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1. Introduction and Main results

We consider the following quasilinear elliptic problem:

$-\triangle u+\lambda u-\kappa\triangle(u^{2})u=g(u)$ in $\mathbb{R}^{N}$ , (1.1)

where $\lambda>0,$ $\kappa>0$ and $N\geq 2$ . Typical examples of the nonlinearity $g(s)$ are given

by $g(s)=s^{p}$ for $N\geq 3$ and $g(s)=e^{s}-1$ for $N=2$ . In this note, we review recent

results on the uniqueness and the non-degeneracy of positive radial solutions of (1.1).

Equation (1.1) can be obtained as a stationary problem of the following modified

Schr\"odinger equation:

$\dot{\iota}\frac{\partial z}{\partial t}=-\triangle z-\kappa\triangle(|z|^{2})z-h(z) , (t, x)\in(0, \infty)\cross \mathbb{R}^{N}$ , (1.2)

where $z$ is a complex-valued function and $h$ has the Gauge invariance, that is,

$h(e^{i\theta}z)=h(z)$ for all $\theta\in \mathbb{R}^{N}$ . Equation (1.2) appears in the study of plasma physics.

(See [6, 10] for the derivations.) Especially if we consider the standing wave of (1.2)

of the form $z(t, x)=u(x)e^{i\lambda t}$ , then $u(x)$ satisfies (1.1) provided $g(s)=h(s)-\lambda s.$

Equation (1.1) has a variational structure, that is, one can obtain solutions of

(1.1) as critical points of the associated functional $I$ defined by

$I(u)= \frac{1}{2}\int_{\mathbb{R}^{N}}(1+2\kappa u^{2})|\nabla u|^{2}+\lambda u^{2}dx-\int_{\mathbb{R}^{N}}G(u)dx,$

where $G(s)= \int_{0}^{s}g(t)dt$ . In applications, the most important solution is the so-called

ground state, which is a solution of (1.1) having the least energy among all non-trivial

solutions. When we study the stability of the standing wave, the uniqueness and the

non-degeneracy of the ground state play an important role.

As for the existence of ground states, we have the following result.
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Theorem 1.1 [1, 8]. Let $\lambda>0,$ $\kappa>0$ and suppose $g(s)=s^{p},$ $1<p< \frac{3N+2}{N-2}$

for $N\geq 3$ and $g(s)=e^{s}-1$ for $N=2$ . Then there exists a ground state of (1.1).

Moreover any ground state is of the class $C^{2}(\mathbb{R}^{N})$ , positive, radially symmetric and

decreasing with respect to $r=|x|$ (up to translation).

Remark 1.2. We can obtain the existence of a ground state for more general non-

linearities. (See [4, 5] for details.)

By Theorem 1.1, we can see that if we could show the uniqueness and the non-

degeneracy of positive radial solutions of (1.1), then the ground state of (1.1) is also

unique and non-degenerate. However, the uniqueness and the non-degeneracy of

positive solutions of (1.1) seem to be difficult and are less studied. In [2, 4, 5], they

proved the uniqueness and non-degeneracy if $\kappa$ is sufficiently small by applying the

perturbation method. In this note, we show the uniqueness and the non-degeneracy

of the positive radial solution for another range of parameters $\lambda$ and $\kappa$ . Indeed, we

have the following result.

Theorem 1.3.

(i) Suppose $N\geq 3,$ $g(s)=s^{p}$ and $1<p< \frac{3N+2}{N-2}$ . There exists $c_{0}=c_{0}(p)>0$ such

that if $\kappa\lambda^{\frac{2}{p-1}}\geq c_{0}$ , then (1.1) has a unique positive radial solution.

(ii) Suppose $N=2,$ $\kappa>0$ and $g(s)=e^{S}-1-s$ . There exists $\lambda^{*}>0$ independent

of $\kappa$ such that if $\lambda\geq\lambda^{*}$ , then (1.1) has a unique positive radial solution.

Theorem 1.4. Under the assumptions of Theorem 1.3, the kernel of the linearized

operator around the unique positive radial solution $w$ is given by

$Ker(L)=span\{\frac{\partial w}{\partial x_{1}}, \cdots, \frac{\partial w}{\partial x_{N}}\}.$

Especially $w$ is non-degenerate in $H_{rad}^{1}(\mathbb{R}^{N})$ , that is, if $L(\phi)=0$ and $\phi\in H_{rad}^{1}(\mathbb{R}^{N})$ ,

then $\phi\equiv 0$ . Here the linearized operator $L$ of (1.1) defined by

$L(\phi)=-\triangle\phi+\lambda\phi-g’(w)\phi-2\kappa div(w^{2}\nabla\phi)-\kappa(4w\triangle w+2w|\nabla w|^{2})\phi.$

Remark 1.5. Theorem 1.3 (i) means that if either $\kappa$ or $\lambda$ is sufFiciently large, then

the uniqueness holds. On the other hand in Theorem 1.3 (ii), the uniqueness holds

only when $\lambda$ is sufficiently large. In the case $g(s)=s^{p}$ , we have a nice scaling. Namely

for a solution $u$ of (1.1), we rescale $\tilde{u}(x)$ as $u(x)=\lambda^{\frac{1}{p-1}}\tilde{u}(\lambda^{\frac{1}{2}}x)$ . Then we can see
that (1.1) is reduced to

$-\triangle\tilde{u}+\tilde{u}-\kappa\lambda^{\frac{2}{p-1}\triangle(\tilde{u}^{2})\tilde{u}}=\tilde{u}^{p}$ $in$ $\mathbb{R}^{N}$
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Thus in the case $g(s)=s^{p}$ , we can describe the condition for the uniqueness in terms

of $\kappa\lambda^{\frac{2}{p-1}}$ . In the case $g(\mathcal{S})=e^{s}-1$ , such a scaling seems not to work well.

