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1 Introduction
We consider nonlinear differential systems of the form
(A) ' +p )z + )y =0, ¥ +pa(t)z™ + g(t)y™ =0,

where «; and £3;, ¢ = 1,2, are positive constants and p;(t) and ¢;(t),4 = 1,2, are positive
continuous functions on [a, 00),a > 0.

By a positive solution of (A) we mean a vector function (z(t),y(t)) on an interval of the
form [to, 00), o > a, with positive components satisfying system (A) for ¢ > ¢,.

We are interested in the existence and precise asymptotic behavior of the so-called
intermediate positive solutions of (A), i.e., solutions which satisfy
g 200 _ 0

oo 4 tlggo T 0, tllglox(t) - tl—lglo y(t) = oo.

(1.1)

It is easy to see that such a solution of (A) satisfies the system of integral equations

o)) =2+ [ [ [pa)a) + i) Jards,
(1.2) o e
y(t) =y +/t / [p2(r)z(r)®* + ga(r)y(r)*] drds,

for t > ¢y and some positive constants zo and yq.

In this lecture (paper) we restrict our consideration to regularly varying intermediate
solutions of (A). We recall that a measurable function f : (0,00) — (0,00) is said to be
regularly varying of index p € R if it satisfies

f()

ilim 2 =) for VA> 0.
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The totality of regularly varying functions of index p will be denoted by RV(p). We often
use the symbol SV instead of RV(0} and call members of SV slowly varying functions.
By definition any function f(t) € RV(p) is written as f(t) = t°g(t) with g(t) € SV. A
function f(t) € RV(p) is called a trivial regularly varying function of index p if it satisfies
lim,_ f(t)/t? = const > 0 and a nontrivial regularly varying function of index p otherwise.
The set of all trivial (resp. nontrivial) regularly varying functions of index p will be denoted
by tr-RV(p) (resp. ntr-RV(p)).

If we represent regularly varying solutions (z(t), y(t)) of (A) by the expressions
(1.3) z(t) = t°€(t), y(t) =t7n(t), £(t),n(t) €SV,

(
then the requirement that z(¢) and y(¢) satisfy (1.1) restrict the values of p and o and the
behavior of £(¢) and 7n(t) at infinity as follows:

p€|0,1], tIim E(t)=o00 if p=0, tlim E)=0 if p=1,
c€[0,1], limnt)=o00 ifo=0, limnk)=0 ifoc=1
t—o0 t—00

From this remark we see that there are six different types of the asymptotic behavior at
infinity for possible regularly varying intermediate solutions (z(t),y(t)) of system (A):

(i) (z(t),y(t)) € RV(p)xRV(c), p € (0,1),0 € (0,1);

(i) (z(t),y(t)) € ntr-RV(1)xRV(o), ¢ € (0,1);

(iii) (z(¢),y(t)) € ntr-RV(0)xRV(0), o € (0,1);

(iv) (z(t),y(t)) € ntr-RV(1) x ntr-RV(1);

(v) (z(t),y(t)) € ntr-RV(1) xntr-RV(0);

(vi) (z(t),y(t)) € ntr-RV(0) xntr-RV(0).

In Section 3 an asymptotic analysis of regularly varying intermediate solutions will be
made by regarding (A) as a small perturbation of the diagonal system

" +pi(t)z* =0, ¥ +aqt)y” =0,
where oy < 1,0, < 1, and p;(t) and ¢o(¢) are regularly varying functions of indices A\; and
2, respectively. The existence of all six types of intermediate solutions listed above will be
established by combining the known information about regularly varying solutions of the

diagonal system with fixed point techniques.
Section 4 is devoted to the study of (A) viewed as a perturbation of the cyclic system

' +aq(t)y” =0, ¢ +pa(t)z** =0,

where a2, < 1 and p,(t) and ¢;(t) are regularly varying functions of indices Ay and py,
respectively. It is shown that the existence and precise asymptotic behavior of intermediate
solutions of the types (i)-(iii) of cyclic systems of the above form is preserved for (A) if the
perturbations are small in the sense specified below.

Analogous results on the existence and precise asymptotic behavior of the so-called
strongly decreasing regularly varying solutions of the system of two perturbed Thomas-
Fermi equations

(B) 2" =p (2% + gty Y =paA(t)z™ + ¢a(t)y”
have been established by the present authors in [4].



2 Regularly varying functions

For the reader’s convenience we recall here the definition of regularly varying functions,
basic terminologies and notations, and Karamata’s integration theorem which will play a
central role in establishing the main results of this paper.

Definition 2.1. A measurable function f : (0,00) — (0,00) is said to be reqularly
varying of index p € R if it satisfies

_f)
lim =~ =X for VA >0,
7

or equivalently it is expressed in the form

f(t) = c(t) exp{/tt 6—(5—)d8}, t > to,

for some ty > 0 and some measurable functions c(¢) and §(t) such that

lim ¢(t) = ¢o € (0,00) and Jim &(t) = p.

t—o0

The totality of regularly varying functions of index p is denoted by RV(p). We often
use the symbol SV instead of RV(0) and call members of SV slowly varying functions. By
definition any function f(t) € RV(p) is written as f(t) = t’g(t) with g(t) € SV. So, the class
SV of slowly varying functions is of fundamental importance in theory of regular variation.
Typical examples of slowly varying functions are: all functions tending to positive constants
as t — oo,

N N
H(logn t)*, a,€R, and exp{H(logn t)ﬁ"}, Bn € (0,1),

n=1 n=1

where log,, t denotes the n-th iteration of the logarithm. It is known that the function

}

is a slowly varying function which is oscillating in the sense that

(=1L

L(t)= exp{(log t)% cos (logt)

limsup L(t) = co and lign inf L(t) = 0.
t—oo —o°

A function f(t) € RV(p) is called a trivial regularly varying function of index p if it is
expressed in the form f(t) = t?L(t) with L(t) € SV satisfying lim; ., L(t) = const > 0.
Otherwise f(t) is called a mnontrivial regularly varying function of index p. The symbol
tr-RV(p) (or ntr-RV(p)) is used to denote the set of all trivial RV(p)-functions (or the set
of all nontrivial RV(p)-functions).

The following proposition, known as Karamata’s integration theorem, is particularly
useful in handling slowly and regularly varying functions analytically and is extensively
used throughout the paper.

