BB FERTIFFC T Tk
% 1903 & 2014 4F 6-13

A Discrete-Time Clark-Ocone Formula for
Poisson Functionals

Takafumi AMABA
Doctoral Program in Integrated Science and Engineering,
Graduate School of Science and Engineering,
Ritsumeikan University *

Abstract

We discretize the Clark-Ocone formula along the n-equidistant partition of a given
time interval [0,T]. Then we discuss the error caused by the discretization procedure.
Our main achievements are: (i) multi-level central limit theorem for the errors, (ii) strong
O(n_l/ 2)-convergence for the first order errors, and (iii) successful in proving that the
Sobolev differentiability index is the rate of convergence.

1 A Discrete-Time Clark-Ocone Formula

Let p = (p,D,) be a stationary Poisson point process on a given o-finite measure
space (X, #x,n). Throughout this article (except for §3.2), we fix a bounded measurable
function f : X — R and we consider a Lévy process L = (L;)o<t<T given by

L := /0 " . f(z)N,(dsdz).

We denote by (F7)o<i<r the filtration generated by the point process p. Along an
n-equidistant partition {t; :=: t{" := IT/n}},, we define a discretized fltration (F™ ),
by setting ]-‘é") to be the trivial o-field and

]_-l(n) = U(Np((tk—lytk]vdx) k= 1, 2’ cee ,l) (1)

forl=1,2,--- ,n.
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From the Clark-Ocone formula for Poisson functionals, we can deduce the following
presumption: For a o(AL,,---,ALy,)-measurable Poisson functional F', we would find
that

F ~E[F] +Z | B eser FAC (e, 1, ), @

where 9(; ) is defined in the following sense: by assumption, we can write F' = F(ALy,--- ,ALy).
Then 9, F is

Yo F = F(ALy,--- \ALi+v, -+ ,AL,) ~ F,
that is, 9, is the forward difference operator in the “variable” AL; by step v. However,
the filtration (.7-"1(")){;0 does not have the martingale representation theorem with respect
to the (measure-valued) discrete-time martingale (3, <, Np((tk-1, tx], dz))iy (though (F)o<ecr
does with respect to (N,((0,t],dz))o<t<r), which implies that the both sides in (2) could

not be equal for generic F.
This motivates us to ask how much is the difference of both sides in (2). Our discrete-

time Clark-Ocone formula is one of the answers:

Theorem 1 (Discrete-Time Clark-Ocone Formula, (3])

For F € L*(o(ALy,--- ,AL,)), we have the following L?-convergent series expansion:
F - E[F]
= 3 E o (n) N®*(d dsed d ®3)
ZZ Bt s F 1] [ Ny (dsy-- - dspdy - - - daw),
k=1 l=1 1 1<81< <8<t

where the conditional expextations are understood in generalized sense if necessary, and
N&*(ds; - - - dsgdz - - - dzy) := @b, Np(dsiday).

Remark 1
(i) We notice that the first order (k = 1) term in (3) coincides with the last term in (2).

(ii) One can establish also a discrete Clark-Ocone formula for Wiener functionals (see [1]):
Let W = (W;)o<t<r be the one-dimensional Brownian motion starting from zero. We
define a filtration (gl(“));;o as in (1) by using the increments of W, instead of the Lévy
process L. Then for F € L2(G{™), it holds that

E[F] = ZZ (at)™ E[amFlg(”)]H (%)

m=1 l=1

(4)

where H,, is the m-th Hermite polynomial which is given by

(_l)mez2/2 dm e——$2/2
vm! dz™

and 0, is the differential in the “variable” AW,.

Hp(z) =



2 Generalizing The Malliavin Difference Operator to
Higher Order via Consistency

We put this section to prepare some notations necessary to state a limit theorem in
the next section.

The difference operator ;) is merely a simple reduction on the class of o({AL;}1,)-
measurable Poisson functionals, of a more general operator, that is, the Malliavin dif-
ference operator, as we shall see in the next proposition. Assume that our Poissonian
framework is setup on canonical space (that is, our probability space is the space IIx of
all point functions on X).

Proposition 2 (Consistency)
For F € Dy N L¥(o(ALy, -+, ALy)),

(D) F)(P) = Y Loy <<ty (P 5 F) (0)

=1
for a.a. (p,t,z) € lIx x [0,T] x X.

