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ABSTRACT. We consider Schr\"odinger operators with periodic potentials on periodic discrete
graphs. It is known that the spectrum of the Schr\"odinger operator consists of an absolutely
continuous part (a union of a finite number of non-degenerated bands) plus a finite number of
flat bands, i.e., eigenvalues of infinite multiplicity. We present results about spectral properties
of the operators: 1) estimates of the Lebesgue measure of the spectrum in terms of geometric
parameters of the graph, which become identities for some class of graphs; 2) spectral analysis
of the Schr\"odinger operators on loop graphs, defined in our paper; 3) the existence and
positions of maximal number of flat bands for specific graphs.

1. INTRODUCTION

We consider Laplace operators and Schr\"odinger operators with periodic potentials on $\mathbb{Z}^{d_{-}}$

periodic discrete graphs, $d\geq 2$ . Schr\"odinger operators on periodic graphs and their spectra
often appear in the applied physical science. There are a lot of papers and books on the
spectrum of discrete Laplacians on finite and infinite graphs (see [BK12], [Ch97], [CDS95],
[CDGT88], [P12] and references therein). There are results about spectral properties of dis-
crete Schr\"odinger operators on specific $\mathbb{Z}^{d}$-periodic graphs. Schr\"odinger operators with de-
creasing potentials on the lattice $\mathbb{Z}^{d}$ are considered by Boutet de Monvel-Sahbani [BS99],
Isozaki-Korotyaev [IK12], Rosenblum-Solomjak $[RoS09]$ and see references therein. Ando
[A12] considers the inverse spectral theory for the discrete Schr\"odinger operators with finitely
supported potentials on the hexagonal lattice. Gieseker-Kn\"orrer-Trubowitz [GKT93] con-
sider Schr\"odinger operators with periodic potentials on the lattice $\mathbb{Z}^{2}$ , the simplest example
of $\mathbb{Z}^{2}$-periodic graphs. They study its Bloch variety and its integrated density of states.
Korotyaev-Kutsenko [KK10] $-[KK10b]$ study the spectra of the discrete Schr\"odinger opera-
tors on graphene nano-tubes and nano-ribbons in external fields.

1.1. The definition of Schr\"odinger operators on periodic graphs. Let $\Gamma=(V, \mathcal{E})$ be a
connected graph, possibly having loops and multiple edges, where $V$ is the set of its vertices
and $\mathcal{E}$ is the set of its unoriented edges. The graphs under consideration are embedded into $\mathbb{R}^{d}.$

An edge connecting vertices $u$ and $v$ from $V$ will be denoted as the unordered pair $(u, v)_{e}\in \mathcal{E}$

and is said to be incident to the vertices. Vertices $u,$ $v\in V$ will be called adjacent and denoted
by $u\sim v$ , if $(u, v)_{e}\in \mathcal{E}$ . We define the degree $x_{v}=\deg v$ of the vertex $v\in V$ as the number
of all its incident edges from $\mathcal{E}$ (here a loop is counted twice). Below we consider locally finite
$\mathbb{Z}^{d}$-periodic graphs $\Gamma$ , i.e., graphs satisfying the following conditions:

1) the number of vertices from $V$ in any bounded domain $\subset \mathbb{R}^{d}$ is finite;
2) the degree of each vertex is finite;
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3) $\Gamma$ has the periods (a basis) $a_{1}$ , . . . , $a_{d}$ in $\mathbb{R}^{d}$ , such that $\Gamma$ is invariant under translations
through the vectors $a_{1}$ , $\cdots$ , $a_{d}$ :

$\Gamma+a_{s}=\Gamma, \forall s\in \mathbb{N}_{d}=\{1, . . . , d\}.$

In the space $\mathbb{R}^{d}$ we consider a coordinate system with the origin at some point $O$ . The
coordinate axes of this system are directed along the vectors $a_{1}$ , . . . , $a_{d}$ . Below the coordinates
of all vertices of $\Gamma$ will be expressed in this coordinate system. From the definition it follows
that a $\mathbb{Z}^{d}$-periodic graph $\Gamma$ is invariant under translations through any integer vector $m$ in the
basis $a_{1}$ , . . . , $a_{d}$ :