Proposition 2.1. Let L(t) € SV. Then,



(1) f a > —1,
t
/ s*L(s)ds ~ —1—t°‘+1L(t), t — o0;

a+1
(il) if a < —1,
= a 1 o+l
: s~ ———-1 t t ;
/z s*L(s)ds a—!—lf L(t), t— oo;
(iii) if o = —1,
t
L
I(t) :/ ££S—)a's €SV and lim L) =0,,
a S t=oo (1)
and o Lit
m(t) = / (—S)ds €SV and lim LY =0,
P t—o0 m(t)

provided L(t)/t is integrable near the infinity in the latter case.

The reader is referred to Bingham et al [1] for the most complete exposition of theory
of regular variation and its applications and to Mari¢ [8] for the comprehensive survey of
results up to 2000 on the asymptotic analysis of second order linear and nonlinear ordinary
differential equations in the framework of regular variation.

3 Perturbations of the diagonal system

In this section we establish a criterion for the existence of intermediate regularly varying
solutions by regarding (A) as a small perturbation of the system

(Aa) 2"+t =0, Y +a(t)y* =0,
where

(3.1) ap <1, By<1,

and

(3:2) pi(t) € RV(A1), @a(t) € RV(ua).

Use is made of the following results which are obtained by combining necessary and suf-
ficient conditions for the existence of three types of intermediate regularly varying solutions
of the sublinear Emden-Fowler equation established in {6] (see also [3]).

Proposition 3.1. Let conditions (3.1) and (3.2) be satisfied. Then, system (Aq) has
intermediate reqularly varying solutions (x(t),y(t)) of index (p, o) with p € (0,1) and o €
(0,1) if and only if

(33) -2« /\1 < —a; — 1,



and
(3.4) -2 <y < —f— 1,

in which case p and o are defined by

5 A2
1—‘011
Mo+ 2
3.6 )
(3.6) ey

and the asymptotic behavior of any such solution (z(t), y(t)) is governed by the formulas
(3.7) z(t) ~ Xa(t), y(t) ~Yi(t), t— oo,

where X1(t) € RV(p) and Y, (t) € RV(0) are given by

(3.8) Xi(t) = [pt;f 1_(2)- -
(3.9) Yi(t) = [Ut;fz_(tf,)- -

Proposition 3.2. Let (3.1) and (3.2) hold. System (A4) has a solution (z(t),y(t)) €
ntr-RV(1)x RV(o) with o € (0,1) if and only if (3.4),

(3.10) AM=-a;—1 and / t*p(t)dt < o0

hold, in which case ¢ is defined by (3.6) and the asymptotic behavior of any such solution
(x(t),y(t)) is governed by the formulas

(3.11) 2(t) ~ X5(t),  y(t) ~Ya(t), t— oo,

where the functions Y1 € RV(o) and X, € ntr-RV(1) are defined by (3.9) and
(3.12) X, (t) =t[(1—a1)/ sy (s)ds] =
t .

respectively.

Proposition 3.3. Let (3.1) and (3.2) hold. System (Aq) has a solution (x(t),y(t)) €
ntr-RV(0)x RV (o) with o € (0,1) if and only if (3.4),

(3.13) A =-2 and / / p(r)drds = 0o



hold, in which case o is given by (3.6) and the asymptotic behavior of any such solution
(z(t),y(t)) is governed by the formulas

(3.14) z(t) ~ X3(t), y(t) ~Yi(t), t— oo,
where the functions Y1 € RV(c) and X3 € ntr-RV(0) are defined by (3.9) and

t o[> 1
(3.15) Xs(t) = [(1~ al)/ / pi(r)drds] o1,
respectively.
Proposition 3.4. Let (3.1) and (3.2) hold. System (Aq) has a solution (z(t),y(t)) €
ntr-RV(1)x ntr-RV(1) «f and only if (3.10) and

(316) Mo = -*ﬁz -1 and / tﬁzch(t)dt <0

hold, and the asymptotic behavior of any such solution (z(t),y(t)) is governed by the for-
mulas

(3.17) z(t) ~ Xo(t), y(t)~Ya(t), t— oo,
where the functions X, € ntr-RV(1) and Y, € ntr-RV(1) are defined by (3.12) and
(3.18) Ya(t) = t[(l - ,82)/ sﬁqu(s)dS]m,
t
respectively.
Proposition 3.5. Let (3.1) and (3.2) hold. System (A4) has a solution (z(t),y(t)) €

ntr-RV(1)x ntr-RV(0) ¢f and only if (3.10) and

(3.19) u2 = —2 and / / g2(r)drds = oo

hold, and the asymptotic behavior of any such solution (z(t),y(t)) is governed by the for-
mulas

(3.20) z(t) ~ Xa(t), u(t) ~Ys(t), t— oo,
where the functions X, € ntr-RV(1) and Y3 € ntr-RV(0) are defined by (3.12) and

(3.21) v =[a-m [ [ " u(r)drds] 7,
respectively.

Proposition 3.6. Let (3.1) and (3.2) hold. System (A4) has a solution (z(t),y(t)) €
ntr-RV(0) x ntr-RV(0) if and only if (3.13) and (3.19) hold and the asymptotic behavior of
any such solution (z(t),y(t)) is governed by the formulas

(3'22) J’(t) ~ XB(t)v y(t) ~ Y3(t)a t — 00,



where the functions X3 € ntr-RV(0) and Y3 € ntr-RV(0) are defined by (3.15) and (3.21),
respectively.

Theorem 3.1. Assume that (3.1)-(3.4) hold. Let the constants p and o be given by (3.5)
and (3.6), and consider the functions X1(t) and Y1(t) defined by (3.8) and (3.9). Suppose
that

(3.23) i LEONOT 0 pO)Xa ()

NP G PN o) A0

Then, system (A) possesses intermediate regularly varying solutions (z(t),y(t)) of index
(p, o) whose asymptotic behavior is governed by the unique formula (3.7).

Theorem 3.2. Assume that (3.1)-(3.2), (3.4) and (3.10) hold. Let the constant o
be given by (3.6) and consider the functions Y1(t) and X2(t) defined by (3.9) and (3.12).
Suppose that

(3.24) lim oy —0, p2(t) Xa(2)**

N Oy A TR ey ey

Then, system (A) possesses solutions (z(t),y(t)) € ntr-RV(1)x RV(c) whose asymptotic
behavior is governed by the unique formula (3.11).

=0.