We prove Theorems 1.3-1.4 by applying the shooting method. However since
equation (1.1) is quasilinear, it seems to be difficult to consider (1.1) directly. To avoid

this difficulty, we adapt dual approach as in [1, 7, 12]. More precisely, we convert

our quasilinear equation into a semilinear equation by using a suitable translation $f.$

We will see that the set of positive radial solutions has one-to-one correspondence to

that of the semilinear problem. This enables us to apply uniqueness results [15, 16,

17] for semilinear elliptic equations. We will also see in Lemma 2.3 and Proposition

2.4 below, there is a strong relation between the linearized operator of the original

quasilinear equation and that of the converted semilinear equation. By this relation,

we have only to study the non-degeneracy for the semilinear problem.

2. Dual approach

In this section, we introduce a dual variational formulation of (1.1). Firstly we
study some properties of the unique solution of the ODE related to (1.1). As we will

see later, this unique solution gives one-to-one correspondence between (1.1) and a
semilinear elliptic problem (2.2) below.

Let $f(t)$ be a solution of the following ODE:

$f’(t)= \frac{1}{\sqrt{1+2\kappa f(t)^{2}}}$ on $[0, \infty)$ , $f(O)=0$ . (2.1)

For $t<0$ , we put $f(t)=-f(-t)$ . By the standard theory of ODE, we can see that
$f$ is uniquely determined, of class $C^{2}$ and invertible on $\mathbb{R}.$

From (2.1), we can show the following.

Lemma 2.1 [1]. $f(t)$ satisfies the following properties:

(i) $0\leq f(t)\leq t,$ $0<f’(t)\leq 1$ for all $t\geq$ O. $t\leq f(t)\leq 0,$ $0<f’(t)\leq 1$ for all
$t\leq 0.$

(ii) $f”(t)= \frac{1}{f(t)}(f’(t)^{4}-f’(t)^{2})$ for $t>0.$

(iii) $\frac{1}{2}f(t)\leq f’(t)t\leq f(t)$ for all $t\geq 0.$

(iv) $\lim_{sarrow 0}\underline{f(s)}\mathcal{S}=1.$

Using the function $f(t)$ , we consider the following semilinear elliptic problem,

which we call the dual problem:

$-\triangle v+\lambda f(\tau))f’(v)=g(f(v))f’(v)$ in $\mathbb{R}^{N}$ (2.2)

Then we have the following relation between (1.1) and (2.2).
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Proposition 2.2 [1]. $u\in X\cap C^{2}(\mathbb{R}^{N})$ is a positive radial solution of (1.1) if and

only if $v=f^{-1}(u)\in H^{1}\cap C^{2}(\mathbb{R}^{N})$ is a positive radial solution of (2.2).

Proposition 2.2 tells us that if (2.2) has a unique positive radial solution $\tilde{w}$ , then

$w=f(\tilde{w})$ is a unique positive radial solution of (1.1). Thus we have only to study

the uniqueness of the positive radial solution of the semilinear problem (2.2).

In order to study the non-degeneracy of the unique positive radial solution, we

need more detailed correspondence between (1.1) and (2.2).

To state the result, let $\tilde{L}$ : $H^{2}(\mathbb{R}^{N})arrow L^{2}(\mathbb{R}^{N})$ be a linearized operator around

$\tilde{w}$ of (2.2), which is defined by

$\tilde{L}(\psi):=-\triangle\psi+\lambda(f’(\tilde{w})^{2}+f(\tilde{w})f"(\tilde{w}))\psi$

$-(g’(f(\tilde{w}))f’(\tilde{w})^{2}+g(f(\tilde{w}))f"(\tilde{w}))\psi$ . (2.3)

Then we have the following.

Lemma 2.3. Suppose that $w\in H^{1}\cap C^{2}(\mathbb{R}^{N})$ is a positive solution of (1.1) and put

$\tilde{w}=f^{-1}(tl))$ . Let $L$ and $\tilde{L}$ : $H^{2}(\mathbb{R}^{N})arrow L^{2}(\mathbb{R}^{N})$ be the linearized operators defined

by (1.4) and (2.3) respectively. Finally for $\phi\in H^{2}(\mathbb{R}^{N})$ , we put $\psi=\sqrt{1+2\kappa w^{2}}\phi.$

Then it follows that

$\tilde{L}(\psi)=\frac{1}{\sqrt{1+2\kappa w^{2}}}L(\phi)$ . (2.4)

Proof. By direct computations, we have

$\nabla\psi=\frac{2\kappa w\phi}{\sqrt{1+2\kappa w^{2}}}\nabla w+\sqrt{1+2\kappa w^{2}}\nabla\phi,$

and

$\triangle\psi=\nabla(\frac{2\kappa w\phi}{\sqrt{1+2\kappa w^{2}}})\cdot\nabla w+\frac{2\kappa w\phi}{\sqrt{1+2\kappa w^{2}}}\triangle w$

$+\nabla(\sqrt{1+2\kappa w^{2}})\cdot\nabla\phi+\sqrt{1+2\kappa w^{2}}\triangle\phi$

$= \sqrt{1+2\kappa w^{2}}\triangle\phi+\frac{4\kappa w}{\sqrt{1+2\kappa w^{2}}}\nabla w\cdot\nabla\phi+\frac{2\kappa|\nabla w|^{2}}{(\sqrt{1+2\kappa w^{2}})^{3}}\phi+\frac{2\kappa w\triangle w}{\sqrt{1+2\kappa w^{2}}}\phi.$

Next by Lemma 2.1 (ii) and from (2.1), we get

$(f’( \tilde{w})^{2}+f(\tilde{w})f"(\tilde{w}))\psi=f’(\tilde{w})^{4}\psi=\frac{1}{(\sqrt{1+2\kappa w^{2}})^{3}}\phi,$
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and
$(g’(f(\tilde{w}))f’(\tilde{w})^{2}+g(f(\tilde{w}))f"(\tilde{w}))\psi$

