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Abstract

In this short note we shall discuss planar diffusions where each of its component
particles behaves locally like Brownian motion and the local characteristics of these
random motions are assigned by rank, in addition to name-based drifts. In the interest
of concreteness and simplicity we shall look at the system of particles competing
each other and colliding elastically.

The system we consider is a competing planar diffusion (X;(-), X2(:)), where the
leader has drift —h < 0 and dispersion p > 0, whereas the laggard has drift g > 0 and
dispersion o > 0, in addition to the name based drifts 7;, ¢ = 1,2, with

Ai=g+h>0, pP°+o*=1

for simplicity. At the times {t : X;(t) = X»(t)} of collisions of its component particles
in R, they interact through their left and right local times in a skew-elastic manner.

To be more precise, we shall construct and examine a probability space (2, F,P) en-
dowed with a filtration F = {F(t)}o<t<oo that satisfies the “usual conditions” of right
continuity and of augmentation by P—negligible sets, and on it two pairs (B;(-), Bz(*))
and (X;(-), X2(:)) of continuous, F—adapted processes, such that (B;(-), By(-)) is pla-
nar Brownian motion and (X;(-), X5(+)) is a continuous planar semimartingale that starts
at some given site (X1(0), X2(0)) = (z1,z2) € R? on the plane and satisfies

dXa(t) = (71 + 9w —h 1{X1(t>>x2(t)}) dt

+ (p 1{X1(t )>Xa(0)} T O 1{X1(t)§X2(t)}) dB(t)

+—=t Cl drXa—X2(g) 4 2"1 dLXe=Xa(y) | 1)

dX,(t) = (72 + 910> X201 — b 1{X1(t)SX2(t)}) dt

+ (P L, (ty<xae3 + 0 1{X1(t)>X2(t)}) dBs(t)

1o gpx-xiy. @)

1— G, oxox,
+ S arhrg ¢ 12

Here and in the sequel we denote by LX(.) = LX(-;0) the right-continuous local time
accumulated at the origin by a generic continuous semimartingale X (), i.e.,

1 t
LX(t) := 1;{512—5 Liocx(s)<eyd(X)(s); ¢2=0.
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Let us also denote by L¥(-) = L~X(-;0) its left-continuous version, and by L*(-) =
(L*(-) + LX(-))/2 its symmetric version. The system (1)-(2) is an extension of the
system considered in FERNHOLZ ET AL. (2013a), in the sense that the drift component
contains the name-based drifts +;, ¢ = 1,2. For some interpretations and applications
to Mathematical Finance problems we refer FERNHOLZ ET AL. (2013a).

In (1)-(2) with the notation ¢ := 1+((1—(2) /2, n = 1—(m—m) /2, v := g—h,
Y =21 —T3, 2 :=2T1+x2, 71 :=T1 VI, Ty := Ty NIy, weassume (+7n#0,

0<a:= 0 <1. (3)

¢+mn

The general theory of Martingale Problems developed by STROOCK & VARADHAN
(2006), KrRYLOV (1980) and BASS & PARDOUX (1987) tells us that the system has
the weak unique solution (2, F,P), (Xi(-),X2(-), Bi(-), B2(*)), (Ft), if it is non-
degenerate po # 0. Here we shall study the degenerate case po = 0 as well.

Let us briefly look at the system (1)-(2). The difference and the sum of the two com-
ponent process Y (-) := Xi(-) — Xa()), Z(-) := X1() + Xa(-) satisfy

Y(t) = y+ /0 t(%—vz—Asgn(Y(s)))dsHl-o LY(t)-1-n) LY t)+W(t), @)

Z(t) = z4+v+mn+1)t+V(Ee)+(1-C) LY @)+ (1-7) LY (t); 0<t<oo, (5

where sgn(-) := lis0p—Li<op> ¢ = ((1+¢2) /2, 7 == (m+m)/2 and V(-), W(:)
are standard Brownian motions defined by W(-) := pW;i(:) + oW,(-) and V(-) =
pVi(:) + oV(+) with a planar Brownian motion