Theorem 3.3. Assume that (3.1)-(3.2), (3.4) and (3.13) hold. Let the constant o

be given by (3.6) and consider the functions Yi(t) and X3(t) defined by (3.9) and (3.15).
Suppose that

a(OYa(t)*

3.25 lim L2
(3.25) A (DX

p2(t) X3(¢)*2
Hm —~2
t=oo go(1)Y1(2)2
Then, system (A) possesses solutions (z(t),y(t)) € ntr-RV(0)x RV(c) whose asymptotic
behavior is governed by the unique formula (3.14).

=0.

Theorem 3.4. Assume that (3.1)-(3.2), (3.10) and (3.16) hold. Consider the functions
Xo(t) and Ya(t) defined by (3.12) and (3.18). Suppose that
a()Ya(t)*

3.26 lim —<—"— =0,
(3.26) A (O Xa(l)

i P2OXa(0)
5 (Y0

Then, system (A) possesses solutions (z(t), y(t)) € ntr-RV(1)x ntr-RV(1) whose asymptotic
behavior is governed by the unique formula (3.17).

Theorem 3.5. Assume that (3.1)-(3.2), (3.10) and (3.19) hold. Consider the functions
Xo(t) and Ys(t) defined by (3.12) and (3.21). Suppose that
a1 (t)Ys()™

3.27 lim LV
( ) t—oo P (t)XQ(t)al

o X"
o %R



Then, system (A) possesses solutions (z(t),y(t)) € ntr-RV(1)x ntr-RV(0) whose asymptotic
behavior is governed by the unique formula (3.20).

Theorem 3.6. Assume that (3.1)-(3.2), (3.13) and (3.19) hold. Consider the functions
X3(t) and Y3(t) defined by (3.15) and (3.21). Suppose that

a®Ys(O)™ _ o pOXs(0)*
) Xs(t)m T tmoo qo(t)Ya(t)P

Then, system (A) possesses solutions (z(t), y(t)) € ntr-RV(0) x ntr-RV(0) whose asymptotic
behavior is governed by the unique formula (3.22).

3.28 lim
(3:28) t—oo py (¢

PROOF. We will give a simultaneous proof of Theorems 3.1-3.6. Let (X (t), Y (¢)) denote
any of the six functions (X, (t), Y1(t)), (Xa(t), Y1 (1)), (X3(t), Ya(2)), (Xa(t), Ya(t)), (Xa(t), Y3(t))
and (X3(t), Y3(t)). It is known that (X (t), Y (t)) satisfies

(3.29) / / p(r) X (r)*drds ~ / / @(r)Y (r)P2drds ~ Y (t), t— oo,

for any b > a. There exists Ty > a such that

(3.30) / / pi(r) X (r)*¥drds < 2X(t / / q(r)Y (r)P2drds < 2Y (t),t > To.
To Js To Js

We may assume that Ty is large enough so that X (t) and Y (t) are increasing for ¢ > Tp.
Since (3.29) holds for b = Ty, one finds Ty > T such that

(3.31) // pr(r)X () drds > TX (¢ // )Y ()rdrds > SV (), 12T,
ToJs To Js

Choose positive constants h, H, k and K so that h < H, k < K and the following inequalities
hold:

(3.32) h<2 s, H>8Fa, k<2 TH K >87A,
and
(3.33) X (T)) < HX(Ty), 2kY(T1) < KY(To).

We can choose Ty > a large enough so that in addition to (3.30)-(3.33) the following
inequalities hold

a®Y®* _ kM pOX(@O RN
()X () = KB g)Y )k ~ Ha’

(3.34)

which is possible because of (3.23)-(3.28). Define the set X' by

X ={(z,y) € C[Ty,0)? : RX(t) < z(t) < HX(t), kY (t) < y(t) < KY (1), t > To}



and consider the mapping ® : X — C[Tj, 0o0) defined by

(3.35) O(z,y)(t) = (F(z,9)(), G(z,9)(1), t=To,

where

t

F(z,y)(t) = 20+ /oo [p1(r)z(r)* + @ (r)y(r)” | drds,

(3.36)

KA

G(z,y)(¢)

Yo+ /00 [P2(r)z(r)® + ga(r)y(r)?] drds

ToS

with constants zy and yg satisfying

(3.37) X (Ty) < 20 < —;—HX(TO), Y (TY) < yo < %KY(TO).

(i) ®(X) C X. Let ((t),y(t)) € X. Then, using (3.34) we see that

PO OO =0 (1+ 2O ) < om0t
(00 + w00 = (0w (1 + ZOEED) < 2m(eyte)”

Thus, we obtain for ¢ > T
1 t o5} o 1
F(@,9)(6) < SHX(T) +2 / / 0 (r) (HX (1)) drds < SHX(Ty) + 4H* X ()
To Js

1 1
< SHX(t)+ SHX(t) = HX(1), t>Th,

F(z,y)(t) > 20 > hX(Th) > hX(t) for Ty <t < Ty,
and

F(z,y)(t) > /Tt /Oopl(r)(hX(r))mdrds > éh"“X(t) > hX(t) fort>T.

Likewise we prove that kY (t) < G(z,y)(t) < KY(¢t) for ¢ > Ty. This shows in view of
(3.35)-(3.36) that ® is a self-map of X.

(ii) ®(X) is relative compact. The inclusion ®(X) C X implies that ®(X) is locally
uniformly bounded on [Tp, oc). The inequalities

0 < (Flz,y))(t) < /too [H"‘lpl(s)X(s)"“1 + Kﬁlql(s)Y(s)ﬁl]ds,

(oe]

0 <(G(z,y))'(t) < / [Hpy(s)X ()2 + K™qa(s)Y (5)]ds,

¢
holding for t > Ty and for all (z,y) € X ensure that ®(X) is locally equicontinuous on
[Ty, 0). Then, the relative compactness of F(X) follows from the Arzela-Ascoli lemma.

(iii) @ is continuous. Let {(z,(t), yn(t))} be a sequence in X converging to (z(t),y(t))
as t — oo uniformly on any compact subinterval of [Ty, 00). Noting that

|F (20, yn)(t) — Flz,y)(8)] < t/too [p1(8)]zn(s)* = ()™ | + qu(8)ym(s)™ — y(s)™(]ds,



|G (@, yn)(t) — G(z,y)(t)] < t/too [Pa(s)l2n(5)* = 2(5)°2| + qa(5)lya(s)*® — y(s)*(]ds,

and applying the Lebesgue dominated convergence theorem to the right-hand sides of the
above inequalities, it follows that

F(@n, yn)(t) = F(2,3)(1),  G(2n,yn)(t) = G(2,9)(1)

as n — oo uniformly on compact subintervals of [Ty, 00). This implies the continuity of ®.