$=g’(f( \tilde{w}))f’(\tilde{w})^{2}\psi+g(f(\tilde{w}))\frac{f’(\tilde{w})^{4}-f’(\tilde{w})^{2}}{f(\tilde{w})}\psi$

$= \frac{g’(f(\tilde{w}))}{\sqrt{1+2\kappa w^{2}}}\phi-\frac{2\kappa w}{(\sqrt{1+2\kappa w^{2}})^{3}}g(f(\tilde{w}))\phi.$

Thus from (1.1), (1.4) and (2.3), we obtain

$\tilde{L}(\psi)=-\triangle\psi+\lambda(f^{\prime 2}+ff")\psi-(g’(f(\tilde{w}))f^{\prime 2}+g(f(\tilde{w}))f")\psi$

$=- \sqrt{1+2\kappa w^{2}}\triangle\phi-\frac{4\kappa w}{\sqrt{1+2\kappa w^{2}}}\nabla w\cdot\nabla\phi-\frac{2\kappa|\nabla w|^{2}}{(\sqrt{1+2\kappa w^{2}})^{3}}\phi$

$- \frac{2\kappa w\triangle w}{\sqrt{1+2\kappa w^{2}}}\phi+\frac{\lambda}{(\sqrt{1+2\kappa w^{2}})^{3}}\phi-\frac{g’(w)}{\sqrt{1+2\kappa w^{2}}}\phi+\frac{2\kappa w}{(\sqrt{1+2\kappa w^{2}})^{3}}g(w)\phi$

$= \frac{1}{\sqrt{1+2\kappa w^{2}}}(-(1+2\kappa w^{2})\Delta\phi-4\kappa w\nablaw\cdot\nabla\phi-\frac{2\kappa|\nabla w|^{2}}{1+2\kappa w^{2}}\phi$

$-2 \kappa w\triangle w\phi+\frac{\lambda}{1+2\kappa w^{2}}\phi-g’(w)\phi+\frac{2\kappa w}{1+2\kappa w^{2}}g(w)\phi)$

$= \frac{1}{\sqrt{1+2\kappa w^{2}}}L(\phi)$

$+ \frac{2\kappa w}{(\sqrt{1+2\kappa w^{2}})^{3}}(\triangle w-\lambda w+2\kappa w|\nabla w|^{2}+2\kappa w^{2}\triangle w+g(w))\phi$

$= \frac{1}{\sqrt{1+2\kappa w^{2}}}L(\phi)$ .

This completes the proof. I

By Lemma 2.3, we obtain the following result on the linearized operators.

Proposition 2.4. Suppose that $w\in H^{1}\cap C^{2}(\mathbb{R}^{N})$ is a positive solution of (1.1) and

put $\tilde{w}=f^{-1}(w)$ . Then

(i) $\phi\in Ker(L)$ if and only if $\psi=\sqrt{1+2\kappa w^{2}}\phi\in Ker(\tilde{L})$ .

(ii) $w$ is non-degenerate if and only if $\tilde{w}$ is non-degenerate.

(iii) $Ker(L)=$ span { $\frac{\partial w}{\partial x_{1}},$

$\cdots,$
$\frac{\partial w}{\partial x_{N}}\}$ if and only if $Ker(\tilde{L})=$ span { $\frac{\partial\tilde{w}}{\partial x_{1}},$

$\cdots,$
$\frac{\partial\tilde{w}}{\partial x_{N}}\}$

Proof. (i) From (2.4), it follows that

$\tilde{L}(\psi)=0\Leftrightarrow L(\phi)=0.$

Thus the claim holds.
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(ii) The claim follows from (i).

(iii) We assume that $Ker(L)=$ span { $\frac{\partial w}{\partial x_{1}},$

$\cdots,$
$\frac{\partial w}{\partial x_{N}}\}$ . Suppose by contradiction

that span $\{\frac{\partial\tilde{w}}{\partial x_{1}},$

$\cdots,$
$\frac{\partial\tilde{w}}{\partial x_{N}}\}\neq Ker(\tilde{L})$ . Since $\frac{\partial\tilde{w}}{\partial x_{i}}\in Ker(\tilde{L})$ for $i=1,$ $\cdots,$

$N$ , it follows

that

span $\{\frac{\partial\tilde{w}}{\partial x_{1}},$

$\cdots,$
$\frac{\partial\tilde{w}}{\partial x_{N}}\}\subseteq Ker(\tilde{L})$ .

Thus there exists $\psi\not\equiv 0$ such that

$\psi\in Ker(\tilde{L})\backslash$ span { $\frac{\partial\tilde{w}}{\partial x_{1}},$

$\cdots,$
$\frac{\partial\tilde{w}}{\partial x_{N}}\}.$

Since $\psi\in Ker(\tilde{L})$ , we have $\tilde{L}(\psi)=0$ . Putting $\psi=\sqrt{1+2\kappa w^{2}}\phi$ , we obtain $L(\phi)=0$

by Lemma 2.3. Then by the assumption $Ker(L)=$ span { $\frac{\partial w}{\partial x_{1}},$

$\cdots,$
$\frac{\partial w}{\partial x_{N}}\}$ , there exist

$c_{1},$ $\cdots,$ $c_{N}$ such that

$\phi=c_{1}\frac{\partial w}{\partial x_{1}}+\cdots+c_{N}\frac{\partial w}{\partial x_{N}}.$

Now since $w=f(\tilde{w})$ , it follows that

$\frac{\partial w}{\partial x_{i}}=f’(\tilde{w})\frac{\partial\tilde{w}}{\partial x_{i}}=\frac{1}{\sqrt{1+2\kappa w^{2}}}\frac{\partial\tilde{w}}{\partial x_{i}}$ for $i=1,$ $\cdots,$
$N.$

Thus we have

$\psi=c_{1}\frac{\partial\tilde{w}}{\partial x_{1}}+\cdots+c_{N}\frac{\partial\tilde{w}}{\partial x_{N}}\in$ span { $\frac{\partial\tilde{w}}{\partial x_{1}},$

$\cdots,$
$\frac{\partial\tilde{w}}{\partial x_{N}}\}.$

This is a contradiction and hence $Ker(\tilde{L})=$ span { $\frac{\partial\tilde{w}}{\partial x_{1}},$

$\cdots,$
$\frac{\partial\tilde{w}}{\partial x_{N}}\}.$

We can show the converse in a similar way. I

By Proposition 2.4, we have only to study the non-degeneracy of the unique

positive radial solution of the semilinear problem (2.2).