If F € Dy, is a functional of L = (L;)o<t<r, Proposition 2 implies that

(Dt F)(p) = lim lz Yo-r<i<t} (O0,5e) BIF|ALL, -+, AL )(p) (5)
=1

for a.a. (p,t,z) € lIx x [0,T] x X. Note that in the Brownian motion case, the derivative
D on the Wiener space is defined via a similar relation to (5) with n = 2™ in [9]. Although
the proof is obvious by definition, this relation motivates us to generalize to higher order
operators. Following this approach in [9], we define, for functionals F' € Dy of L,

Déc-,:z:l,-n,:z:k)F € L2[O’ T] (6)

as the L2limit of the sequence

Z Lt <t<tyBf(20) - Ot s @) BIF|ALy, - - -, ALy
=1

if it exists.

3 Asymptotic Analysis for Errors
Assume that we are given a sequence F, = (F,,)%2, such that

> F, € L*(o(ALy,--- ,AL,)) foreachn=1,2,---.



Therefore we can apply to each F, our discrete Clark-Ocone formula along the n-equidistant
partition of [0, T, and then we define for m = 1,2,-- -,

Err,(F,;m)
= F, — E[F,]
-3 / E[d.16) Ve FIFD] [ NE*(ds: - - dspdas - - daw),
k=1 =1 v X* b 1< < <or <ty

which is the difference between F,, and what approximates F,, up to the m-th order with
using the discrete Clark-Ocone formula (3). As a convention, we write Err,(F;0) :=
F, — E[F,]. Note that the m = 1 case becomes

Brro(Fuil) = F, —E[F] - /x B[, f() FIFIN((t11, 1], dz),
I=1

which is the most interest for us, as explained in §1.

3.1 Preceding Literatures

Let us begin with the case of a one dimensional Brownian motion W = (W;)o<i<r
starting from zero. For a Wiener functional F', the Clark-Ocone formula enables us to
write T

F=E[F]+ / E[D,F|F]aw,,
0

where (F}¥ )o<t<r is the filtration generated by W, so that a natural candidate approxi-
mating " would be the Riemann-sum approximation, and then the error is given by

Err*(F) := F —E[F] - ) _ E[Dtl(n>F|J-'t?,i)]Am.

1=1
Although the Wiener functional F' and the definition of the error may differ depending

on the contexts, one has roughly the following results:

e Convergence in law of the normalized error:
T
V/nErrireck(py "2 % / E[D},F|F]dB; inlaw (7)
0

where F' = f(X7) with X = (X;)o<t<r denoting a diffusion defined via a stochastic
differential equation driven by the Brownian motion W (Bertimas-Kogan-Lo [4]). The
process B = (Bi)o<t<r is a Brownian motion independent of W. For general It6
processes, see Hayashi-Mykland [8].
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o L%-convergence of the error:
|Err™(F)||;2 = 0 asn — 00 (8)

with the order

— O(n™%?) when F = max{Xr — K,0}, max{K — X7,0} or F = f(X7) where f
is absolutely continuous with polynomial growth, and where X = (X;)o<t<r is &
diffusion process defined by a stochastic differential equation (Zhang [10]).

— O(n~/*) when F = 1|k, +00)(X7). Which is more irregular than the above, is shown
by Gobet-Temam (7).

— O(n®1/2) when F = f(Xr) with f belonging to a fractional Sobolev-type space
indexed by 6 € [0, 1/2) (Geiss-Geiss [5]). They revealed the reason why the absolute
continuity assumption on f was needed to get the O(n~1/2)-convergence (which is
the best possible) with equidistant time partitions.

— O(n=*/?) when F = f(Wr) with f € (D31(7), L*(7))1_s,w (Geiss-Hujo [6]). Where
(D2,1(77), L*(7))1-s,w is an interpolation space between Dy ; () = ]Dglf and L*(y) =
]Dg(), which are discrete (or finite dimensional) versions of Malliavin-Watanabe Sobolev
spaces Dy ; and D, , respectively.

— O(n™*/?) when F = f(Wr) € Dy, for 0 < s < 1 (Akahori-Amaba-Okuma [1]).
Furthermore, they deduced an inequality

(|Erri(f(Wr)llze < n~*"|| f(Wr)||p,,,

for every 0 < s < 1 and obtained an implication: f(Wr) € Dy, = f € (D21(7), L2(7))1-s,w-
This convergence result is extended to “stationary’ sequences in [1].