Therefore, the Schauder-Tychonoff fixed theorem guarantees the existence of an element
(z(t),y(t)) € X such that (z(t),y(t)) = ®(z(t),y(t)),t > To, that is,

£(t) = Flz,u)(t _“fL/ [y (r)a(r)™ + u(r)y(r)® ] drds,

y(t) = G(z,y)(t —yo+/T/ p2(r)z(r)*® + ga(r)y(r)?] drds,

for t > Tg.

To complete the proof of Theorems 3.1-3.6, we have to verify that the intermediate
solutions of (A) constructed above are actually regularly varying functions. For this purpose
we use the generalized L'Hospital rule contained in the following lemma. (For the proof see
Haupt and Aumann [2].)

Lemma 3.1. Let f(t), g(t) € C*[T, o0) and suppose that

lim f(t) = lim g(t) =00 and ¢'(t) >0 for all large t,

t—oo t—o0
or
Jim ft)= Jim g(t)=0 and ¢'(t) <0 for all large t.
Then,
f'(t) f(t) f(t) f'(@)
hmmf—-——— <1 1m1nf , limsup —= < limsup —-%.
7 o) TERTgt) T iR gD

Now, we define the functions u(t) and v(t) on [a, c0) by

/ / pi(r )* + g1 (r)Y (r)?] drds,

v(t) = / / [p2(r) X (r)** + go(r)Y (r)?] drds.
Since (3.23)-(3.28) imply that
(339) PB)X(B)™ + @)Y ()™ ~ ;)X (D™, pa(t)X () + q2()Y () ~ q2()Y (8)
as t — oo, from the asymptotic relations (3.29) we obtain

(3.40) u(t) ~ X(t), v(t)~Y(t), t— o0

10



11

We also use the relations
(3.41)  p(B)z()™ + @ ()y(t)* ~ p @)™,  pat) () + qa(t)y ()™ ~ g2(t)y(t)*
as t — oo, which follows from (3.39). Put

t t
(3.42) I = liminf m—(—t—z, L = limsup x—(ﬁ, m = lim inf w, M = lim sup w
t—oo  u(t) oo U(t) t—oo u(t) too V(1)
It isclear that 0 < I < L < oo and 0 < m < M < co. Applying Lemma 3.1 to ! and m and
taking (3.39)-(3.41) into account, we get

[p1(s)1(s)a1 Jrql(s)y(s)ﬁl]ds
l>lltn_1,<l,£1ff [ )X S a1 +Q1(8)Y(S)ﬁl]ds

L p(B)a(t) ™
=S X
al

and
p2(s)2(s)** + qa(s)y(s)™] ds

Ji

™2 e o T oY (9P
)T a0 m(OuP
zhtrgglfm(t) X(t)22 + qao(t)Y (t)P ltrgoof(h(t) Y (t)%
ORI A 10)
(htn_l’glfy(t)> —(llﬁglfw) = m’.

Thus, we have
[>1* and m>m™.

Since a; < 1 and B, < 1, it follows that
(3.43) [>1 and m>1.
Likewise, application of Lemma 3.1 to L and M yields

L<L™ and M<MP%
which leads to
(3.44) L<1 and M<1.
From (3.43) and (3.44) it follows that [ = L and m = M, that is,

z(t) L y(t) _
}L‘Eou() L, tllf?ov(t =1

Therefore we conclude from (3.40) that

z(t) ~ult) ~ X(2), y(t) ~o(t) ~Y (), t— o0,



12

confirming that z and y are regularly varying functions of the desired indices. This com-
pletes the proof of Theorems 3.1-3.6.

Remark 3.1. In addition to (3.1) and (3.2) assume that pa(t) € RV(A\2), qi(t) €
RV(u1) are expressed as

(3.45) pa(t) = tMha(t), @(t) = t*"mi(t), lo,mi €SV.
Using (3.23)-(3.28) we see that

q (t))/;(t)ﬁl — tm+ﬁm—h —OtlpLi (t)) p____—Q(t)Xj (t)az = t/\z—azp—uz—ﬁzﬂMi '(t),
p1(t)X;(t)™ ’ 72(t)Yi(t)" ’
for i,j = 1,2,3, and some L;;, M;; € SV. Thus, (3.23)-(3.28) are satisfied regardless of L;;
and Mi]’ if
(3.46) pr+ 0o <A +aip and Ay + agp < py + Pao.

This can be used to get useful practical criteria for the existence of intermediate regularly
varying solutions of the types (i)-(vi) for system (A).

Corollary 3.1. Assume that (3.1)-(3.3) and (3.4) hold. Let p € (0,1) and o € (0,1) be
given by (3.5) and (3.6). If (3.46) holds, then system (A) possesses intermediate regularly
varying solutions (z(t),y(t)) of index (p, o) whose asymptotic behavior is governed by the
unique formula (3.7).

Corollary 3.2. Assume that (3.1)-(3.2), (3.4) and (3.10) hold. Let o € (0,1) be given
by (3.6). If

(3.47) ur+ o< =1 and M+ ag < g + B0,

then system (A) possesses intermediate solutions (z(t),y(t)) € ntr-RV(1)x RV(c) whose
asymptotic behavior is governed by the unique formula (3.11).

Corollary 3.3. Assume that (3.1)-(3.2), (3.4) and (3.13) hold. Let o € (0,1) be given
by (3.6). If

(3,48) i+ 5o <=2 and Ay < g+ Fao,

then system (A) possesses intermediate solutions (z(t),y(t)) € ntr-RV(0)x RV (o) whose
asymptotic behavior is governed by the unique formula (3.14).

Corollary 3.4. Assume that (3.1)-(3.2), (3.10) and (3.16) hold. If
(3.49) i+ o< =1 and I +ay<-—1,

then system (A) possesses intermediate solutions (z(t),y(t)) € ntr-RV(1)x ntr-RV(1) whose
asymptotic behavior is governed by the unique formula (3.17).

Corollary 3.5. Assume that (3.1)-(3.2), (3.10) and (3.19) hold. If

(3.50) w1 <=1 and A+ ay < =2,



then system (A) possesses intermediate solutions (z(t),y(t)) € ntr-RV (1) x ntr-RV(0) whose
asymptotic behavior is governed by the unique formula (3.20).