3. Uniqueness of the positive radial solution

In this section, we study the uniqueness of the positive radial solutions (2.2). For

simplicity, we put

$h(s)=g(f(s))f’(s)-\lambda f(s)f’(\mathcal{S})$ for $s\geq 0$ . (3.1)

We distinguish the cases $N\geq 3$ and $N=2.$

3.1. Uniqueness for $N\geq 3$

In this case, we suppose that $g(s)=s^{p},$ $1<p< \frac{3N+2}{N-2}$ . We apply the following

uniqueness result due to [17].
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Proposition 3.1 [17]. Suppose that there exists $b>0$ such that

(i) $h$ is continuous on $(0, \infty)$ , $h(s)\leq 0$ on $(0, b] and h(\mathcal{S})>0$ for $\mathcal{S}>b.$

(ii) $g\in C^{1}(b, \infty)$ and $\frac{d}{d_{\mathcal{S}}}(\frac{sh’(s)}{h(s)})\leq 0$ on $(b, \infty)$ .

Then the semilinear problem:

$-\triangle u=h(u)$ $in$ $\mathbb{R}^{N},$ $u>0,$ $uarrow 0$ a$s$ $|x|arrow\infty,$ $u( O)=\max u(x)$

has at most one positive radial solution.

Now we can see that $h$ defined in (3.1) is of the class $C^{1}[0, \infty$ ) and

$h(s)=0\Leftrightarrow f^{p-1}(s)=\lambda\Leftrightarrow s=f^{-1}(\lambda^{\frac{1}{p-1}})$ .

We put $b:=f^{-1}(\lambda^{\frac{1}{p-1}})$ . Since $(s-b)g(s)=(s-b)ff’(f^{p-1}-\lambda)$ , we can see (i) of

Proposition 3.1 holds. From (2.1), we can also observe that

$f’(b)= \frac{1}{\sqrt{1+2\kappa\lambda^{\frac{2}{p-1}}}}.$

Since $f’(s)arrow 0$ as $sarrow\infty$ , this implies

$barrow\infty$ if and only if $\kappa\lambda^{\frac{2}{p-1}}arrow\infty$ . (3.2)

Lemma 3.2 [1]. There exists $c_{0}=c_{0}(p)>0$ such that if $\kappa\lambda^{\frac{2}{p-1}}\geq c_{0}$ , then $h$ satisfies

(ii) of Proposition 3.1.

3.2. Uniqueness for $N=2$

In this case, we suppose that $g(s)=e^{s}-1$ . We apply the following uniqueness result

due to Pucci-Serrin [15, 16].

Proposition 3.3 $([15, 16$ Suppose $that the$ function $h(s)$ satisfies the following

assumptions:

(i) $h$ is continuous on $[0, \infty$ ) and $h(O)=0.$

(ii) $h$ is continuously differentiable on $(0, \infty)$ .

(iii) There exists $s_{0}>0$ such that $h(\mathcal{S}_{0})=0$ and

$\{\begin{array}{l}h(s)<0 for 0<s<s_{0},h(s)>0 for s_{0}<s<\infty.\end{array}$
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(iv) $\frac{d}{ds}(\frac{H(s)}{h(s)})\geq 0$ for $s>0,$ $s\neq s_{0}$ . Here $H(s)= \int_{0}^{s}h(t)dt.$

Then the semilinear problem:

$-\triangle u=h(u)in\mathbb{R}^{2},$ $u>0,$ $u(x)arrow 0$ as $|x|arrow\infty,$ $u( O)=\max u(x)$

has at most one positive radial solution.

Now we can see that the function $h(s)$ defined in (3.1) satisfies (i) and (ii).

Moreover since $f’(s)\neq 0$ for all $s>0$ , there exists a unique $s_{0}>0$ such that

$h(\mathcal{S}_{0})=(e^{f(s_{0})}-1-\lambda f(\mathcal{S}_{0}))f’(s_{0})=0,$

$h(s)<0$ for $0<\mathcal{S}<s_{0}$ and $h(s)>0$ for $s_{0}<\mathcal{S}<\infty.$

Thus it remains to show that (iv) holds.

Lemma 3.4 [3]. There exists $\lambda^{*}>0$ independent of $\kappa>0$ such that for any $\lambda>\lambda^{*}$

and $\kappa>0$ , it follow that

$\frac{d}{d_{\mathcal{S}}}(\frac{H(s)}{h(s)})\geq 0$ for all $s>0,$ $s\neq s_{0}.$

By Theorem 1.1, Propositions 3.1, 3.3 and Lemmas 3.2, 3.4, we obtain the

uniqueness result.

Proposition 3.5.

(i) Suppose $N\geq 3,$ $g(s)=s^{p}$ and $1<p< \frac{3N+2}{N-2}$ . There exists $c_{0}=c_{0}(p)>0$ such

that if $\kappa\lambda^{\frac{2}{p-1}}\geq c_{0}$ , then (2.2) has a unique positive radial solution.

(ii) Suppose $N=2,$ $\kappa>0$ and $g(s)=e^{s}-1-s$ . There exists $\lambda^{*}>0$ independent

of $\kappa$ such that if $\lambda\geq\lambda^{*}$ , then (2.2) has a unique positive radial solution.