$\Gamma+m=\Gamma, \forall m\in \mathbb{Z}^{d}.$

Let $\ell^{2}(V)$ be the Hilbert space of all square summable functions $f$ : $Varrow \mathbb{C}$ , equipped with
the norm

$\Vert f\Vert_{\ell^{2}(V)}^{2}=\sum_{v\in V}|f(v)|^{2}<\infty.$

We define the self-adjoint Laplacian (or the Laplace operator) $\triangle$ on $f\in\ell^{2}(V)$ by

$( \Delta f)(v)=\sum_{(v,u)_{e}\in \mathcal{E}}(f(v)-f(u)) , v\in V$
. (1.1)

We recall basic facts about the spectrum for both finite and periodic graphs (see [Me94],
[M91], [M92], [MW89]): the point $0$ belongs to the spectrum $\sigma(\triangle)$ containning in $[0, 2x_{+}],$

i. e.,
$0\in\sigma(\triangle)\subset[0, 2x_{+}]$ , where $x_{+}= \sup_{v\in V}\deg v<\infty$ . (1.2)

We consider the Schr\"odinger operator $H$ acting on the Hilbert space $\ell^{2}(V)$ and given by

$H=\triangle+Q$ , (1.3)

$(Qf)(v)=Q(v)f(v) , \forall v\in V$, (1.4)

where we assume that the potential $Q$ is real valued and satisfies

$Q(v+a_{s})=Q(v) , \forall(v, s)\in V\cross \mathbb{N}_{d}.$

1.2. The definitions of fundamental graphs and edge indices. In order to define the
Floquet-Bloch decomposition (1.11) of Schr\"odinger operators we need to introduce two ori-
ented edges $(u, v)$ and $(v, u)$ for each unoriented edge $(u, v)_{e}\in \mathcal{E}$ : the oriented edge starting
at $u\in V$ and ending at $v\in V$ will be denoted as the ordered pair $(u, v)$ . We denote the set
of all oriented edges by $\mathcal{A}.$

We define the fundamental graph $\Gamma_{f}=(V_{f}, \mathcal{E}_{f})$ of the periodic graph $\Gamma$ as a graph on the
surface $\mathbb{R}^{d}/\mathbb{Z}^{d}$ by

$\Gamma_{f}=\Gamma/\mathbb{Z}^{d}\subset \mathbb{R}^{d}/\mathbb{Z}^{d}$ . (1.5)

In the literature the fundamental graph is also called the quotient graph. The fundamental
graph $\Gamma_{f}$ has the vertex set $V_{f}$ , the set $\mathcal{E}_{f}$ of unoriented edges and the set $\mathcal{A}_{f}$ of oriented
edges, which are finite. Denote by $v_{1}$ , . . . , $v_{\nu}$ the vertices of $V_{f}$ , where $\nu<\infty$ is the number
of vertices of $\Gamma_{f}$ . We identify them with the vertices of $V$ from the set $[0, 1)^{d}$ by

$V_{f}=[0, 1)^{d}\cap V=\{v_{1}, v_{2}, . . . , v_{\nu}\}$ , (1.6)

see Fig.1. Due to (1.6) for any $v\in V$ the following unique representation holds true:

$v=[v]+\tilde{v}, [v]\in \mathbb{Z}^{d}, \tilde{v}\in V_{f}\subset[0, 1)^{d}$ . (1.7)
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In other words, each vertex $v$ can be represented uniquely as the sum of an integer part
$[v]\in \mathbb{Z}^{d}$ and a fractional part $\tilde{v}$ that is a vertex of the fundamental graph $\Gamma_{f}$ . We introduce
an edge index, which is important to study the spectrum of Schr\"odinger operators on periodic
graphs. For any oriented edge $e=(u, v)\in \mathcal{A}$ we define the edge “‘ index”’ $\tau(e)$ as the integer
vector by

$\tau(e)=[v]-[u]\in \mathbb{Z}^{d}$ , (1.8)

where due to (1.7) we have

$u=[u]+\tilde{u}, v=[v]+\tilde{v}, [u], [v]\in \mathbb{Z}^{d}, \tilde{u}, vV_{f}.$

If $e=(u, v)$ is an oriented edge of the graph $\Gamma$ , then by the definition of the fundamental
graph there is an oriented edge $\tilde{e}=(\tilde{u},\tilde{v})$ on $\Gamma_{f}$ . For the edge $\tilde{e}\in \mathcal{A}_{f}$ we define the edge
index $\tau(e)$ by