— O((m/n)“’/z) when F = f(A™W,, ...  A™MW,) € Dy, for 0 < s < 1 (Akahori-
Amaba-Okuma [1]). Where A™ is a fixed m-equidistant partition {t™}™, of
[0, 7). In fact, it holds that

. m —s/2
B (F)lls < (2) 1Pl

for every 0 < s < 1. It might be interesting that this inequality alludes roughly that
the convergence rate would get worse when m = n — oo, that is, when we consider
the approximations of generic truely infinite dimensional Wiener functionals.

3.2 A Central Limit Theorem for the Errors

Let us back to our settings. In this subsection, we assume that f = 1y for some
U € #x with n(U) =: A < +o0o. Therefore, the Lévy process L = (L;)o<i<r is just a



Poisson process N = (N;)o<t< With intensity A, given by
Nt = Lt = Np((O, t] X U)

Then by setting D,y := {t € [0,T] : N;- # N;} and p/(t) :== N; — N;_ for t € Dy, the
point process p’ = (p', D,y) is a stationary Poisson point process on the singleton {1}. In
the following, we denote D¥ := th 1,...,1) Which was defined in (6).

k-members

Theorem 3 (see [2, Theorem 4.1])
Let m € N. Suppose that F,, € Dy, for eachn = 1,2,--- and for some F € Dy 11, we
have

> F, - F in L*}(P),

T
> DIY'F exists for a.a. t € [0,T)] and / |Df*F, — DfYF|72dt — 0 as n — oo for
eachk=0,1,--- ,m and 0

T
> sup/ | DF"+2F,||22dt < +oo0.
n Jo

Then we have

T o~
E[D,FIF7]dN, \
Er;'n (F*, O) A1/20 T ) , )

At)~Y2Err, (Fy; 1 “— | E[D?F|FF }dB
@B (Esr) | | BRI E;
(At)"™/2Err, (F,; m) Am/2 T .

—~— [ BDrFIA aBr

V{im+ 1) Jo )
in probability on an extended probability space as n — oo, where (BY,---,B™) is an
m-dimensional Brownian motion.

Remark 2
(i) Due to the formula (4), one can discuss the corresponding result in the Brownian case,
which is already established in [1].

(ii) This theorem appears restrictive in its setting, since we take only f = 1y. This should
hold for more large class of f. For a generic f, we naturally expect that

Errn(F*; 0)
(At)™/2Err,(F.; 1)

(At)~™/?Err, (F,;m)

11



would converge to

( 4 /x E[Dys) FIF2IN, (dtdz) )

1
E‘/0/);P[D(Qt,m,zz)FIf?—]Wl(dtd:cldg;2)

- om) FIFE | Win(dtdz; - - - dz,p) )

\ o [ LEoR

in law as n — oo, where Wy (dtdz; - - -dzx) are independent Gaussian measures on
[0,T] x X*, and which is now in progress in [3].

As a corollary of Theorem 3, we can obtain

Corollary 4
T
Ifsup/ | D2E,||2,dt < 400 then ||Err,(F,;1)|z2 = O(n~1/2).
n Jo

Roughly speaking, this corollary says that if F, = (F,)%, is smooth enough and
their second differences are L?-bounded then the convergence rate is always assured to be
O(n~1/2). Therefore, in the next subsection, we are interested in the case where F, has
only low regularities.

3.3 Rate of Convergence under Only Low Regularity

Let ¢ : R — R be Borel measurable and we set F,, = ¢(Lr). Although it is an abuse
of a notation, we write F, = ¢(Lr).

Theorem 5 (Sobolev differentiability index is the rate of convergence, [3])
For every 0 < s < 1, we have

IErta(p(Lr); Dllze < n~*2llo(Lr) s,
Therefore, if p(Lt) € Dy, for some 0 < s < 1, we have ||Err,,(p(L7); 1)||22 = O(n=*/?).

Remark 3

One may naturally expect a similar result in the case where F, is coming from the Euler-
Maruyama approximation of a stochastic differential equation defining a diffusion. How-
ever, the corresponding result has not been obtained yet. A key to obtain such results
might be a derivation of a series of derivative estimates of the transition density associated
to the diffusion, in which the dependence on the order of derivative is described explicitly.
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