4. Non-degeneracy of the unique positive radial solution

In this section, we show that the unique positive radial solution of (2.2) is non-

degenerate. We argue as in [9]. To this aim, we study the structure of radial solutions

of the following ODE:

$\{\begin{array}{l}v"+\frac{N-1}{r}v’+\hat{g}(v)=0, r\in(0, \infty) ,v(0)=d>0.\end{array}$ (4.1)
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Here we denote $’= \frac{d}{dr}$ and

$\hat{g}(s)=g(f(s))_{+}f’(s)-(\lambda-1)f(s)f’(s)$ . (4.2)

Then we can see that for each $d>0$ , (4.1) has a solution $v(r, d)$ .

As in [11], we classify each $d>0$ as follows:

$N=$ {$d>0$ ; there exists $r_{0}=r_{0}(d)\in(0, \infty)$ such that $v(r_{0}, d)=0$}.

$G=\{d>0;v(r, d)>0$ for all $r>0$ and $\lim_{rarrow\infty}v(r, d)=0\}.$

$P=\{d>0;v(r, d)>0$ for all $r>0$ but $\lim_{rarrow}\inf_{\infty}v(r, d)>0\}.$

First we prove the following properties on $N.$

Lemma 4.1. $N$ satisfies the following properties:

(i) There exists $\hat{d}>0$ such that $v(r,\hat{d})$ has $a$ finite zero. Especially it follows that

$N\neq\emptyset.$

(ii) $N$ is an open set.

(iii) For $d\in N$ , it follows that $v(r, d)arrow-\infty$ as $rarrow\infty.$

Proof. (i) Let $R>0$ be arbitrarily given. We consider the auxiliary problem:

$\{\begin{array}{ll}-\triangle v=\hat{g}(v) in B_{R}(0) .v>0 in B_{R}(0) .v=0 on \partial B_{R}(0) .\end{array}$ (4.3)

Then we can show that (4.3) has a positive radial solution $v_{R}(x)$ . Putting $\hat{d}=v_{R}(0)$ ,

we obtain $v(R,\hat{d})=0$ for a solution of (4.1).

(ii) The claim follows from the continuous dependence on the initial value. (see

[11] Lemma 13, P. 253.)

(iii) For $d>0$ , let $r_{0}=r_{0}(d)>0$ be the first zero of $v(r)=v(r, d)$ . Then we

have $\{)’(r_{0})<0.$

Suppose that there exists $r_{1}>r_{0}$ such that $v(r_{1})<0$ and $v’(r_{1})=0$ . Then from

Lemma 2.1 (i), (4.1) and (4.2), we have

$v”(r_{1})=-\hat{g}(v(r_{1}))=(\lambda-1)f(v(r_{1}))f’(v(r_{1}))<0.$

Thus $v(r)$ can not take a negative local minimum for $r>r_{0}$ . This implies that $v(r)$

does not converge to zero as $rarrow\infty$ and $v(r)$ does not oscillate at infinity.

Next we suppose by contradiction that there exists $c<0$ such that $v(r)arrow c<0$

as $rarrow\infty$ . Then we have $v’(r)arrow 0$ as $rarrow\infty$ . Since $\hat{g}(s)>0$ for $s<0$ , it

follows from (4.1) that $v”(r)<M<0$ for sufficiently large $r$ and some $M<0$ . This

contradicts to the fact $v(r)arrow c<0$ as $rarrow\infty$ . Thus we obtain $v(r)arrow-\infty$ as

$rarrow\infty$ . I

Next we show the following result on $P.$
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Lemma 4.2. $P$ satisfies the following properties:

(i) Let $s_{1}>0$ be a unique zero of $\hat{G}(s)$ , where $\hat{G}(s)=\int_{0}^{s}\hat{g}(t)dt$ . Then for any

$d\leq s_{1}$ , it follows that $d\in P$ . Especially we have $(0, s_{1}$ ] $\subset P.$

(ii) $P$ is an open set.

Proof. (i) We define the energy $E$ by

$E(r)=E(v(r, d)) := \frac{1}{2}(v’(r))^{2}+\hat{G}(v(r))$ , (4.4)

Then from (4.1), we have

$E’(r)=- \frac{N-1}{r}(v’(r))^{2}<0.$

Now we take $d\leq s_{1}$ . Then it follows from $v(O)=d$ and $v’(O)=0$ that $E(O)=$

$\hat{G}(d)$ . Since $\hat{G}(s)\leq 0$ for $0\leq s\leq s_{1}$ , we get

$E(r)<E(O)\leq 0$ for all $r>0$ . (4.5)

Next we prove that $s_{1}\not\in N\cup G$ . First we show that $v(r, s_{1})$ does not have a finite

zero. To this aim, suppose by contradiction that $v(r_{0})=0$ for some $r_{0}>$ O. Then

from $\hat{G}(0)=0$ and (4.4), it follows that $E(r_{0})= \frac{1}{2}(v’(r_{0}))^{2}>0$ . This contradicts to

(4.5).

Finally we show that $v(r, s_{1})$ does not converges to zero as $rarrow\infty$ . If $v(r)arrow 0$

as $rarrow\infty$ , then $v(r)$ decays exponentially up to the first derivative. Thus it follows

that $E(r)arrow 0$ as $rarrow\infty$ . This is a contradiction.

(ii) By the continuous dependence of the initial value, the conclusion holds. I

Now by Proposition 3.5, we know that the positive radial solution of (2.2) is

unique. This implies that there exists $d^{*}>0$ such that $G=\{d^{*}\}$ . Moreover by the

proof of Lemma 4.2, we can see that $s_{1}<d^{*}$ Since $N$ ans $P$ are open, we obtain the

following structure.

Proposition 4.3. There exists a unique $d^{*}>0$ such that

$N=(d^{*}, \infty)$ , $G=\{d^{*}\}$ and $P=(0, d^{*})$ .

In order to prove the non-degeneracy, we define the Pohozaev value $P$ by

$P(r)=P(r;v(r, d)) := \frac{r^{N}}{2}(v’(r))^{2}+r^{N}\hat{G}(v(r))$ .

