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Let $\Omega\subset \mathbb{R}^{N},$ $N\geq 3$ , be a bounded domain with smooth boundary.
We study the positive solution of the Neumann problem

(1) $\{\begin{array}{ll}\epsilon^{2}\triangle u-u+u^{p}=0 in \Omega,\partial_{\nu}u=0 on \partial\Omega,\end{array}$

where $\epsilon>0$ is a positive parameter. This problem arises in stationary
problems of the shadow system of the Gierer-Meinhardt model and the
Keller-Segel model with logarithmic sensitivity function. When the
domain is the entire space $\mathbb{R}^{N}$ , the problem (1) also appears in the
study of the standing wave of the nonlinear Schr\"odinger equation. The
problem (1) has attracted much attention for more than two decades.
Solutions of various shapes have been found in [4, 6, 11, 12]. However,
many authors study the case $1<p<p_{S}$ . Here,

Ps $:=\{\begin{array}{ll}\frac{N+2}{N-2} fN\geq 3,\infty if N=1, 2.\end{array}$

When $p>p_{S}$ , the Sobolev embedding $H^{1}(\Omega)\mapsto L^{p+1}(\Omega)$ does not hold
and it is difficult to use variational methods. There are few results
about the structure of the positive solutions in the case $p\geq p_{S}.$

We consider the positive radial solutions when $p>p_{S}$ and $\Omega=B.$

Then (1) can be reduced to the ODE

(2) $\{\begin{array}{ll}u_{rr}+\frac{N-1}{r}u_{r}+\lambda f(u)=0 (0<r<1) ,u_{r}(1)=0, u(r)>0 (0\leq r\leq 1) ,\end{array}$
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FIGURE 1. Schematic picture of the bifurcation diagram

of (2) in the case $p_{S}<p<p_{JL}.$

where $f(u)=-u+u^{p}$ and $\lambda=1/\epsilon^{2}>0$ . Adimurthi and Yadava [1, 2]

studied the critical case $p=p_{S}$ when $\Omega$ is a unit ball $B$ . They have

shown that if $N\geq 7$ , then (2) has a solution for all small $\lambda>0$ , while
if $N\in\{4$ , 5, 6 $\}$ , then (2) has no solution for small $\lambda>$ O. Del Pino
et.al. [3] constructed a bubble tower solution when $p$ is slightly greater
than $p^{*}$

We study the bifurcation diagram of the radial solutions of (1), using

ODE techniques. In this study the existence of the singular solution of
(2) plays an important role.

Theorem A. Suppose that $p>p_{S}$ . The problem (1) has infinitely
many singular solutions $(\lambda_{n}^{*}, U_{n}^{*}(r))\in \mathbb{R}_{+}\cross(C^{2}(0,1)\cap C^{0}(0,1] \cap H^{1}(B)$ )
$(n=1,2, \cdots and \lambda_{1}^{*}<\lambda_{2}^{*}<\cdotsarrow\infty)$ such that the following asser-
tions hold:
(i) $U_{n}^{*}(r)satisfie\mathcal{S}$

(3) $U_{n}^{*}(r)=A(p, N)(\sqrt{\lambda_{n}^{*}}r)^{-\theta}(1+o(1))$ as $(r\downarrow 0)$ ,

where

(4) $A(p, N):=\{\theta(N-2-\theta)\}^{\frac{1}{p-1}}$

(ii) $\mathcal{Z}_{(0,1]}[U_{n}^{*}(\cdot)-1]=n.$

(iii) $U_{n}^{*}(r)>0(0<r\leq 1)$ .