Wi() = /0 | Livy>0y dBa(t) — /0 | Liv@<o} dBa(2),

Wa() = /0 | Livmy<oy dB1(t) — /0 | Liy >0y dBa(t)
and another planar Brownian motion

Vi() = /0 Ly dBi(t) + /0 Ly<o dBa(2),

Va(e) = / Livy<oy dBa(t) + / Liy(t)>0y dBs(2) -
0 0

Because of ITO’s isometry, we observe the amount of time that the process Y (-) stays
at the origin is zero almost surely, i.e.,

/ Ly@=opdt = / 1iypm=0d(Y)(t) = 0.
0 0

Then using this fact, we obtain the relations between the left and right continuous local
times

LY()-LI() = @=LV () - @ -nLE(),



or equivalently
and also for the symmetric LY (-) and for LIYI():
2LY(-) = LMI(), LY() = aLM(), L¥() = (1-a)LI().

Rewriting the left continuous local time LY(:) in (4), in terms of the symmetric local
time Zy() , we observe that as a special case of BASS & CHEN (2005), the equation (4)
admits a pathwise unique strong solution for all values of skewness parameter a € [0, 1].

Here we may construct further the other Brownian motions Q(-) and W*(-), V*(.),
UP() as Q() = o Vi() + pVa(), W'(:) = pWi() = a Wa(), V°(-) := p V() —
o Vo), U(+) := o Wy (:) — pWa(-) ; we note the independence of Q(-) and W(-), the
independence of Q(-) and V”(-), and observe the intertwinements among these Brown-
ian motions

GO =0 [ G-12, Vo= [ o)

and ) )
V()= /0 sgn(Y(¢))dW' (), Q)= /0 sgn(Y (¢))dU"(t).

Now let us construct the solution to the system (1)-(2) of stochastic differential equa-
tions by reverse-engineering. Given a planar Brownian motion (W;(-), W5(-)) on a fil-
tered probability space, we define W (-) := W;(-) + Wo(-) and then obtain the pathwise
unique, strong solution Y'(-) to (4), and then its local time L (-) accumulated at the ori-
gin. From the initial values (z1,z,) € R? and the processes (W1(-), Wa(-),Y (), LY (-))
we shall construct (X;(+), X2(+)), (Bi(-), Ba()) as

t
Xi(t) = +/ (71 + 9 Liy(s)<0y — h 1iv(s)>0)ds
0

t
+ / (P Ly (9501 dWi(s) + 0 1y (9)<0pdWa(s))
0

4 2 ”241 dr¥ () + %’Edﬁj(t), ©)

t
Xo(t) := zp + / (72 + 9 Ly ()>0) = A Ly (s)<0y)ds
0

t
- /0 (P Ly ()<} dWi(s) + 0 1y (s)>0ydWa(s))

n 1_%_(3 dL¥ (t) + 1—_27’3 dL¥ (8), )

as well as .
Bl(t) = / (1{y(s)>0}dW1(S) + l{y(s)so}dWQ(S)),
0
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¢
By(t) = —/ (1gv(s)<0pdW1(8) + Liv(s)>0pdWa(s))
0

for 0 <t < 00. One can verify that (X;(-), X2(-)) and (B;(-), Bs(-)) defined in (6)-(7),

in fact, satisfy (1)-(2). Thus in this way we may construct a weak solution to (1)-(2).
By TANAKA-MEYER formula the ranked versions (the leader and laggard, respec-
tively) Ri(-) := Xi(-) VXa2(:) and Ry(-) =: X1(-) A X2(-) of components satisfy