$\tau(\tilde{e})=\tau(e)$ . (1.9)

In other words, edge indices of the fundamental graph $\Gamma_{f}$ are induced by edge indices of the
periodic graph $\Gamma$ . In a fixed coordinate system the index of the fundamental graph edge is
uniquely determined by (1.9), since we have

$\tau(e+m)=\tau(e) , \forall(e, m)\in \mathcal{A}\cross \mathbb{Z}^{d}.$

But generally speaking, the edge indices depend on the choice of the coordinate origin $O$

and the choice of the basis $a_{1}$ , . . . , $a_{d}$ . Edges with nonzero indices will be called bridges (see
Fig.1). They are important to describe the spectrum of the Schr\"odinger operator. The bridges
provide the connectivity of the periodic graph and the removal of all bridges disconnects the
graph into infinitely many connected components. The set of all bridges of the fundamental
graph $\Gamma_{f}$ we denote by $\mathcal{B}_{f}.$

FIGURE 1. A graph $\Gamma$ with $v=5$ , only edges of the fundamental graph $\Gamma_{f}$ are shown; the
bridges $(v_{1}, v_{2}+a_{1})$ , $(v_{1}, v_{3}+a_{2})$ , $(v_{3}, v_{2}+a_{1})$ , $(v_{3}, v_{4}+a_{1}+a_{2})$ of $\Gamma_{f}$ are marked by bold.

1.3. Floquet decomposition of Schr\"odinger operators. Recall that the fundamental
graph $\Gamma_{f}=(V_{f}, \mathcal{E}_{f})$ has the finite vertex set $V_{f}=\{v_{1}, . . . , v_{\nu}\}\subset[0, 1)^{d}$ . Due to this notation,
we can denote the potential $Q$ on the fundamental graph $\Gamma_{f}$ by

$Q(v_{j})=q_{j}, j\in \mathbb{N}_{\nu}=\{1, . . . , v\}$ . (1.10)
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The Schr\"odinger operator $H=\triangle+Q$ on $\ell^{2}(V)$ has the standard decomposition into a
constant fiber direct integral

$\ell^{2}(V)=\frac{1}{(2\pi)^{d}}\int_{T^{d}}^{\oplus}\ell^{2}(V_{f})d\theta, UHU^{-1}=\frac{1}{(2\pi)^{d}}\int_{T^{d}}^{\oplus}H(\theta)d\theta$ , (1.11)

for some unitary operator $U$ . Here $\ell^{2}(V_{f})=\mathbb{C}^{\nu}$ is the fiber space and $H(\theta)$ is the Floquet
$\nu\cross\nu$ (fiber) matrix and $\theta\in \mathbb{T}^{d}=\mathbb{R}^{d}/(2\pi \mathbb{Z})^{d}$ is the quasimomentum.
Note that the decomposition of discrete Schr\"odinger operators on periodic graphs into a

constant fiber direct integral (1.11) (without an exact form of fiber operators) was discussed
by Higuchi-Shirai [HS04], Rabinovich-Roch [RR07], Higuchi-Nomura [HN09]. In particular,
they prove that the spectrum of Schr\"odinger operators consists of an absolutely continuous part
and a finite number of flat bands (i.e., eigenvalues with infinite multiplicity). The absolutely
continuous spectrum consists of a finite number of intervals (spectral bands) separated by
gaps.

Theorem 1.1. i) The Schr\"odinger operator $H=\triangle+Q$ acting on $\ell^{2}(V)$ has the decomposition
into a constant fiber direct integral (1.11), where the Floquet (fiber) matrzx $H(\theta)$ is given by

$H(\theta)=\triangle(\theta)+q, q=diag(q_{1}, \ldots, q_{\nu}) , \forall\theta\in \mathbb{T}^{d}$ . (1.12)

The Floquet matrix $\Delta(\theta)=\{\triangle_{jk}(\theta)\}_{j,k=1}^{\nu}$ for the Laplacian $\Delta$ is given by

