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1 Introduction

Let $p\in \mathbb{R}$ and $p>1$ . We study a Neumann problem for a second-order differential
equation,

$u”+\lambda(-u+u^{p})=0$ in $(-1,1)$ , $u’(\pm 1)=0$ , (1)

where $\lambda>0$ is a constant and represents a control parameter. Eq. (1) has a trivial
solution $u=1.$

We often encounter (1) in several situations. As an example, we consider the Keller-
Segel model for chemotaxis aggregation,

$u_{t}=D_{1}u_{xx}-c(u(\log v)_{x})_{x},$ $v_{t}=D_{2}v_{xx}-av-bu$ in $(-1,1)$ ,
(2)

$u_{x},$ $v_{x}=0$ at $x=\pm 1,$

where $D_{1},$ $D_{2},$ $a,$ $b,$ $c$ are constants. The stationary problem for (2) becomes

$D_{2}v_{xx}-av-b\mu v^{c/D_{1}}=0, v_{x}=0atx=\pm 1$ (3)

since $D_{1}u_{x}-cu(\log v)_{x}=0$ by the first equation, so that $u=\mu v^{c/D_{1}}$ for some constant $\mu.$

Eq. (3) is transformed to (1). Another example is related to the Gierer-Meinhardt model
for biological pattern formations,

$u_{t}=D_{1}u_{xx}- \mu_{1}u+\rho_{1}(c_{1}\frac{u^{p_{1}}}{v^{q_{1}}}+\rho_{0})$ , $v_{t}=D_{2}v_{xx}- \mu_{2}v+\rho_{2}c_{2}\frac{u^{p_{2}}}{v^{q_{2}}}$ in $(-1,1)$ ,
(4)

$u_{x},$ $v_{x}=0$ at $x=\pm 1,$
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$\frac{\pi^{2}}{p-1}$

Figure 1: Bifurcation diagram for the Neumann problem (1)

where $D_{i},p_{i},$
$q_{i},$ $\mu_{i},$ $\rho_{i},$ $i=1$ , 2, are constants. As $D_{2}arrow\infty,$ $v_{xx}arrow 0$ so that $v_{x}arrow 0$ by the

boundary conditions. Hence, in this limit, we have

$\int_{0}^{1}(\mu_{2}v-\rho_{2}c_{2}\frac{u^{p_{2}}}{v^{q_{2}}})dx=0,$

so that

$v^{q_{2}+1}= \frac{\rho_{2}c_{2}}{\mu_{2}}\int_{0}^{1}u^{p_{2}}dx$

by regarding?1 as a constant. Thus, for the stationary problem for (4), we obtain the
shadow system,

$D_{1}u_{xx}- \mu_{1}u+\rho_{1}(c_{1}\frac{u^{p_{1}}}{\xi^{q_{1}}}+\rho_{0})=0, u_{x}=0atx=\pm 1,$

which is transformed to (1) like (3).
The following theorem for (1) was proved for $p\in \mathbb{Z}$ in [1] and for $p\in \mathbb{R}\backslash \mathbb{Z}$ in [2].

Theorem 1. The branch of interior single-peak solutions emanates from $(\lambda, u)=(\pi^{2}/(p-$

1), 1) and the bifurcation is a supercritical pitchfork one. The branch is a graph of $\lambda$ and
unbounded in $\lambda$ . Moreover, each solution of the branch is non-degenerate and the Morse
index is two.

Here the Morse index is the number of strictly positive eigenvalues for the associated
linear problem

$\phi"+\lambda(-1+pu_{\lambda}(y)^{p-1})\phi=\mu\phi$ in $(-1,1)$ , $\phi’(\pm 1)=0,$

where $u_{\lambda}(y)$ represents a solution of the Neumann problem. The last part of Theorem 1
is obvious from the other parts since $\mu=\lambda(p-1)$ , $\lambda(p-1)-\frac{1}{4}\pi^{2}$ are positive eigenvalues
of the linear problem for the trivial solution $u=1$ when $\lambda<\pi^{2}/(p-1)$ , and so is
$\mu=\lambda(p-1)-\pi^{2}$ when $\lambda>\pi^{2}/(p-1)$ . The bifurcation diagram stated in Theorem 1 is
sketched in Fig. 1. The upper branch represents interior single-peak solutions.

In the rest of this article we outline the proof of Theorem 1.
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Figure 2: One-parameter family of periodic orbits in (5)

2 Monotonicity of the period functions

Using a transformation $x\mapsto x/\sqrt{\lambda}$ , we rewrite (1) as

$u”-u+u^{p}=0$ . (5)

For any $u_{1}\in(0,1)$ Eq. (5) has a periodic solution satisfying $(u(O), u’(O))=(u_{1},0)$ . Let
$T(u_{1})$ denote its period and let $u_{2}\in(1, u_{0})$ satisfy $F(u_{2})=F(u_{1})$ , where

$F(u)=- \frac{1}{2}u^{2}+\frac{1}{p+1}u^{p+1}+\frac{p-1}{2(p+1)}, u_{0}=p-\sqrt[1]{\frac{1}{2}(p+1)}.$

Then we have $(u( \frac{1}{2}T(u_{1})), u’(\frac{1}{2}T(u_{1})))=(u_{2},0)$ . Note that

$F(u_{0})=F(0)= \frac{p-1}{2(p+1)}.$

As shown in Fig. 2, there exists a one-parameter family of periodic orbits in (5).

