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Bifurcation diagram for interior single-peak solutions
in a Neumann problem for u” + A(—u + «?) = 0 with
peRandp>1*

Kazuyuki Yagasaki '
Department of Mathematics,
Hiroshima University

1 Introduction

Let p € R and p > 1. We study a Neumann problem for a second-order differential

equation,
v+ A—u+v?) =0 in (-1,1), u'(£1) =0, (1)
where A > 0 is a constant and represents a control parameter. Eq. (1) has a trivial
solution u = 1.
We often encounter (1) in several situations. As an example, we consider the Keller-
Segel model for chemotaxis aggregation,

Ut = Dty — c(u(logv)y)z, V¢ = Dovpy —av —bu in (—=1,1), @)

Ug, U, =0 at z = %1,
where Dy, Dy, a,b, ¢ are constants. The stationary problem for (2) becomes
Dyvge — av — buvPr =0, v, =0at z =+1 (3)

since Dyu; — cu(logv), = 0 by the first equation, so that u = pv*/P1 for some constant .
Eq. (3) is transformed to (1). Another example is related to the Gierer-Meinhardt model
for biological pattern formations,

upl upZ .
ur = Dyuzy — piu+ pr (c%—q—l + po) y Uy = Dovgy — pgv + ,0262&; in (—1,1),

(4)

Ug, Uy = 0 at x = +1,
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Figure 1: Bifurcation diagram for the Neumann problem (1)

where D;, p;, ¢;, 1, pi, 4 = 1,2, are constants. As Dy — 00, v,z — 0 so that v, — 0 by the
boundary conditions. Hence, in this limit, we have

1 upZ
/ (MQ’U - 9202——) dz =0,
0 492

1

P2C2

p22tl — wPrdr
K2 Jo

by regarding v as a constant. Thus, for the stationary problem for (4), we obtain the
shadow system,

so that

2,P1
Diugy — pyu+ py (cl—g;(ﬁ— +pg> =0, wu,=0atzr==l,
which is transformed to (1) like (3).
The following theorem for (1) was proved for p € Z in [1] and for p € R\ Z in [2].

Theorem 1. The branch of interior single-peak solutions emanates from (A, u) = (n?/(p—
1),1) and the bifurcation is a supercritical pitchfork one. The branch is a graph of A and
unbounded in X. Moreover, each solution of the branch is non-degenerate and the Morse
index 1s two.

Here the Morse index is the number of strictly positive eigenvalues for the associated
linear problem

¢+ M=1+pn(y) ) =ps in(-11), ¢F1)=0,

where u,(y) represents a solution of the Neumann problem. The last part of Theorem 1
is obvious from the other parts since u = Ap—1),A\(p—1) — iﬂz are positive eigenvalues
of the linear problem for the trivial solution v = 1 when A < #2/(p — 1), and so is
p=Ap—1) — 7% when A > 72/(p — 1). The bifurcation diagram stated in Theorem 1 is
sketched in Fig. 1. The upper branch represents interior single-peak solutions.

In the rest of this article we outline the proof of Theorem 1.
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Figure 2: One-parameter family of periodic orbits in (5)

2 Monotonicity of the period functions

Using a transformation z — z/v/), we rewrite (1) as
v —u+uP =0. (5)

For any u; € (0,1) Eq. (5) has a periodic solution satisfying (u(0),4'(0)) = (u1,0). Let
T(uy) denote its period and let uy € (1,uo) satisfy F(us) = F(uy), where

1 p—1
Flu) = bt + 1 P10 /10,
W) ==+ 7 op+1) 3P+ 1)

Then we have (u(37(u1)), v (37T (u1))) = (u2,0). Note that

p—1
2(p+1)
As shown in Fig. 2, there exists a one-parameter family of periodic orbits in (5).
The periodic solution u(z) in (5) gives an interior single-peak solution in the Neumann

problem (1) when 37(u;) = 2v/A. Hence, except the last part, Theorem 1 immediately
follows from the following theorem.

F(ug) = F(0) =

Theorem 2. The period function T(u;) in (5) is strictly decreasing on (0,1).

To prove this theorem, we use a result of Chicone [3]. We first recall his result. Let
& <0< & andlet T = (&,&) C R. Suppose that V : I — R is a C® function satisfying
V(&) = V(&) and having a minimum V(0) = 0 as its only extremum. Consider second-
order differential equations of the form

, dV
3 +d—§(§)=0- (6)

Eq. (6) has the trivial solution £ = 0, and any solution £ = &(¢) of (6) with £(0) € I\{0}
and £'(0) = 0 is periodic. Let T'(h) be its period with h = V(£(0)), and define a function

@(§) as
V(¢)

p(§) = Vi(er (7)

Chicone [3] essentially proved the following result.



Proposition 3 (Chicone [3]). Suppose that

¢"(€) >0 for& eI\ {0} (8)

and the inequality holds in a punctured neighborhood of € = 0. Then T(h) is strictly
increasing on (0, hy), where by = V(&) (= V(&)).

3 Proof of Theorem 2

Using a transformation v = £ + 1 we rewrite (5) as the form of (6) with & = —1,
& =up—1>0and V(§) = F(£+1). We compute (7) as
” -1 +1
o) = (p )g(¢ ) 9)

(p+DEFDHE+ )P =1
where
g(u) =pu®" — (2p* — 3p + 3)u* + p(2p + 1)u*?
—p(p— 2)u”+1 +p(p— "/')u’"1 + 3.

We begin with the case of p € Z with p > 1. We easily see that the function g(u) is
divisible by (u—1)* and define a (3p — 5)-th order polynomial §(u) = g(u)/(u—1)*. After
some highly nontrivial computations, we prove the following (see [1] for the proof).

Lemma 4. All coefficients of g(u) are positive.
From Lemma 4 and (9) we see that

(p - 1)g(u)
(p+ 1wt (223w

O(u—1)= 7 >0 for u € (0, ug),

i.e., condition (8) holds.
We next assume that p € Q\Z with p > 1. Let p = m/n > 1, where m, n are relatively
prime integers and n > 2. We set v = v/, k =m — n > 0 and ¥(v) = ng(v") to have
P(v) =n(n+ k)3 — (2k% + kn + 2n?)o* 2 + (n — k)(n + k)v*"tF
+ (n + k)(3n + 2k)v* — (n + k)(6n — k)v* + 3n?.

We easily see that the polynomial 1 (v) is factorized as 1(v) = (v — 1)*)(v), where ¥ (v)
is a (2n+ 3k — 4)-th order polynomial. We also prove the following (see [2] for the proof).

Lemma 5. All coefficients of )(v) are positive.
From Lemma 5 and (9) we see that
(v — DI ()
o+ D (T3 )
i.e., condition (8) holds again.
We turn to the case of p € R\ Q with p > 1. Take a sequence {p;}32, such that p; € Q

and lim;_,., p; = p. We easily see that condition (8) holds for p € R\ Q since it does for
p = p;. This completes the proof of Theorem 2 by Proposition 3.

(0" 1) = ;>0 forve (0, /u).
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