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Probabilistic Construction of Solutions

To Some Integral Equations
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Saitama, 338-8570 Japan

§1. Notations and assumptions

For simplicity, let Dy := R3\ {0}, and we put R, := [0,00). For every
a, B € C3, we use the symbol a3 for the inner product, and we define e, := /||
for every x € Dy. In this article we consider the following deterministic nonlinear
integral equation:

Pyt z) = uo(z / ds e’\s"”|2/ (s,z,y; u)n(z,y)dy
+ %/ ™ol (s, x)ds, for V(t,z) e Ry x Dy. (1)
0

Here u = u(t, ) is an unknown function : R, x Dy — C3, A > 0, and ug : Dy — C?
is the initial data such that u(t, z)|s=o = uo(z). Moreover, f(t,z) : R, x Dy — C3
is a given function satisfying f(t,z)/|z|> =t f € L*(R;). The integrand p in (1)
is given by

p(t, z,y; u)‘= u(:c, y) : 6m{u(t’ z— y) - ew(u(ta T—y)- ex)} (2)

On the other hand, we consider a Markov kernel K : Dy — Dy x Dy. Actually, for
every z € Dy, K,(dz, dy) lies in the space P(Dy x Dy) of all probability measures
on a product space Dy x Dy. When the kernel & is given by k(z,y) = i|z|2n(z,y),
then we define K, as a Markov kernel satisfying that for any positive measurable
function h = h(z,y) on Dy x Dy,

// (2, 9)K.(dz, dy) = / Wz, 2 — 2)k(z, 2)da. (3)

Moreover, we assume that for every measurable functions f,g > 0 on R¥,

[ Hiehwidz) [ aaks (o, dy) = [ glziwtas) [nubRatazan) @)

holds, where the measure v is given by v(dz) = |z|"3dz.
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§2. Main result

In this section we shall state our main result, which asserts the existence and
uniqueness of solutions to the nonlinear integral equation (1). As a matter of
fact, the solution u(t,z) can be expressed as the expectation of a star-product
functional, which is nothing but a probabilistic solution constructed by making
use of the below-mentioned branching particle systems and branching models. Let

M) (W) = [T Kiom Emt ms [uo, Fiw), (5)

be a probabilistic representation in terms of tree-based star-product functional
with weight (ug, f). For the details of the definition, see the succeeding sections.
On the other hand, MU (w) denotes the corresponding *-product functional with
weight (U, F). In fact, as to be seen in what follows, in a similar manner as the
case of a star-product functional we can construct a (U, F')-weighted tree-based *-
product functional MV (w), which is indexed by the nodes (z,,) of a binary tree.
Here we suppose that U = U(z) (resp. F = F(t,x)) is a non-negative measurable
function on Dy (resp. Ry x Dy) respectively, and also that F(-,z) € L'(Ry)
for each x. Indeed, in construction of the *-product functional, the product in
question is taken as ordinary multiplication * instead of the star-product ¥ in the
definition of star-product functional.

Theorem 1. Suppose that |ug(z)| < U(z) for Vz and |f(t,z)| < F(t,z) for
Vt,z, and also that for some T >0 (T >> 1 sufficiently large),

ET,a,-[M,fU’F)] <00, ae —< (6)

Then there exists a (ug, f)-weighted tree-based star %-product functional Mf:f of) (w),
indezed by a set of node labels accordingly to the tree structure which a binary crit-
ical branching process Z%=(t) determines. Furthermore, the function

u(t’ :L‘) = Et,z[Myo’ﬁ] ’ (7)

gives a unique solution to the integral equation (1). Here E, denotes the ezpecta-
tion with respect to a probability measure P, as the time-reversed law of Z%=(t).

§3. Branching model

In this section we consider a continuous time binary critical branching process
ZX=(t) on Dy, whose branching rate is given by a parameter A|z|%, whose branch-
ing mechanism is binary with equi-probability, and whose descendant branching
particle behavior (or distribution) is determined by the kernel K,. Next, taking



Parent particle Death
O > X with probability 1/2
OR
Parent particle Branching

O <g with probability 1/2

1: Binary Branching

notice of the tree structure which the process Z%=(t) determines, we denote the
space of marked trees

w= (t’ (tm)a (:Em), (nni)’ m € V) (8)

by Q. Furthermore, we write the time-reversed law of ZX=(t) being a probability
measure on  as P, € P(Q2). Here ¢ denotes the birth time of common ancestor,
and the particle z,, dies when 7,, = 0, while it generates two descendants Z,1, Zma
when 7,, = 1. On the other hand,

V= J{1,2}

£>0

is a set of all labels, namely, finite sequences of symbols with length ¢, which
describe the whole tree structure given. For w € ) we denote by M (w) the totality
of nodes being branching points of tree, and let N, (w) be the set of all nodes m
being a member of V \ N (w), whose direct predecessor lies in A'(w) and which
satisfies the condition tm(w) > 0, and let N_(w) be the same set as described
above, but satisfying t,,(w) < 0. Finally we put

N(w) = Ny(w) U N_(w). (9)

