any A(> 0). From the
definition of v(x) and Markov property, we have

(32)

A %)
v(z) < E, {/ e P f(z,u)ds + e P*E {/ e " f(y,2)ds | x(A)}
0 0
This inequality holds for any feasible process (z, u) on [0, c0). We note that

o(y) = min B [ /0 Tz, w)ds | 2(A) =y}

where the minimization is over all feasible processes on [0, c0). We have assumed the
existence of a “minimum” process. A monotonicity works as follows. If X < Y, then
Elc+ X] < E[c+Y]. From (32), we have '

v(z) < E, [/OAe_psf(:c, u)ds + e”’Av(m(A))} . (33)

29
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Then again, we get
A
E, [/ e P f(z,u)ds + e"’Av(x(A))}
0

= flz,uWA +o(o)(1 - pA) + Y (@)g(z, WA + v (@)% (@)A+o(d). (34
From (33) and (34), we have
o(@) < f(z,u)A +u(z)(1~ pA) +v(@)g(@, u)A + 20 (2)o*(@)A + o(A).

This in turn leads to

1
po() < fl@u)+ gleup(z) + St (@ (z)  Vu. (35)
A combination of (31) and (35) yields the desired forward equation. a
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