Then from (4.1), we obtain the Pohozaev type identity:

$\frac{d}{dr}P(r)=-\frac{N-2}{2}r^{N-1}(v’(r))^{2}+Nr^{N-1}\hat{G}(v(r))$ . (4.6)

Moreover we have the following.
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Lemma 4.4. It follows that

$\lim_{rarrow\infty}P(r;v(r, d))=\{\begin{array}{ll}0 for d=d^{*}+\infty for d>d^{*}\end{array}$

Proof. If $d=d^{*}$ , then $v(r, d^{*})$ and $v’(r, d^{*})$ decay exponentially as $rarrow\infty$ . Thus we

can see that the claim holds.

For $d>d^{*}$ , we have $v(r, d)arrow-\infty$ as $rarrow\infty$ by Lemma 4.1 (iii) and Proposition

4.3. From (4.2), it follows that $\hat{G}(s)=\frac{\lambda-1}{2}f(s)^{2}$ for $s<0$ and hence $\hat{G}(s)arrow+\infty$ as

$sarrow-\infty$ . Thus we have $P(r;v(r, d))arrow+\infty$ for $d>d^{*}$ . 1

Next we consider the linearized equation of (4.1):

$\{\begin{array}{l}\phi"+\underline{N-1}_{\phi’}+\hat{g}’(v)\phi=0, r\in(0, \infty) .r\phi(0)=1, \phi’(0)=0.\end{array}$ (4.7)

Since $\frac{\partial v}{\partial d}(r, d^{*})$ satisfies (4.7), $\frac{\partial v}{\partial d}$ can be written by a constant multiple of $\phi$ . Moreover

we have the following.

Proposition 4.5. $\frac{\partial v}{\partial d}(r, d^{*})$ does not belong to $H^{1}(\mathbb{R}^{N})$ .

Proof. Suppose by contradiction that $\frac{\partial v}{\partial d}(r, d^{*})\in H^{1}(\mathbb{R}^{N})$ .

Now from (4.6), we have

$P(r;v(r, d))=- \frac{N-2}{2}\int_{0}^{r}s^{N-1}(v’(s, d))^{2}ds+N\int_{0}^{r}s^{N-1}\hat{G}(v(s, d))ds.$

Differentiating it with respect to $d$ , we get

$\frac{\partial}{\partial d}P(r;v(r, d))=-(N-2)\int_{0}^{r}s^{N-1}v’(\frac{\partial v}{\partial d})’d_{\mathcal{S}}+N\int_{0}^{r}s^{N-1}\hat{g}(v)\frac{\partial v}{\partial d}ds$

$=[-(N-2)s^{N-1}v’(s, d) \frac{\partial v}{\partial d}(s, d)]_{0}^{r}$

$+(N-2) \int_{0}^{r}((N-1)\mathcal{S}N-2_{v’}+\mathcal{S}N-1_{v")\frac{\partial v}{\partial d}ds}$

$+N \int_{0}^{r}\mathcal{S}^{N-1_{\hat{g}(v)\frac{\partial v}{\partial d}ds}}.$

From (4.1) and $v’(O)=0$ , it follows that

$\frac{\partial}{\partial d}P(r;v(r, d))=-(N-2)r^{N-1}v’(r, d)\frac{\partial v}{\partial d}(r, d)+2\int_{0}^{r}s^{N-1}\hat{g}(v)\frac{\partial v}{\partial d}ds.$
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Especially taking $d=d^{*}$ , we obtain

$\frac{\partial}{\partial d}P(r;v(r, d))|_{d=d^{*}}=-(N-2)r^{N-1}v’(r, d^{*})\frac{\partial v}{\partial d}(r, d^{*})$

$+2 \int_{0}^{r_{\mathcal{S}^{N-1}}}\hat{g}(v)\frac{\partial v}{\partial d}(s, d^{*})ds$ . (4.8)

Moreover from (4.1) and (4.7), we also have

$(r^{N}v’( \frac{\partial v}{\partial d})’+r^{N}\hat{g}(v)\frac{\partial v}{\partial d})’=r^{N}(\frac{\partial v}{\partial d})’(v"+\frac{N-1}{r}v’+\hat{g}(v))$

$+r^{N}v’(( \frac{\partial v}{\partial d})"+\frac{N-1}{r}(\frac{\partial v}{\partial d})’+\hat{g}’(v)\frac{\partial v}{\partial d})$

$-(N-2)r^{N-1}v’( \frac{\partial v}{\partial d})’+Nr^{N-1}\hat{g}(v)\frac{\partial v}{\partial d}$

$=-(N-2)r^{N-1}v’( \frac{\partial v}{\partial d})’+Nr^{N-1}\hat{g}(v)\frac{\partial v}{\partial d}.$

Thus we obtain

$\frac{\partial}{\partial d}P(r;v(r, d))|_{d=d^{*}}=r^{N}v’(\frac{\partial v}{\partial d})’+r^{N}\hat{g}(v)\frac{\partial v}{\partial d}$ . (4.9)

Next by the assumption, it follows that $r \frac{N-1}{2}\frac{\partial v}{\partial d},$
$r \frac{N-1}{2}$

$( \frac{\partial v}{\partial d})’\in L^{2}(0, \infty)$ . Since $v(r, d^{*})$

and $v’(r, d^{*})$ decay exponentially as $rarrow\infty$ , we have from (4.9) that

$\lim_{rarrow\infty}\frac{\partial}{\partial d}P(r;v(r, d))|_{d=d^{*}}=0$ . (4.10)

Next let $\phi$ be a solution of (4.7). We claim that $\phi$ has a definite sign near infinity.