The periodic solution $u(x)$ in (5) gives an interior single-peak solution in the Neumann
problem (1) when $\frac{1}{2}T(u_{1})=2\sqrt{\lambda}$ . Hence, except the last part, Theorem 1 immediately

follows from the following theorem.

Theorem 2. The period function $T(u_{1})$ in (5) is strictly decreasing on $(0,1)$ .

To prove this theorem, we use a result of Chicone [3]. We first recall his result. Let
$\xi_{1}<0<\xi_{2}$ and let $I=(\xi_{1}, \xi_{2})\subset \mathbb{R}$ . Suppose that $V$ : $Iarrow \mathbb{R}$ is a $C^{3}$ function satisfying
$V(\xi_{1})=V(\xi_{2})$ and having a minimum $V(O)=0$ as its only extremum. Consider second-
order differential equations of the form

$\xi"+\frac{dV}{d\xi}(\xi)=0$ . (6)

Eq. (6) has the trivial solution $\xi=0$ , and any solution $\xi=\xi(t)$ of (6) with $\xi(0)\in I\backslash \{O\}$

and $\xi’(0)=0$ is periodic. Let $T(h)$ be its period with $h=V(\xi(0))$ , and define a function
$\varphi(\xi)$ as

$\varphi(\xi)=\frac{V(\xi)}{V’(\xi)^{2}}$ . (7)

Chicone [3] essentially proved the following result.
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Proposition 3 (Chicone [3]). Suppose that

$\varphi"(\xi)\geq 0 for\xi\in I\backslash \{O\}$ (8)

and the inequality holds in a punctured neighborhood of $\xi=$ O. Then $T(h)$ is strictly
increasing on $(0, h_{0})$ , where $h_{0}=V(\xi_{1})(=V(\xi_{2}))$ .

3 Proof of Theorem 2

Using a transformation $u=\xi+1$ we rewrite (5) as the form of (6) with $\xi_{1}=-1,$

$\xi_{2}=u_{0}-1>0$ and $V(\xi)=F(\xi+1)$ . We compute (7) as

$\varphi"(\xi)=\frac{(p-1)g(\xi+1)}{(p+1)(\xi+1)^{4}((\xi+1)^{p-1}-1)^{4}}$ , (9)

where

$g(u)=pu^{3p-1}-(2p^{2}-3p+3)u^{2p}+p(2p+1)u^{2p-2}$

$-p(p-2)u^{p+1}+p(p-7)u^{p-1}+3.$

We begin with the case of $p\in \mathbb{Z}$ with $p>1$ . We easily see that the function $g(u)$ is
divisible by $(u-1)^{4}$ and define $a$ $(3p-5)$-th order polynomial $\overline{9}(u)=g(u)/(u-1)^{4}$ . After
some highly nontrivial computations, we prove the following (see [1] for the proof).

Lemma 4. All coefficients of $g(u)$ are positive.

From Lemma 4 and (9) we see that

$\varphi"(u-1)=\frac{(p-1)\overline{g}(u)}{(p+1)u^{4}(\sum_{j=0}^{p-2}u^{j})^{4}}>0$
for $u\in(0, u_{0})$ ,

i.e., condition (8) holds.
We next assume that $p\in \mathbb{Q}\backslash \mathbb{Z}$ with $p>1$ . Let $p=m/n>1$ , where $m,$ $n$ are relatively

prime integers and $n\geq 2$ . We set $v=u^{1/n},$ $k=m-n>0$ and $\psi(v)=n^{2}g(v^{n})$ to have

$\psi(c))=n(n+k)v^{2n+3k}-(2k^{2}+kn+2n^{2})v^{2n+2k}+(n-k)(n+k)v^{2n+k}$

$+(n+k)(3n+2k)v^{2k}-(n+k)(6n-k)v^{k}+3n^{2}$

We easily see that the polynomial $\psi(v)$ is factorized as $\psi(v)=(v-1)^{4}\overline{\psi}(v)$ , where $\overline{\psi}(v)$

is $a$ $(2n+3k-4)$-th order polynomial. We also prove the following (see [2] for the proof).

Lemma 5. All coeficients of $\overline{\psi}(v)$ are positive.

From Lemma 5 and (9) we see that

$\varphi"(\tau)^{n}-1)=\frac{(p-1)\overline{\psi}(v)}{(p+1)n^{2}v^{4n}(\sum_{j=0}^{k-1}v^{j})^{4}}>0$
for

$v\in(0, \sqrt[n]{u_{0}})$
.

i.e., condition (8) holds again.
We turn to the case of $p\in \mathbb{R}\backslash \mathbb{Q}$ with $p>1$ . Take a sequence $\{p_{j}\}_{j=0}^{\infty}$ such that $p_{j}\in \mathbb{Q}$

and $\lim_{jarrow\infty}p_{j}=p$ . We easily see that condition (8) holds for $p\in \mathbb{R}\backslash \mathbb{Q}$ since it does for
$p=p_{j}$ . This completes the proof of Theorem 2 by Proposition 3.
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