Corollary 3.6. Assume that (3.1)-(3.2), (3.13) and (3.19) hold. If
(3.51) W< =2 and A < =2,

then system (A) possesses intermediate solutions (x(t),y(t)) € ntr-RV(0)x ntr-RV(0) whose
asymptotic behavior is governed by the unique formula (3.22).

4 Perturbations of the cyclic system

In this section we regard (A) as a small perturbation of the cyclic system

(Ac) '+ @)y =0, ' +pa(t)z® =0,
where
(41) 012,31 <1

and ¢, (t) and p,(t) are continuous regularly varying functions of indices p; and Az, respec-
tively, expressed as

(4.2) q(t) = t"my(t), pao(t) = t*2s(t), m,lo € SV.

An intermediate positive solution (z(t), y(t)) of (Ac) defined on [tg, co) satisfies the system
of integral equations

1A st =0+ [ [T attrards, )=+ / t [ mlosatoyearas,

for some positive constants o and ¥, and hence the system of asymptotic integral relations

(AR.) z(t) ~ /t: /SOO q(r)y(r)Pdrds, y(t) ~ /: /Oopg(r)x('r)a"’drds,

s

Lemma 4.1 Let (4.1) and (4.2) hold. System (AR.) has regularly varying solutions
of indez (p,c) with p € (0,1) and o € (0,1) if and only if (A2, 1) satisfies the system of
inequalitics

(4.3) O<M1+2+,@1(>\2+2)<1—a2ﬂ1, 0<012(M1+2)+/\2+2<1—Otg)61,
in which case p and o are given by

2+ Bi(A+2) y— ag(pn +2) + A +2
1 — asfh ’ 1 —ah

and the asymptotic behavior of any such solution (z(t),y(t)) is governed by the formulas

)

(4.4)

(4.5) 2(t) ~ Xo(t), y(t) ~Yi(t), t— o0,

13
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where the functions X, € RV(p) and Y1 € RV(0) on [a,00) are defined by

£20:4D g, (£)po(t)P | om0 $2(eatl)g ()00p, (1) ] Toamr
ao) x-S T o= S

where A(T) = 7(1 = 7) for 7 € (0,1).

PROOF. (The “only if” part) Suppose that (AR.) has a regularly varying solution
(z(t),y(t)),t > to, of index (p,0) with p € (0,1) and ¢ € (0,1). From (AR.) rewritten as

t o0 " 00
z(t) ~ / / B m, (r)n(r)Prdrds, y(t) ~ / / preteae], (p)¢(r) %2 drds,
to Js to Js

we see via Karamata’s integration theorem that —2 < ) + 6o < —1, =2 < Ag+agp < —1,
and

tu1+ﬁm+2m1 (t)n(t)m
[~ (1 + Bro + D] (g + fro +2)’
ast — oo. This means that p = u; + 60 +2 and 0 = Ay +aep+ 2, which implies that p and

o are determined by (4.4). Requiring that p € (0,1) and o € (0,1) in (4.4) immediately
leads to (4.3). Noting that (4.7) can be expressed as

2 61 2 T [o7)
aft) ~ Sy~ S22,

t’\2+°‘2p+2l2(t)§(t)°‘2
[—()\2 + a0 + 1)]()\2 + agp + 2) !

(4.7) =(t) ~ y(t) ~

t — oo,

and combining these two relations, we easily conclude that the asymptotic formulas for z(t)
and y(t) are given by (4.5) with X;(¢) and Yi(¢) defined by (4.6).

(The ”if” part) Suppose that (A, u1) satisfies (4.3) and define (p, o) by (4.4). We define
(X1(t),Y1(t)) by (4.6), which can be rewritten as

my (t)la(t)P ] ﬁ’ Yi(t) = 17 [ml(t)‘”lg(t)] ﬁ‘

It suffices to prove that

(4.8) /t: / " (i (r) P drds ~ Xa(2), /,,: / " pa(1) X (r)drds ~ Yi(t), t— oo.

Using Karamata’s integration theorem, we compute as follows:

my(s)%2ly(s) | =

[ womeras= [ T () Apmaey) s

t

- [ ) e T ) e

and hence

L Y (1 s o () T (D)2 0(8) ) = e
J, [ stemeyaras ~ SRS R < i, e
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Similarly we obtain

e o tl(t) rma(t)L()® s
[, [ o G R R =0, e

This ensures the truth of (4.8). This completes the proof of Lemma 4.1.

Lemma 4.2. Let (4.1) and (4.2) hold. System (ARc.) has a solution such that (z(t),y(t)) €
ntr-RV(1)xRV (o) with o € (0,1) if and only if

(49) —ﬂ1—1</L1<-—1, ﬂ1+1+ﬁ1(a2+)\2+2)=0,
and

00
(4.10) / A2t D g (1)py(t)Prdt < o0,

in which case o is given by
1

(4.11) o= 7 (= ag+ Aa+ 2),

and the asymptotic behavior of (z(t),y(t)) is governed by the formulas

(4.12) z(t) ~ Xa(t), w(t) ~Yat), t— o0,
where the functions X, € ntr-RV(1) and Y2 € RV(0) on [a, 00) are defined by

l1—a ad 1‘;231
X(t) = t[ A(U)zﬁ,fl / Sﬁl(aﬁ?)‘]l(s)PQ(S)ﬂldS} )
t

Y(t)_ta2+2p2(t) 1 af /00 B1(a2+2) () ()ﬂld 1—_%273_1_
R O PO A

(4.13)

where A(o) = o(1 — o).

PROOF. (The “only if” part) Suppose that (AR.) has a regularly varying solution
(z(t),y(t)) on [to, 00) of index (1,0) with o € (0,1). From (AR.) rewritten as

(4.14)  z(t) ~ /tt /00 B m) (rn(r)Prdrds,  y(t) ~ /tt /00 rrtee], (r)é(r)* drds,

we see via Karamata’s integration theorem that p; + 10 = —1 and —2 < A2+ o < —1.
Note that o = —(u; +1)/61, so that the requirement o € (0,1) implies y; € (—3; —1,—-1).
Using Karamata’s integration theorem we transform (4.14) into

Py e 1)

, t .
)\2+a2+1)]()\2+a2+2) -
)

(4.15) z(t) ~ t/too s my(s)n(s)Prds,  y(t) ~ =

This shows that 0 = as + Az + 2, so that y; + 1+ 81 (s + A2 +2) = 0. Rewrite the second
relation in (4.15) as

(4.16) n(t) ~ t — o0,

L()E(t)>
Alg)



16

and combine it with the first relation in (4.15). We then obtain

1

0]
- )a/ 71 gy (s)pa(s)71€(s) 2P ds, ¢ — oo.
t

(4.17) &(t) Al

Let £(t) denote the right-hand side of (4.17). Then, (4.17) can be transformed into the

differential asymptotic relation for &(t)

th(et2 g, ()py(£)*

A(o)P: , t—o0.