$\triangle_{jk}(\theta)=x_{j}\delta_{jk}-\{\begin{array}{ll}\sum_{e=(v_{j},v_{k})\in A_{f}}e^{i\langle\tau(e),\theta\rangle}, if (v_{j}, v_{k})\in \mathcal{A}_{f}0, if (v_{j}, v_{k})\not\in \mathcal{A}_{f}\end{array}$ (1.13)

where $x_{j}$ is the degree of $v_{j},$
$\delta_{jk}$ is the Kronecker delta and $\langle\cdot,$ $\rangle$ denotes the standard inner

product in $\mathbb{R}^{d}.$

ii) Let $H^{(1)}(\theta)$ be a Floquet matrix for $H$ defined by (1.12), (1.13) in another coordinate
system with an origin $O_{1}$ . Then the matrices $H^{(1)}(\theta)$ and $H(\theta)$ are unitarily equivalent for
all $\theta\in \mathbb{T}^{d}.$

iii) The entry $\Delta_{jk}$ of the Floquet matrix $\triangle$

$=\{\Delta_{jk}(\cdot)\}_{j,k=1}^{\nu}$ is constant iff there is no
bridge $(v_{j}, v_{k})\in \mathcal{A}_{f}.$

iv) The Floquet matrix $\triangle$ has at least one non-constant entw $\triangle_{jk}$ for some $j\leq k.$

Remark. 1) The identity (1.13) for the Floquet (fiber) operator is new. It is important to
study spectral properties of Schr\"odinger operators acting on graphs.

2) Badanin-Korotyaev-Saburova [BKS13] derived different spectral properties of normalized
Laplacians on $\mathbb{Z}^{2}$-periodic graphs.

2. MAIN RESULTS

Theorem 1.1 and standard arguments (see Theorem XIII.85 in [RS78]) describe the spectrum
of the Schr\"odinger operator $H=\triangle+Q$ . Each Floquet matrix $H(\theta)$ , $\theta\in \mathbb{T}^{d}$ , has $v$

eigenvalues $\lambda_{n}(\theta)$ , $n\in \mathbb{N}_{\nu}$ , which are labeled in increasing order (counting multiplicities) by

$\lambda_{1}(\theta)\leq\lambda_{2}(\theta)\leq\ldots\leq\lambda_{\nu}(\theta) ,\forall\theta\in \mathbb{T}^{d}=\mathbb{R}^{d}/(2\pi \mathbb{Z})^{d}$ . (2.1)
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Since $H(\theta)$ is self-adjoint and analytic in $\theta\in \mathbb{T}^{d}$ , each $\lambda_{n}$ $n\in \mathbb{N}_{\nu}$ , is a real and piecewise
analytic function on the torus $\mathbb{T}^{d}$ and defines a dispersion relation. Define the spectral bands
$\sigma_{n}(H)$ by

$\sigma_{n}(H)=[\lambda_{n}^{-}, \lambda_{n}^{+}]=\lambda_{n}(\mathbb{T}^{d}) , n\in \mathbb{N}_{v}$ . (2.2)

Sy and Sunada [SS92] show that the lower point of the spectrum $\sigma(H)$ of the operator $H$ is
$\lambda_{1}(0)$ , i.e., $\lambda_{1}(0)=\lambda_{1}^{-}$ . Thus, the spectrum of the operator $H$ on the graph $\Gamma$ is given by

$\sigma(H)=\bigcup_{\theta\in T^{d}}\sigma(H(\theta))=\bigcup_{n=1}^{\nu}\sigma_{n}(H)$ . (2.3)

Note that if $\lambda_{n}$ $=C_{n}=$ const on some set $\mathscr{R}\subset \mathbb{T}^{d}$ of positive Lebesgue measure, then the
operator $H$ on $\Gamma$ has the eigenvalue $C_{n}$ with infinite multiplicity. We call $C_{n}a$ flat band. Each
flat band is generated by finitely supported eigenfunction, see [HN09]. Thus, the spectrum of
the Schr\"odinger operator $H$ on the periodic graph $\Gamma$ has the form

$\sigma(H)=\sigma_{ac}(H)\cup\sigma_{fb}(H)$ . (2.4)

Here $\sigma_{ac}(H)$ is the absolutely continuous spectrum, which is a union of non-degenerated
intervals, and $\sigma_{fb}(H)$ is the set of all flat bands (eigenvalues of infinite multiplicity). An open
interval between two neighboring non-degenerated spectral bands is called a spectral gap.
The eigenvalues of the Floquet matrix $\triangle(\theta)$ for the Laplacian $\triangle$ will be denoted by $\lambda_{n}^{0}(\theta)$ ,