Moreover, the singular solution $(\lambda_{n}^{*}, U_{n}^{*})$ is unique, i. e., if $(\tilde{\lambda}_{n}^{*},\tilde{U}_{n}^{*})$ is a
$\mathcal{S}$ingular $\mathcal{S}$olution such that (i) and (ii) hold, then $(\tilde{\lambda}_{n}^{*},\tilde{U}_{n}^{*})=(\lambda_{n}^{*}, U_{n}^{*})$ .
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The main result is the following:

Theorem B. Suppose that $p>p_{S}$ . Let $S$ be the set of the regular
$solution\mathcal{S}$ . Then

$S=C_{0} \cup\bigcup_{n=1}^{\infty}(C_{n}^{+}\cup C_{n}^{+})$ ,

where $C_{n}^{+}$ (resp. $C_{n}^{-}$ ) is the branch emanating from the trivial branch
$\{(\lambda, 1)\}_{\lambda>0}$ , which we denote by $C_{0}$ , such that $u(O)>1$ (resp. $u(O)<$

1). $C_{n}^{\pm}$ is a $C^{1}$ -junction of $\gamma$ $:=u(O)$ , hence $C_{n}^{\pm}$ can be described as
$\{(\lambda_{n}(\gamma),$ $u_{n}(r,$

$\gamma$ Moreover, the following hold:
(i) $\lambda_{n}(1)=\overline{\lambda}_{n},$

(ii) $\lambda_{n}(\gamma)arrow\lambda_{n}^{*}(\gammaarrow\infty)$ ,
(iii) if $p_{s}<p<p_{JL}$ , then $\lambda_{n}(\gamma)$ oscillates infinitely many times around

$\lambda_{n}^{*}$ , where

PJL $:=\{\begin{array}{ll}1+\frac{4}{N-4-2\sqrt{N-1}} if N\geq 11,\infty if 2\leq N\leq 10,\end{array}$

(iv) $\lambda_{n}(\gamma)arrow\infty(\gamma\downarrow 0)$ ,
(v) if $\gamma>0$ is $\mathcal{S}mall$, then $u_{1}(r, \gamma)$ is non-degenerate in the space of
radial functions and it concentrates on the boundary,
(vi) $\lambda_{1}(\gamma)<\lambda_{2}(\gamma)<\cdots$

Figure 1 is a schematic picture of the bifurcation diagram of (2)
in the case $p_{S}<p<p_{JL}$ . When $p_{S}<p<p_{JL}$ , (2) has infinitely
many regular solutions for $\lambda=\lambda_{n}^{*}$ . Each branch blows up at $\lambda_{n}^{*}$ , while
it is unbounded in the positive direction of $\lambda$ in the subcritical case
$1<p<p_{S}.$

The following corollary is an immediate consequence of Theorem B.

Corollary C. Suppose that $p>p_{S}$ . There $exi_{\mathcal{S}}t\underline{\lambda}>0$ and $\overline{\lambda}(>\underline{\lambda})$

such that a radially decreasing solution of (2), which belongs to $C_{1}^{+},$

does not exist for $\lambda\in(0, \underline{\lambda})\cup(\overline{\lambda}, \infty)$ .

The main tool of the proof is an intersection number between the
singular solution and a regular solution. Using a scaling argument,
one can show that each branch has infinitely many turning points if
$p_{S}<p<p_{JL}$ . See [8] for details of the proof. In the case $p\geq p_{JL}$ we
do not know the number of the turning points of each branch.
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Let us explain the strategy of the proof. Let $u(s)$ $:=U(r)$ and
$s$

$:=\sqrt{\lambda}r$ . The equation (1) is transformed to the problem

(5) $\{\begin{array}{ll}u_{ss}+\frac{N-1}{s}u_{s}+f(u)=0, 0<\mathcal{S}<\sqrt{\lambda},u_{s}(\sqrt{\lambda})=0, u>0, 0\leq s\leq\sqrt{\lambda}.\end{array}$