(4.18) —E(t) 2Pl (t) ~

Since the left-hand side of (4.18) is integrable on [tg, 00) because {(t) — 0 as t — oo, so is
the right-hand side which ensures that (4.10) holds true, and integrating (4.18) from ¢ to
00, we obtain

() ~ g(t) ~ [1A—(Ta)2£1 /°° Sﬂl(azw)fh(S)Pz(S)ﬁ’ ds:l m, t — o0,
t

which, combined with (4.16), establishes the asymptotic formula (4.12) for (z(t), y(t)).

(The “if” part) Let (g, p1) satisfy (4.9) and o be given by (4.11). Consider the vector
function (X5(t), Y2(t)) defined on [tg, 00) by (4.13). Using Karamata’s integration theorem,
we can show that (X,(t), Y2(t)) satisfies (AR,), i.e.,

t oC t o]
(4.19) / / q(r)Yy(r)Prdrds ~ X,(t), / / pa(r) Xa(r)%%drds ~ Ya(t), t— oo.
to Vs to Js
This completes the proof of Lemma 4.2.

Lemma 4.3. Let (4.1) and (4.2) hold. System (AR.) has a solution such that (x(t),y(t)) €
ntr-RV(0)xRV (o) with o € (0,1) if and only if

(420) -0 —-2< M < -2, 1+ 2+ ,81()\2 + 2) =0,
and
(4.21) | rawmoa = o

in which case o is given by
% 2

(4.22) o= (=nt2)

and the asymptotic behavior of (z(t),y(t)) is governed by the formulas

(4.23) z(t) ~ X3(t), y(t) ~Ys(t), t— oo,
where the functions X3 € ntr-RV(0) and Y3 € RV(0) on [a, 00) are defined by

—1__
l-agpfy

X3(t) = [1&70[)251 /at szﬂl“ql(S)pz(S)ﬁldS] :

2 _ ¢ T=athy
- BOLSE [ taire]

(4.24)




where A(o) = o(1 — o).

PROOF. (The “only if’ part) Suppose that (AR.) has a regularly varying solution
(z(t),y(t)) on [tg, 00) of index (0, 0) with o € (0,1). From (AR,) rewritten as

(4.25) z(t // rH BTy (r)n(r)Prdrds,  y(t // m21,(r)€(r)*2drds,

it follows that py + 10 = =2 and —2 < Ay < —1. Thus, 0 = —(u; + 2)/6; and this
together with o € (0,1) implies ; € (=6 — 2,—2). Karamata’s integration theorem
applied to (4.25) yields

t P 16 (1)
4.26 z(t) ~ [ s7'my(s)n(s)Pds, t) ~ , 1 —o00.
420wl ~ [ Simleneds u) ~ o Ade

to

This shows that o = Ay + 2, and hence u; + 2 + 3;(A\2 + 2) = 0. The second relation in
(4.26) is rewritten as

(4.27) n(t) ~ 2 gff,t)

) t.—)m,

)
which, combined with the first relation in (4.26), gives

1

t
—w/ $¥1 gy (s)pa(s) € ()™ s, t— oo,
to

(4.28) £(t) ~ NG

We denote the right-hand side of (4.28) by g(t) and transform (4.28) into the following
differential asymptotic relation for £(¢):

(4.29) E(t) M€ (1) ~ twﬁzl(gft))ﬁz(t)ﬁl, t — oo.

The left-hand side of (4.29) is not integrable on [ty, 00), nor is the right-hand side, that is,
(4.21) must hold. Integrating (4.29) on [to, t] shows that

{0 ~E0 ~ [1?_(%_5_/ 5%*1(11(s)p;).(sVi‘dS}m ~ [ 1&5)_251/ SO ()pp(s)ds|

as t — oo, from which the asymptotic formulas (4.23) for z(t) and y(t) follow immediately.

(The “if” part) Consider the functions X3(¢) and Y3(¢) defined on [a,00) by (4.24).
Then, (X3(t), Y3(t)) satisfies (AR,), i.e.,

(4.30) // q(r)Ys(r )ﬁldeSNXg // pa(1) X3(r)*?drds ~ Y3(t), t— oo.

Theorem 4.1. Let (4.1), (4.2) and (4.3) hold. Define the constants p and o by (4.4)
and consider the functions X(t) and Y1(t) given by (4.6). Suppose that

(
o POXO L eOVi0*

(4.31) o0 (DY (D)% =00 pa (1) X1 (£)

17
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Then, system (A) possesses solutions (z(t),y(t)) € RV(p)x RV(c) such that (4.5) holds.

Theorem 4.2. Let (4.1), (4.2), (4.9) and (4.10) hold. Define o by (4.11) and consider
functions X,(t) and Ya(t) given by (4.13). Suppose that

, nOX0" s
(4.32) A v s

Then, system (A) possesses solutions (z(t),y(t)) € ntr-RV(1)x RV(o) such that (4.12)
holds.

Theorem 4.3. Let (4.1), (4.2), (4.20) and (4.21) hold. Define o by (4.22) and consider
functions X3(t) and Y3(t) given by (4.24). Suppose that

lim p(t) X3(t)™ im ga(t)Ys(t)™ _
t—oo q1(t)Y3(t)% t—co po(t) X3(t)o2

Then, system (A) possesses solutions (z(t),y(t)) € RV(0)x RV (o) such that (4.23) holds.