$n\in \mathbb{N}_{\nu}$ . The spectral bands for the Laplacian $\sigma_{n}^{0}=\sigma_{n}(\triangle)$ , $n\in \mathbb{N}_{\nu}$ , have the form

$\sigma_{n}^{0}=\sigma_{n}(\triangle)=[\lambda_{n}^{0-}, \lambda_{n}^{0+}]=\lambda_{n}^{0}(\mathbb{T}^{d})$ . (2.5)

Theorem 2.1. Let the Schr\"odinger operator $H=\triangle+Q$ act on $\ell^{2}(V)$ . Then
i) The first spectral band $\sigma_{1}(H)=[\lambda_{1}^{-}, \lambda_{1}^{+}]$ is non-degenerated, i. e., $\lambda_{1}^{-}<\lambda_{1}^{+}.$

ii) The Lebesgue measure $|\sigma(H)|$ of the spectrum of the Schr\"odinger operator $H$ satisfies

$| \sigma(H)|\leq\sum_{n=1}^{\nu}|\sigma_{n}(H)|\leq 2\beta$ , (2.6)

where $\beta$ is the number of fundamental graph bridges. Moreover, if in the spectrum $\sigma(H)$ there
exist $s$ spectral gaps $\gamma_{1}(H)$ , . . . , $\gamma_{s}(H)$ , then the following estimates hold true:

$\sum_{n=1}^{s}|\gamma_{n}(H)|\geq\lambda_{\nu}^{+}-\lambda_{1}^{-}-2\beta\geq C_{0}-2\beta$ ,
(2.7)

$C_{0}= \max\{\lambda_{\nu}^{0+}-q. , q. -2x_{+}\}, q. =\max_{n}q_{n}-\min_{n}q_{n}.$

The estimates (2.6) and the first estimate in (2.7) become identities for some classes of graphs,
see (2.14).

Remark. 1) The total length of spectral bands depends essentially on the number of bridges
on the fundamental graph $\Gamma_{f}$ . If we remove the coordinate system, then the number of bridges
on $\Gamma_{f}$ is changed in general. In order to get the best estimate in (2.6) we have to choose a
coordinate system in which the number $\beta$ is minimal.

2) If $q.$ $>2x+$ ( $q$. is large enough), then $C_{0}=q.$ $-2x+\cdot$ If $q.$
$<\lambda_{\nu}^{0+}$ ( $q$. is small enough),

then $C_{0}=\lambda$ $q..$

We consider the Schr\"odinger operator $H_{t}=\triangle+tQ$ , where the potential $Q$ is”generic”’ and
$t\in \mathbb{R}$ is the coupling constant. We discuss spectral bands of $H_{t}$ for $t$ large enough.
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Theorem 2.2. Let the Schr\"odinger operator $H_{t}=\Delta+tQ$ , where the potential $Q$ satisfies
$q_{j}\neq q_{k}$ for all $j,$ $k\in \mathbb{N}_{\nu},$ $j\neq k$ , and the real coupling constant $t$ is large enough. Without
loss of generality we assume that $q_{1}<q_{2}<\ldots<q_{\nu}$ . Then each eigenvalue $\lambda_{n}(\theta, t)$ of the
corresponding Floquet matrix $H_{t}(\theta)$ and each spectral band $\sigma_{n}(H_{t})$ , $n\in \mathbb{N}_{\nu}$ , satisfy

$\lambda_{n}(\theta, t)=tq_{n}+\triangle_{nn}(\theta)-\frac{1}{t}\sum_{j\neq n}^{\nu}\frac{|\triangle_{jn}(\theta)|^{2}}{q_{j}-q_{n}}j=1+\frac{O(1)}{t^{2}}$
,

(2.8)

$|\sigma_{n}(H_{t})|=|\triangle_{nn}(\mathbb{T}^{d})|+O(1/t)$

as $tarrow\infty$ , uniformly in $\theta\in \mathbb{T}^{d}$ . In particular, we have

$|\sigma(H_{t})|=C+O(1/t)$ , where $C= \sum_{n=1}^{\nu}|\triangle_{nn}(\mathbb{T}^{d})|$ (2.9)

and $C>0$ , if there are bridge-loops on $\Gamma_{f}$ and $C=0$ if there are no bridge-loops on $\Gamma_{f}.$

Remark. Asymptotics (2.8) yield that a small change of the potential gives that all spectral
bands of the Schr\"odinger operator $H_{t}$ become open for $t$ large enough, i.e., the spectrum of
$H_{t}$ is absolutely continuous.