First we construct the singular solution $u^{*}(s)$ of the equation in (5) near
$s=0$ and show that $u^{*}(\mathcal{S})=As^{-\theta}(1+o(1))(s\downarrow 0)$ . Here $A$ $:=A(p, N)$

and $A(p, N)$ is defined by (4). Second we show that the domain of $u^{*}(s)$

can be extended to $0<\mathcal{S}<\infty$ , that $u^{*}(s)$ satisfies the equation in (5),

and that $u^{*}(s)>0$ for $s>$ O. Third we show that $u^{*}(s)$ oscillates
around 1 infinitely many times as $sarrow\infty$ and that $u^{*}(s)$ has the set of
the critical points $\{s_{n}^{*}\}_{n=1}^{\infty}$ of $u^{*}$ such that $0<s_{1}^{*}<s_{2}^{*}<\cdotsarrow\infty$ and

$\{\begin{array}{ll}s_{n}^{*} is a local minimum point of u^{*} and u^{*}(s_{n}^{*})<1 if n\in\{1, 3, 5, \},s_{n}^{*} is a local maximum point of u^{*} and u^{*}(s_{n}^{*})>1 if n\in\{2, 4, 6, \}.\end{array}$

We set $\lambda_{n}^{*}$ $:=(s_{n}^{*})^{2}$ and $U_{n}^{*}(r)$ $:=u^{*}(s)(s=\sqrt{\lambda_{n}^{*}}r)$ . Then, $(\lambda_{n}^{*}, U_{n}^{*})$ is
a singular solution stated in Theorem A.

Let $(\lambda_{n}(\gamma), u(s, \gamma))$ denote the solution of (5) such that $u(O, \gamma)=\gamma$

and $u_{s}(0, \gamma)=0$ . We show that $\lambda_{n}(\gamma)arrow\lambda_{n}^{*}$ as $\gammaarrow\infty$ and that $u(s, \gamma)$

converges to $u^{*}(s)$ in an appropriate sense. In [7] Merle and Peletier
proved a similar convergence result for the Dirichlet problem

$\{\begin{array}{ll}U_{rr}+\frac{N-1}{r}U_{r}+\lambda U+U^{p}=0, 0<r<1,U(1)=0, U>0, 0\leq r<1.\end{array}$

when $p>p_{S}$ . We show that $u(s, \gamma)arrow u^{*}(s)$ , following arguments in
the proof of [7, Theorem $A$].

We show that $\lambda_{n}(\gamma)$ oscillates around $\lambda_{n}^{*}$ if $p_{S}<p<p_{JL}$ . Let
$\rho$

$:=\gamma^{\frac{p-1}{2}}s$ . We define $\tilde{u}(\rho, \gamma)$ $:=u(s, \gamma)/\gamma$ and $\tilde{u}^{*}(\rho)$ $:=u^{*}(s)/\gamma$ . We
use the intersection number between $\tilde{u}$ and $\tilde{u}^{*}$ The function $\tilde{u}(\rho, \gamma)$

satisfies

(6) $\{\begin{array}{ll}\tilde{u}_{\rho\rho}+\frac{N-1}{\rho}\tilde{u}_{\rho}+\tilde{u}^{p}-\frac{1}{\gamma^{p-1}}\tilde{u}=0, 0<\rho<\infty,\tilde{u}(0)=1, \tilde{u}_{\rho}(0)=0. \end{array}$

Let $\overline{u}(\rho, \gamma)$ be the regular solution of

(7) $\{\begin{array}{ll}\overline{u}_{\rho\rho}+\frac{N-1}{\rho}\overline{u}_{\rho}+\overline{u}^{p}=0, 0<\rho<\infty,\overline{u}(0)=\gamma, \overline{u}_{\rho}(0)=0. \end{array}$
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We show that as $\gammaarrow\infty,$

$\tilde{u}(\rho, \gamma)arrow\overline{u}(\rho, 1)$ in $C_{loc}^{2}(0, \infty)\cap C_{loc}^{0}[0, \infty)$

and
$\tilde{u}^{*}(\rho)arrow\overline{u}^{*}(\rho)$ in $C_{loc}^{0}(0, \infty)$ ,

where $\overline{u}^{*}(\rho)$ a singular solution of the equation in (7). We recall the
fact that $\mathcal{Z}_{(0,\infty)}[\overline{u}^{*}(\cdot)-\overline{u}(\cdot, 1)]=\infty$ . Hence, for each $\delta>0,$