First we observe that $\hat{g}’(0)=-(\lambda-1)<$ O. Since $v(r, d^{*})$ decays exponentially as
$rarrow\infty$ , there exists $r_{1}>0$ such that $\hat{g}’(v(r, d^{*}))<0$ for $r>r_{1}.$

Next we suppose that there exists $r_{2}>r_{1}$ such that $\phi(r_{1})>0$ and $\phi’(r_{1})=0.$

Then from (4.7), we have

$\phi"(r_{1})=-\frac{N-1}{r_{1}}\phi’(r_{1})-\hat{g}’(v)\phi(r_{1})>0.$

This means that $\phi$ can not take a positive local maximum for $r>r_{1}$ . Similarly we
can see that $\phi$ can not take a negative local minimum. Thus $\phi$ has a constant sign

for $r>r_{1}$ . Hence it follows that either $\frac{\partial v}{\partial d}(r, d^{*})>0$ or $\frac{\partial v}{\partial d}(r, d^{*})<0$ for $r>r_{1}.$

If $\frac{\partial v}{\partial d}(r, d^{*})>0$ for $r>r_{1}$ , then $v(r, d)$ is increasing with respect to $d$ near $d^{*}.$

Since $v(r, d^{*})>0$ , it follows that $v(r, d)>0$ for $d>d^{*}$ and $r>r_{1}$ . By Lemma 4.1

(iii) and Proposition 4.3, this is a contradiction.
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Finally suppose that $\frac{\partial v}{\partial d}(r, d^{*})<0$ for $r>r_{1}$ . Now from (4.8) and (4.10) and by

the exponential decay of $v’$ , we have

$0= \lim_{rarrow\infty}\frac{\partial}{\partial d}P(r;v)|_{d=d^{*}}=2\int_{0}^{\infty}s^{N-1}\hat{g}(v)\frac{\partial v}{\partial d}ds.$

On the other hand since $\hat{g}(v)<0$ and $\frac{\partial v}{\partial d}<0$ for $r>r_{1}$ , we also have

$2 \int_{r}^{\infty}s^{N-1}\hat{g}(v)\frac{\partial v}{\partial d}ds>0.$

Thus from $v’<0$ and $\frac{\partial v}{\partial d}<0$ , it follows that

$\frac{\partial}{\partial d}P(r;v)|_{d=d^{*}}=-(N-2)r^{N-1}v’\frac{\partial v}{\partial d}+2\int_{0}^{r}s^{N-1}\hat{g}(v)\frac{\partial v}{\partial d}ds<0$ for $r>r_{1}.$

This implies that $P(r;v(r, d))$ is decreasing with respect to $d$ near $d^{*}$ Thus for $r>r_{1}$

and $d>d^{*}$ , we obtain

$P(r;v(r, d^{*}))>P(r;v(r, d$

However by Lemma 4.4, we know that $P(r;v(r, d^{*}))arrow 0$ and $P(r;v(r, d))arrow+\infty$ for

$d>d^{*}$ as $rarrow\infty$ . This is a contradiction. I

Proposition 4.5 implies that the unique positive radial solution $\tilde{w}$ of (2.2) is

non-degenerate in $H_{rad}^{1}(\mathbb{R}^{N})$ . Finally we show the following result on the linearized

operator $\tilde{L}=-\triangle+g’(\tilde{w})$ of (2.2).

Proposition 4.6. The kernel of $\tilde{L}$ is given by

$Ker(\tilde{L})=$ span { $\frac{\partial\tilde{w}}{\partial x_{1}},$

$\cdots,$
$\frac{\partial\tilde{w}}{\partial x_{N}}\}.$

Proof. First we observe that $span\{\frac{\partial w^{-}}{\partial x_{1}}, \cdots, \frac{\partial\tilde{w}}{\partial x_{N}}\}\subset Ker(\tilde{L})$ . In fact, since $\tilde{w}$ is a

solution of (2.2), $\frac{\partial\tilde{w}}{\partial x_{i}}$ satisfies

$- \triangle(\frac{\partial\tilde{w}}{\partial x_{i}})+g’(\tilde{w})\frac{\partial\tilde{w}}{\partial x_{i}}=0$ in $\mathbb{R}^{N},$ $i=1,$ $\cdots,$
$N.$

Moreover by the elliptic regularity theory, we can see that $\frac{\partial\tilde{w}}{\partial x_{i}}\in H^{2}(\mathbb{R}^{N})$ . Thus it

follows that $span\{\frac{\partial\tilde{w}}{\partial x_{1}}, \cdots, \frac{\partial\tilde{w}}{\partial x_{N}}\}\subset Ker(\tilde{L})$ .

To complete the proof, it suffices to show that $\dim Ker(\tilde{L})\leq N$ . To this aim,

we apply the argument in [13, 18]. Suppose that $\phi\in Ker(\tilde{L})$ , that is, $\phi\in H^{2}(\mathbb{R}^{N})$

and it satisfies
$-\triangle\phi+g’(\tilde{w})\phi=0$ in $\mathbb{R}^{N}$
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Then by the elliptic regularity theory, it follows that $\phi\in C^{2}(\mathbb{R}^{N})$ .

Now let $\mu_{i}$ and $\psi_{i}(\theta)$ with $\theta\in S^{N-1}$ be the eigenvalues and eigenfunctions of

the Laplace-Beltrami operator on $S^{N-1}$ , that is,

$-\triangle_{\theta}\psi_{i}=\mu_{i}\psi_{i}.$

Then it follows that

$0=\mu_{0}<\mu_{1}=\cdots=\mu_{N}=(N-1)<\mu_{N+1}\cdots$

and $\{\psi_{i}\}$ forms an orthonormal basis of $L^{2}(S^{N-1})$ .

For $\phi\in Ker(\tilde{L})$ , we define

$\phi_{i}(r):=\int_{S^{N-1}}\phi(r, \theta)\psi_{i}(\theta)d\theta.$

Then we have

$\phi_{i}"+\frac{N-1}{r}\phi_{i}’+(g’(\tilde{w})-\frac{\mu_{i}}{r^{2}})\phi_{i}=0, \phi_{i}’(0)=0$ . (4.11)

Moreover $\phi\in Ker(\tilde{L})$ can be written as follows.