Definition of Loop Graphs. i) A periodic graph $\Gamma$ is called a loop graph if all bridges of
some fundamental graph $\Gamma_{f}$ are loops. This graph $\Gamma_{f}$ is called a loop fundamental graph.

ii) A loop graph $\Gamma$ is called precise if $\cos\langle\tau(e)$ , $\theta_{0}\rangle=-1$ for all bridges $e\in \mathcal{B}_{f}$ and some
$\theta_{0}\in \mathbb{T}^{d}$ , where $\tau(e)\in \mathbb{Z}^{d}$ is the index of a bridge $e$ of $\Gamma_{f}$ . This point $\theta_{0}$ is called a precise
quasimomentum of the loop graph $\Gamma.$

The class of all precise loop graphs is large enough. The simplest example of precise loop
graphs is the lattice graph $\mathbb{L}^{d}=(V, \mathcal{E})$ , where the vertex set and the edge set are given by

$V=\mathbb{Z}^{d}, \mathcal{E}=\{(m, m+a_{1}), . . . , (m, m+a_{d}), \forall m\in \mathbb{Z}^{d}\}$ , (2.10)

and $a_{1}$ , . . . , $a_{d}$ is the standard orthonormal basis. The “ minimal” fundamental graph $\mathbb{L}_{f}^{d}$ of

the lattice $\mathbb{L}^{d}$ consists of one vertex $v=0$ and $d$ unoriented edge-loops $(v, v)$ . All bridges of $\mathbb{L}_{f}^{d}$

are loops and their indices have the form $\pm a_{1},$ $\pm a_{2}$ , . . .
$,$

$\pm a_{d}$ . Thus, for the quasimomentum
$\theta_{0}=(\pi, \ldots, \pi)\in \mathbb{T}^{d}$ we have $\cos\langle\tau(e)$ , $\theta_{0}\rangle=-1$ for all bridges $e\in \mathbb{L}_{f}^{d}$ and the graph $\mathbb{L}^{d}$ is

a precise loop graph. It is known that the spectrum of the Laplacian $\triangle$ on $\mathbb{L}^{d}$ has the form
$\sigma(\triangle)=\sigma_{ac}(\triangle)=[0, 4d].$

We consider perturbations of loop graphs and precise loop graphs. A simple example of a
precise loop graph $\Gamma_{*}$ obtained by perturbations of the square lattice $\mathbb{L}^{2}$ is given in Fig.2 $a.$

Proposition 2.3. i) There exists a loop graph, which is not precise (see Fig.3).
ii) Let $\Gamma=(\mathcal{E}, V)$ be a loop graph and let $\Gamma’=(\mathcal{E}’, V’)\subset \mathbb{R}^{d}$ be any connected finite graph

such that its diameter is small enough. We take some point $v\in V$ and some point $v’\in V’$ . We
joint the graph $\Gamma’$ with each point from the vertex set $v+\mathbb{Z}^{d}$ , identifying the vertex $v’$ with each
vertex of $v+\mathbb{Z}^{d}$ . Then the obtained graph $\Gamma_{*}$ is a loop graph. Moreover, if $\Gamma$ is precise, then
$\Gamma_{*}$ is also precise and the precise quasimomentum $\theta_{0}$ of $\Gamma$ is also a precise quasimomentum

of $\Gamma_{*}.$

Remark. Applying this procedure to the obtained loop graph $\Gamma_{*}$ and to another connected
finite graph $\Gamma_{1}$ we obtain a new loop graph $\Gamma_{**}$ and so on. Thus, from one loop graph we
obtain a whole class of loop graphs.
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(b)

FIGURE 2. a) Precise loop graph $\Gamma_{*)}$ b) the fundamental graph $\Gamma_{*f}.$

$v a_{1} v$
(b)

FIGURE 3. a) Triangular lattice $T$ ; b) the fundamental graph $T_{f}.$

We now describe bands for precise loop periodic graphs.