(8) $\mathcal{Z}_{(0,\delta)}[u^{*}(\cdot)-u(\cdot, \gamma)]arrow\infty (\gammaarrow\infty)$ ,

since $s\in(0, \delta)$ is corresponding to $\rho\in(0, \delta\gamma^{\frac{N-1}{2}})$ and $\delta\gamma^{\frac{N-1}{2}}arrow\infty$

$(\gammaarrow\infty)$ . Since each zero of $u^{*}(\cdot)-u(\cdot, \gamma)$ is simple, each zero depends
continuously on $\gamma$ . The divergence (8) tells us that a zero which is
simple enters the interval $(0, \sqrt{\lambda_{n}^{*}}$] from $s=\sqrt{\lambda_{n}^{*}}$ infinitely many times.
Therefore, there exists a sequence of large numbers $\{\gamma_{j}\}_{j=1}^{\infty}(\gamma_{1}<\gamma_{2}<$

. . . $arrow\infty)$ such that $u^{*}(\sqrt{\lambda_{n}^{*}})=u(\sqrt{\lambda_{n}^{*}}, \gamma_{j})$ and the following holds:
$u_{S}(\sqrt{\lambda_{n}^{*}}, \gamma_{j})<0$ for $j\in\{1$ , 3, 5, $\}$ and $u_{S}(\sqrt{\lambda_{n}^{*}}, \gamma_{j})>0$ for $j\in$

$\{2$ , 4, 6, $\}$ . Using the convergence $u(s, \gamma)arrow u^{*}(s)$ , we show that if
$n\in\{1$ , 3, 5, $\}$ $($ resp. $n\in\{2,4,6, \cdots\})$

(9) $\lambda_{n}(\gamma_{j})\{\begin{array}{ll}>\lambda_{n}^{*}, (j\in\{1,3,5, \cdots<\lambda_{n}^{*}, (j\in\{2,4,6, \cdots\end{array}$

$($resp. $\lambda_{n}(\gamma_{j})\{_{>\lambda_{n}^{*}’}^{<\lambda_{n}^{*}},$ $(j\in\{2,4,6(j\in\{1,3,5, \cdots )$

which implies that $\lambda_{n}(\gamma)$ oscillates around $\lambda_{n}^{*}i_{I1}$finitely many times as
$\gammaarrow\infty.$

This method can be applied to Dirichlet problems. In [9] the author
studies

(10) $\{\begin{array}{ll}\triangle u+\lambda f(u)=0 in B,u>0 in B,u=0 on \partial B,\end{array}$

where $f(u)=u^{p}+g(u)$ , $p>p^{*}$ , and $|g(u)|<Cu^{p-\epsilon}$ We assume that
$f\in C^{1}$ and $f(u)>0$ for $u\geq 0$ . If $3\leq N\leq 10$ , then the branch of the
solutions of (10) has infinitely many turning points. It is shown that
there is a nonlinear term $f(u)$ such that the branch has finitely many
turning points.

In [10] he studies (10), where $f(u)=e^{u}+g(u)$ and $|g(u)|<Ce^{(1-\epsilon)u}.$

In [10] it is shown that if $3\leq N\leq 9$ , then the branch of the solutions
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of (10) has infinitely many turning points around some $\lambda^{*}>0$ and that
if

(f1’) $N\geq 10,$ $-e^{u}<g’(u) \leq\frac{N-10}{8}e^{u}$ in $(0, \infty)$ ,

and $g”(u)>-e^{u}$ in $(0, \infty)$ ,

then the branch does not have a turning point and blows up at $\lambda^{*}$ In
particular, the branch consists only of the minimal solutions. Thus,
when (f1’) is satisfied, then the bifurcation diagram is qualitatively the
same as the case $f(u)=e^{u}$
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