§4. Star-product functional and *-product functional

In what follows we shall intoduce a tree-based star-product functional in
order to construct a probabilistic solution to the class of integral equations (1)
First of all, we denote by the symbol Proj*(-) a projection of the objective element
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onto its orthogonal part of the 2 component in C3, and we define a y-product of
B, for z € Dy as
ﬂ*[zﬂ' = —l(ﬂ : ez)Prsz(’Y)' (10)
We shall define ©™(w) for each w € 2 realized as follows. When m € N, (w), then
O™w) = f(tm(w), Tm(w)), while O™(w) = ug(Tm(w)) if m € N_(w). Then we
define
B ms (W) = B oy [uo, fl(w) = 0™ (w) kg, 107 (w), (11)

S ms
where as for the product order in the star-product %, when we write m < m’
lexicographically with respect to the natural order <, the term ©™ labelled by m
necessarily occupies the left-hand side and the other ©™ labelled by m’ occupies
the right-hand side by all means. And besides, as abuse of notation we write

ng(w) = E?n,@[uo, flw) == 0™ (w), (12)

especially when m € V is a label of single terminal point in the restricted tree
structure in question.

NAza

[ 2: Example: A realized Tree

Under these circumstances, we consider a random quantity which obtained by
executing the star-product % inductively at each node in M (w), and we call it a
tree-based Y-product functional, and we express it symbolically as

M‘(:o’f) (w) = H *[mrh]Ez;.ma [UO, -f] (w)’ (13)
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where m; € M(w) and mgy,ms € N(w), and by the symbol [] % (as a product
relative to the star-product) we mean that the star-products %’s should be suc-
ceedingly executed in a lexicographical manner with respect to x; such that m €

N(w) N {|m| = £ — 1} when [m;| = ¢£.

Example 1. Now let us suppose that a tree structure w; (€ €2) has been realized
here (see Figure 2).
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3. Classification of Nodes

Next we shall classify those nodes in the realized tree w;. As a matter of fact, as
to those two particles located at z;; and x5 with nodes of the level |m| = ¢ = 2
accompanied by the pivoting node z;, we can construct

E%1,12(“’1) =o! (wl)*{m]@lz(wl)

by a star-product uo(z11 (w1)) ¥ x,jto(z12(w1)) in accordance with the rule, because
both m; = 11 and my = 12 lie in N_(w). As to the node z9;, how to construct
=(wy) is the almost same thing as described above. In fact, it goes similarly because
Zo11 lies in N, (w;) and 215 lies in N_(w;). According to the rule, it follows that

0 (wy) = f(tar1(wr), Tann(wy)) and O (wy) = uo(za12(wr)),
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hence 23}, 5;5(w1) is given by f(tara(wr), 211 (W1)) W (g1 Uo(T212(w1)), see Figure 3.
Consequently, we obtain finally
M,(:,“”f) (w1) = (uo(z11) Kz, U0 (Z12)) K[,
{ (f(tml, $211)*[m21]U0($212)) *[zz]f(t22, 3022)} . (14)
O

§5. Outline of proof: tree-based star-product functional as a solution
In this section we are first going to construct a (U, F)-weighted tree-based

x-product functional M{")(w), which is indexed by the nodes () of a binary
tree. Here recall that U = U(z) (resp. F' = F(t,z)) is a non-negative measurable
function on Dy (resp. R, x Do) respectively, and also that F(.,z) € L'(R,)
for each z. Moreover, in construction of the functional, the product is taken as
ordinary multiplication * instead of the star-product .

In what follows we shall give an outline of the proof of Theorem 1. We need the
following technical lemma, which plays an essential role in the proof.

Lemma 2. For 0 <t < T and x € Dy, the function V(t,z) = E,[M°F (w)]
satisfies

eAt|z|2V(t,1;) _ U@+ [}t dsi\l_;ﬁe,\slmh {F(s,x) + /V(s,y)V(s,z)Kw(dy,dZ)} .
(15)

As a matter of fact, the mapping : [0,7] > t — eV (¢,z) € R, is non-
decreasing, so that, it proves to be that

E; .[M"F (w)] < o0 (16)

holds for V¢ € [0,T] and = € E,, where E, is a measurable set on which the validity
of E; , [M,SU’F)] < 0o may be kept. Another important aspect for the proof consists
in establishment of the following M,-control inequality. That is to say, we have

M ()] < IMEP )] (17)
because of the validity of a simple inequality
lwik v < |w|-|Jv] for w,v€C® and z € D.

On the other hand, it is derived that the space of solutions to (1) is formed by the
condition

T
/ ds/ |u(s, y)| - |u(s, 2)|K(dy,dz) < 0o for z € E..
0
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A similar discussion as above leads to

:
u(t,z) = Et,m[Mf"’f) (Ww)] = e—/\tlwl"’uO(x) +/ ds )\|$‘2e—/\(t—~s)|z|2x
0
1 (-
*3 {f (s,2) + / / B0, [My [ K (0] Es [M*]Kz(dm1;d$2)}- (18)

Finally we can deduce that u(t, z) = Et,m[Mi“O’f )(w)] satisfies the integral equation
(1), and this u(t,z) is a solution lying in the space D. Actually, D is a space of
all functions ¢ : Ry x Dy — C3, being continuous in ¢.and measurable such that

/ dS/ |p(8,.’13,y; So)le(dy,dZ) < 00, a.e. — .
0
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