Theorem 2.4. i) Let the Schr\"odinger operator $H=\triangle+Q$ act on a loop graph $\Gamma$ . Then
spectral bands $\sigma_{n}=\sigma_{n}(H)=[\lambda_{\overline{n}}, \lambda_{n}^{+}]$ satisfy

$\lambda_{n}^{-}=\lambda_{n}(0) , \forall n\in \mathbb{N}_{\nu}$ . (2.11)

ii) Let, in addition, $\Gamma$ be precise with a precise quasimomentum $\theta_{0}\in \mathbb{T}^{d}$ . Then

$\sigma_{n}=[\lambda_{n}^{-}, \lambda_{n}^{+}]=[\lambda_{n}(0), \lambda_{n}(\theta_{0})], \forall n\in \mathbb{N}_{\nu}$ , (2.12)

$\sum_{n=1}^{\nu}|\sigma_{n}|=2\beta$ , (2.13)

where $\beta$ is the number of bridge-loops on the loop fundamental graph $\Gamma_{f}$ . In particular, if all
bridges of $\Gamma_{f}$ have the form $(v_{k}, v_{k})$ for some vertex $v_{k}\in V_{f}$ , then

$| \sigma(H)|=\sum_{n=1}^{\nu}|\sigma_{n}|=2\beta$ . (2.14)

Remark. 1) Due to (2.13), the total length of all spectral bands of the Schr\"odinger operators
$H=\triangle+Q$ on precise loop graphs does not depend on the potential $Q.$

2) The number of the loop fundamental graph bridges can be any integer, then due to (2.14)
the Lebesgue measure $|\sigma(H)|$ of the spectrum of $H$ (on the specific graphs) can be arbitrary
large.
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3) $\lambda_{\overline{n}},$ $n\in \mathbb{N}_{\nu}$ , are the eigenvalues of the Schr\"odinger operator $H(O)$ defined by (1.12),

(1.13) on the fundamental graph $\Gamma_{f}$ . The identities (2.12) are similar to the case of N-
periodic Jacobi matrices on the lattice $\mathbb{Z}$ (and for Hill operators). The spectrum of these
operators is absolutely continuous and is a union of spectral bands, separated by gaps. The

endpoints of the bands are the so-called $2N$-periodic eigenvalues.

No we formulate some results about the possible number of flat bands of Schr\"odinger oper-

ators.

Proposition 2.5. Let a fundamental graph $\Gamma_{f}$ of a periodic graph $\Gamma$ have $\nu\geq 2$ vertices
and have no bridge-loops. Then the number of degenerated spectral bands (flat bands) of the
Schr\"odinger operator $H$ on $\Gamma$ does not exceed $\nu-2$ . Moreover, there exists $\mathbb{Z}^{d}$ -periodic graph
$\Gamma$ (for $d=2$ see Fig.4), such that the spectrum of the Laplacian $\triangle$ on $\Gamma$ has exactly 2 open
separated spectral bands $\sigma_{1}(\triangle)$ and $\sigma_{\nu}(\Delta)$ and between them, in the gap, $\nu-2$ flat bands
$\sigma_{2}(\triangle)=\ldots=\sigma_{\nu-1}(\triangle)$ .

(b)

(c) $0 \frac{11+\wedge 89\fbox{Error::0x0000}}{2}\frac{\prime,\sigma_{1_{I}}0,\sigma_{2}0=\{1\}_{I}\sigma_{31}^{0}}{\frac{11- \pi 89}{2}3\fbox{Error::0x0000}}$

FIGURE 4. a) $\mathbb{Z}^{2}$-periodic graph $\Gamma$ ; b) the fundamental graph $\Gamma_{f}$ ; only 2 unoriented loops
in the vertex $v_{\nu}$ are bridges; c) the spectrum of the Laplacian $(\nu=3)$ .

Remark. There is an open problem: does there exist a $\mathbb{Z}^{d}$-periodic graph with any $\nu\geq 2$

vertices in the fundamental graph such that the spectrum of the Laplacian on $\Gamma$ has only 1
spectral band and $\nu-1$ flat bands, counting multiplicity?
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