$\phi(x)=\phi(r, \theta)=\sum_{i=0}^{\infty}\phi_{i}(r)\psi_{i}(\theta)$ . (4.12)

When $i=0$ , we have from $\mu_{0}=0$ that

$\phi_{0}"+\frac{N-1}{r}\phi_{0}’+g’(\tilde{w})\phi_{0}=0.$

Then by Proposition 4.5, it follows that $\phi_{0}\equiv 0.$

Next we show that $\phi_{i}\equiv 0$ for $i\geq N+1$ . If $\phi_{i}\not\equiv 0$ , then $\phi_{i}(0)\neq 0$ by the

uniqueness of the ODE (4.11). Thus we may assume that $\phi_{i}(0)>0$ . Let $r_{i}\in(0, \infty$ ]

be such that $\phi_{i}(r)>0$ on $[0, r_{i}$ ) and $\phi_{i}(r_{i})=0.$

First we suppose that $r_{i}<\infty$ . Multiplying (4.11) by $r^{N-1}\tilde{w}$ ‘ and integrating it

over $[0, r_{i}]$ , we get

$\int_{0}^{r_{i}}r^{N-1}\tilde{w}’\phi_{i}"+(N-1)r^{N-2}\tilde{w}’\phi_{i}’+r^{N-1}g’(\tilde{w})\tilde{w}’\phi_{i}-\mu_{i}r^{N-3}\tilde{w}’\phi_{i}dr=0.$

By the integration by parts, it follows that

$r_{i}^{N-1} \tilde{w}’(r_{i})\phi_{i}’(r_{i})-\int_{0}^{r_{i}}r^{N-1}\tilde{w}"\phi_{i}’dr+\int_{0}^{r_{i}}r^{N-1}g’(\tilde{w})\tilde{w}’\phi_{i}-\mu_{i}r^{N-3}\tilde{w}’\phi_{i}dr=0.$
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By the integration by parts again and combined with $\phi(r_{i})=0$ , we obtain

$r_{i}^{N-1} \tilde{w}’(r_{i})\phi_{i}’(r_{i})+\int_{0}^{r_{i}}(r^{N-1}\tilde{w}"’+(N-1)r^{N-2}\tilde{w}"+r^{N-1}g’(\tilde{w})\tilde{w}’)\phi_{i}dr$

$- \int_{0}^{r_{i}}\mu_{i}r^{N-3}\tilde{w}’\phi_{i}dr=0.$

Moreover since $\tilde{w}$ satisfies (4.1), we have

$\tilde{w} +\frac{N-1}{r}\tilde{w}"-\frac{N-1}{r^{2}}\tilde{w}’+g’(\tilde{w})\tilde{w}’=0.$

Thus we obtain

$r_{i}^{N-1}w’(r_{i}) \phi_{i}’(r_{i})+(N-1-\mu_{i})\int_{0}^{r_{i}}r^{N-3}\tilde{w}’\phi_{i}dr=0.$

Since $\tilde{w}’(r_{i})<0$ and $\phi_{i}’(r_{i})<0$ , it follows that

$(N-1- \mu_{i})\int_{0}^{r_{i}}r^{N-3}\tilde{w}’\phi_{i}dr<0.$

On the other hand since $\phi_{i}(r)>0$ on $(0, r_{i})$ and $\mu_{i}>N-1$ for $i\geq N+1$ , we also

have

$0<(N-1- \mu_{i})\int_{0}^{r_{i}}r^{N-3}\tilde{w}’\phi_{i}$ $dr$ .

This is a contradiction.

Next suppose that $r_{i}=+\infty$ . Since $\tilde{w}’(r)$ and $\tilde{w}"(r)$ decay exponentially as

$rarrow\infty$ , we have

$(N-1- \mu_{i})\int_{0}^{\infty}r^{N-3}\tilde{w}’\phi_{i}dr=0.$

This implies again that $\phi_{i}\equiv 0$ for $i\geq N+1.$

Now since $\phi_{0}\equiv 0$ and $\phi_{i}\equiv 0$ for $i\geq N+1$ , we have from (4.12) that

$\phi(x)=\phi(r, \theta)=\sum_{i=1}^{N}c_{i}\phi_{i}(r)\phi_{i}(\theta)$ .

This means that $\dim Ker(\tilde{L})\leq N$ and hence $Ker(\tilde{L})=$ span { $\frac{\partial\tilde{w}}{\partial x_{1}},$

$\cdots,$
$\frac{\partial\tilde{w}}{\partial x_{N}}\}$ . I

5. Concluding remarks and open questions

In this note, we review recent results on the uniqueness and the non-degeneracy of

positive radial solutions of (1.1).
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When $N\geq 3$ , the exponent $\frac{3N+2}{N-2}$ appears naturally by applying the embedding
$H^{1}(\mathbb{R}^{N})\mapsto L^{\frac{2N}{N-2}}(\mathbb{R}^{N})$ to $u^{2}$ . Moreover we can see that $p= \frac{3N+2}{N-2}$ is actually the

critical exponent for the existence of nontrivial solutions. (See [1] for the detail.) As

we have shown in Theorems 1.3-1.4, the uniqueness holds for $1<p< \frac{3N+2}{N-2}$ . This

implies that $p$ can be $H^{1}$ -supercritical.

On the other hand when $N=2$ , we have shown the uniqueness only for the case

$g(s)=e^{s}-1$ . By applying the Trudinger-Moser inequality to $u^{2}$ , we can see that $g(s)$

may have a faster growth like $g(s)\sim e^{c_{0}s^{4}}$ for some $c_{0}>0$ . (See [14] for the detail.)

Thus it is natural to ask ”’ Can we show the uniqueness for the case $g(s)\sim e^{c_{0}s^{4}}$ ?

Unfortunately, we have no result even if $g(s)=e^{s^{2}}$
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