(4.33) =0,

PROOF. A simultaneous proof of the above theorems will be given. Let (X(t),Y (¢))
denote any of the three functions (X;(t),Y;(t)),i = 1,2, 3, defined, respectively, by (4.6),
(4.13) and (4.24). (Naturally (X;(t),Y:(t)) should be used in proving Theorem 4., i = 1
2, 3.) It is known that (X (¢),Y (¢)) satisfies

(4.34) // q(r)Y ()P drds ~ X // pa(M)X (r)2drds ~ Y(8), t — oo,

for any b > a. There exists Ty > a such that

4 35 / / q1 ﬁldT‘d? < 2X / / p2 aszdS < 2y( ) t> T,
To Vs To

We may assume that Tp is large enough so that X (¢) and Y (t) are increasing for ¢ > Tp.
Since (4.34) holds for b = Tp, one finds T7 > Tj such that

(4.36) // q(r)Y (r)Pdrds > X // p2(r) X (r)*2drds > Y() t>T.
To S Tg S

Choose positive constants A, H, k and K so that h < H, k < K and the following inequal-
ities hold

(4.37) 2h < kP, 2k <h* 8KA <H, 8H*<K,
and
(4.38) 2hX(T)) < HX(Ty), 2kY(Ty) < KY(Tp).

Because of (4.31)-(4.33) one can choose Ty > a large enough so that in addition to (4.35)-
(4.36) and (4.38) the following inequalities hold for ¢ > T:

POXO™ _ K p@Y@ _ b
a@YOR S H p0X (@ T Ko

(4.39)



With these constants we define the set X’ comprised of continuous vector functions.(z(t), y(t))
on [Ty, 00) such that

hX(t) <z(t) < HX(t), kY (1) <y(t) < KY(), t2To

It is clear that X is closed and convex in C[Ty, 00) X C[Tp, 00). Finally consider the mapping
®: X — C[Ty,00) x C(Ty, 00) defined by

(4.40) o(z(t), y(1)) = (F(a,9)(t), G(z,9)(1), t=To,

where

Flz,y)(t) = 70 + T [pl (r)z(r)™ + q1(T)y(r)'B‘]drds,
" J.J

G(z,y)(t) =v + /Tt /00 [pz(r)x(r)” + qQ(r)y(r)ﬁ’]drds.

Here zg and yo are constants satisfying
1 1

(i) ®(X) C X. Let (z(t),y(t)) € X. Using (4.39) we see that

D)™ + qu (D) = au(Dy(e)* (1 - “”’“”ZI) < 20, (D)y(1)",
) ONOK
' (5] 2 a2 Q2(t)y(t)ﬁ2 a2
a0 () + (00 = pa)otey (14 2T ) < omeyaty

Thus, we obtain for t > Ty ,
1 t o0
Flz,y)(t) < 5HX(TO) +2 / / ql(r)(KY(r))"l drds < %HX(TO) +4KP X (t)
To Js

1
< SHX(D)+ %HX(t) — HX(t), t>Th,

F(z,y)(t) > 2o > hX(Th) > hX(t) for Top <t < T,
and

F(z,y)(t) > /Tt /00 ql(r)(kY(r))Bldrds > %kﬁlX(t) >hX(t) fort>T;.

Likewise we prove that kY (t) < G(z,y)(t) < KY(t) for t > Ty. This shows in view of
(4.40) that @ is a self-map of X.

(ii) ®(X) is relative compact. The inclusion ®(X) C X implies that ®(X’) is locally
uniformly bounded on [T, 00). The inequalities

0< (Flz,9))(®) < /too [Hp1(s)X ()™ + K™ qu(s)Y (5)™]ds,

o

0<(G(z,9))(t) < / [H*pa(s) X (5)°2 + K®qa(s)Y (s)]ds,

t
holding for ¢ > Tp and for all (z,y) € X ensure that ®(X) is locally equicontinuous on
[Ty, 0). Then, the relative compactness of F(X) follows from the Arzela-Ascoli lemma.
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(iii) ® is continuous. Let {(z.(t),yn(t))} be a sequence in X converging to (z(t), y(t))
as t — oo uniformly on any compact subinterval of [Tp, 00). Noting that

[ F(2n, 4n) () — F (2, 9) ()] < t/too [Pr(8)]zn(s)™ = 2() [ + qu(s)lyn ()™ — y(s)” ] ds,

|G (zn, yn)(t) — G(2,9) ()] < t/too [P2(5)|2a(5)°% = 2(5)°| + qa(8)lyn(5) — y(5)™[] ds,

and applying the Lebesgue dominated convergence theorem to the right-hand sides of the
above inequalities, it follows that

F(zn, yn)(t) = F(z,9)(8),  G(Zn,yn)(t) = G(2,9)(?)

as n — oo uniformly on compact subintervals of [Tp, 00). This implies the continuity of ®.

Thercfore, the Schauder-Tychonoff fixed theorem guarantees the existence of an element
(z(t),y(t)) € X such that (z(t),y(t)) = ®(z(¢),y(t)),t > To, that is,

£(t) = F(z,y)(t) = 7o + / / " Ipr)e(r)™ + g1 (r)y(r)* | drds,

y(t) = G(z,y)(t) = yo + /T / " [p2(r)2(7)%2 + g2 (r)y(r)?] drds,

for t Z Tg.

To complete the proof of Theorems 4.1-4.3, we have to verify the intermediate solutions
of (A) constructed above are actually regularly varying functions.

We define the functions u(t) and v(t) on [a, 00) by

ut) = [ [ X0 + o)y (1) drds,

o(t) = / t [ X )= + )Y (s,
Since (4.31)-(4.33) imply thata s
(444) pOX O™ + oY ) ~ a@)Y ()", pa(t)X () + @)Y ()% ~ pa(t) X (t)*
as t — oo, from the asymptotic relations (4.34) we obtain
(4.45) u(t) ~ X(t), v{t)~Y(t), t— oo
We also use the relations
(446)  p(W)z()™ + @ ®y(t) ~ a@yt),  PA)z()* + q2()y(t)* ~ pa(t)z(t)*™
as t — oo, which follows from (4.45). Put

_x(t) . z(t) e y(t) . y(t)
44 =1 SALZR L) — y) _ yt)
(4.47) l 1?_1"1)£1f u(t) L hrtxiigp at)’ m h{gglf o(t)’ M h?l.il:p o(0)
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It is clear that 0 < I < L < 0o and 0 < m < M < oco. Applying Lemma 3.1 to ! and m and
taking (4.44)-(4.46) into account, we get

imin ft [ (s)x(s)™ + qu(s)y ]
l>1t~mff [p1(5) X (s) +q1(S)Y(5) H]ds

()™ + q(t)y()”
2 lin nf - pl(t)X(t)”“ +a@Y(O)?  ee oY)

(i) - () -

> limint ftoo [ (8)x(s)*2 + qz(s)y(s)ﬂz]ds
tmoo [ [pa(s)X (5)22 + go(s)Y (s)P2] ds

oo pa(t)X (t @2 4 gy

) Y
( i) - (eain) -

I>mf" and m > 1%,

and

Thus, we have

which implies that
(448) 1>1" and m>m*” — [>1 and m>1 because as} < 1.
Likewise, application of Lemma 3.1 to L and M yields

L<MP and M<L*™,
which leads to
(449) L<L*" and M <M*® — [L[<1 and M <1 because asf; < 1.
From (4.48) and (4.49) it follows that [ = L and m = M, that is,

=) _ 1 oy YOy

oo u(t) im0 v t)
Therefore we conclude from (4.45) that
z(t) ~u(t) ~ X(t), y(t) ~v(t) ~Y(t), t— oo,

confirming that z and y are regularly varying functions of the desired indices. This com-
pletes the proof of Theorems 4.1-4.3.

Remark 4.1. Let p,(t) € RV(\;) and ¢2(¢) € RV(u2), 1. e,

(450) D1 (t) = t)‘] ll(t), QQ(t) = t’“mg(t), ll,mg c SV.
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From (4.31)-(4.33) we see that -

() ()52
pl(t)Xz(t)ﬁ :tAl_'_alp_Ml-ﬁloLi(t), q?(t))/l(t)a ___tu2+ﬂza—/\z—aszi<t)7
qi(t)Y;(t)P pa(t) Xi(t)>

fori = 1,2,3, and some L;, M; € SV. Thus, conditions (4.31)-(4.33) are satisfied (regardless
of L; and M;), if

(451) A+ ap < p+ ,@10’ and Mo + ,620 < Ay + Qip.
Corollary 4.1. Assume that (4.1)-(4.3) and (4.50) hold. Let p and o be given by (4.4).

If (4.51) holds, then system (A) possesses intermediate solutions (z(t),y(t)) € RV(p)x
RV(0) such that (4.5) holds.

Corollary 4.2. Assume that (4.1), (4.2), (4.9), (4.10) and (4.50) hold. Let o be given
by (4.11). If

(4.52) A tap < pp+ 6o, pa+ G20 < Ao+ ag,

then system (A) possesses intermediate solutions (z(t), y(t)) € ntr-RV(1)x RV(o) such that
(4.12) holds.

Corollary 4.3. Assume that (4.1), (4.2), (4.20), (4.21) and (4.50) hold. Let o be given
by (4.22). If

(4.53) M < pr+Bio,  pe+ Bao < Ag,

then system (A) possesses intermediate solutions (z(t), y(t)) € ntr-RV(0)x RV (o) such that
(4.23) holds.

(ADDITION)

Using similar arguments like in the necessity parts of the proofs of Lemmas 4.1-4.3 we
can easily prove the following lemmas.

Lemma 4.4. Suppose that system (ARc) has a solution such that (z(t),y(t)) €
ntr-RV(1) x ntr-RV(1). Then,

(4.54) pr=-5-1, d=-0ay—1

and the slowly varying parts of z(t) and y(t) satisfy the asymptotic relations

(455) £t~ /tmsﬂlqms)n(s)ﬁlds, n(t) ~ /twsasz(s)as)”ds, t— oo,

Lemma 4.5. Suppose that system (AR.) has a solution such that (x(t),y(t)) €
ntr-RV(0) x ntr-RV(0). Then

(4.56) p=—2, Ap=—2



and the slowly varying parts of z(t) and y(t) satisfy the asymptotic relations

(4.57) §(t)~/ squ(s)n(s)P1ds, n(t)N/ spa(s)E(s)??ds, t — oo.

to

Lemma 4.6. Suppose that system (AR,) has a solution such that (z(t),y(t)) €
ntr-RV (1) x ntr-RV(0). Then

(4.58) m=-1 do=—0a2—2

and the slowly varying parts of z(t) and y(t) satisfy the asymptotic relations

(4.59) E(t)N/tmql(S)n(S)ﬁlds, 77(t)~/ 5% pa(s)6(s)**ds, ¢ — o0.

to

Remark. Under the additional assumptions

(4.60) tP1q,(t) ~ t*2py(t) ast — oo
and
o0 o0
(4.61) / P (t)dt < 00— / £, (£)dt < oo,
resp.
(4.62) q:1(t) ~ p2(t) ast— oo
and
(4.63) / b (t)dt = 00 = / tpa(t)dt = o0,
and using the functions
- B+l
Xu(t) = £ 1—apf (Br+1 51“/ - "251,
Ori+1 \az+1
(4.64) w1
1—af faz+1 ait [ =26
Yi(t) =t 5§72 ,
«{f) [ag+1 (ﬁ1+1> / Pals ]
resp.
ot
Xs(t) =
(4.65) ey

L—agb (G +1 "1“/ s =
B+l \ag+1 a(s ’

—_ 1 a2+1 - ﬁ
Ys(o:[l a2ﬂ1(0‘2+) }

s +1 G+ 1
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it can be shown easily that conditions (4.54) and (4.56) in Lemmas 4.4 and 4.5, respec-
tively, are not only necessary, but also sufficient conditions for the existence of solutions
(z(t),y(t)) € ntr-RV(1)xntr-RV(1) (resp. (z(t),y(t)) € ntr-RV(0) xntr-RV(0)).

Theorem 4.4. Let (4.1), (4.2), (4.54), (4.60) and (4.61) hold. Consider functions X4(t)
and Y4 (t) given by (4.64) and suppose that

(4.66) lim PLOXa(0)

- (t)Ya(t)*
=0, lim ———-+—=0.
O G Oa(0 :

t=oo py(t) X4 (1)

Then, system (A) possesses intermediate solutions (z(t),y(t)) € ntr-RV(1)x ntr-RV(1), all
of which enjoy one and the same asymptotic behavior

(4.67) 2(t) ~ Xa(t), y(t) ~Ya(t), t— oo

Theorem 4.5. Let (4.1), (4.2), (4.56), (4.62) and (4.63) hold. Consider functions Xs(t)
and Ys(t) gwen by (4.65) and suppose that

X0 et
(4.68) tllglo q(t)Ys(t)P =0, t—00 pg(t)X5(t)0fz 0.

Then, system (A) possesses intermediate solutions (z(t),y(t)) € ntr-RV(0)x ntr-RV(0), all
of which enjoy one and the same asymptotic behavior

(4.69) z(t) ~ Xs(t), y(t) ~Ys(t), t— oo
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