Ri(t) =m + /0 t (= h+m1ye>0 +72 lye)=<o)ds
+pVi(t) + (1 - (8/2)) LB~ (1),
Ry(t) = r2+ /0 t (9+ 72 Ly@>0r + M Livie<oy)ds
+o Va(t) — (8/2) L™~ (1),

for 0 < t < oo, where 8 := (n( + (%) /(n + (). By the sum R;(-) + Ry(-) =
Xi1(-)+X2(+) and the difference Y(-) = X;(-) —X2(-) we have the skew representation:

Xi(t) =z +pt+ (YT () —y") - (Y~ (1) —y7)

P~ O+ (1= -+ () +p0 Q) ®

Xo(t) = 22+t — A(YHE) — ) + Y1) ")
1 -

(P n )T () + (1~ 6~ A () +90 Q1) O
where p = gop? + g10? and TY(t) := [ sgn(Y(s))ds for 0 < t < oco. Since the
joint distribution (Y(t), LY (¢), T¥ (t)) is uniquely determined, and Q(t) is independent
of (Y(t), LY (t),T'¥(t)), the joint distribution of (X;(t), X2(t)) is uniquely determined.

Theorem 1. The system of stochastic differential equations (1)-(2) is well-posed, that is,
has a weak solution which is unique in the sense of the probability distribution.

Let us denote the filtrations X (¢) := ¢(X(s),0 < s <), 0 <t < co generated
by the generic semimartingale X (-). In the degenerate case 0 = 0 and p = 1, we have
the relations

FEE(Y) = 5 (1) =) G FHT) = 5§V () =F ()

for every 0 < t < oo, where the inclusion is strict. In the special case 3 = 1 we have
in addition o(V(t)) = o(Xi(t) + X2(t)), thus also FV(t) = FX17X2(¢), for every
0 <t < 0o. In the non-degenerate case po > 0, we have for every 0 < ¢ < oo the
filtration relations

S(Vl,Vz)(t) — S(RI‘RZ)(t) — %(|Y|,V)(t) = %’(]YLQ)(t)

gS(Y’Q)(t) = F¥V() = gM(p) = gEXa(y),



where the inclusion is strict. These filtration equalities and inequalities can be verified in
the same manner as in FERNHOLZ ET AL. (2013a). The key observation here (and also in
FERNHOLZ ET AL. (2013a)) for the case of p # o is about pathwise uniqueness of the
following extended skew TANAKA equation:

Y(t) =y+ ——/ sgn(Y(s))dB(s) — \/_ 19(t) +2(2a — 1)Ly(t) (10)

where 5gn(-) := 1{s0} — 1{<o} and (B(-),¥(-)) is planar Brownian motion. The
- original TANAKA equation driven by Brownian motion 3(-):

Y@=yt [ sgn(¥ ())dB(s) an

does not admit pathwise unique, strong solution, however, its perturbed version (10) does
(e.g., PROKATJ (2013), FERNHOLZ ET AL. (2013ab)). With these considerations we obtain
the following.

Theorem 2. The system of stochastic differential equations (1)-(2) admits a pathwise
unique, strong solution. In particular, the filtration identity FB1P2)(t) = FEXu.X2)(¢)
holds for t > 0.

e Following the analysis of FERNHOLZ ET AL. (2013b) one can show that each of B;(-)

and B,(-) is complementable by the other one in F"W:W2)(.), and so also maximal in

the sense of BROSSARD & LEURIDAN (2008). Similarly, the pairs of W(-) and U”(.),
U(-) and W" are complement each other in FW+W2)(.). 14(- ) is complementable by
W2(-) and V3(-) is complemantable by Wi(-), however, V;(-) is not complemented by
Va() in W)

e In this planar diffusion case we may compute explicitly the transition probability and
time-reversal of the planar diffusions for (1)-(2) from the skew representation (8)-(9) and
the properties of skew Brownian motion with bang-bang drifts. For instance, in the case
of <2 and 71 = 72 = 0 with degeneracy p = 0, 0 = 1, we obtain

P(Xl(t) € dfl, Xg(t) € d{g)

~ (20) —2 @8 . _ (= 2t)?
= (20): 5= - Ve { - R Ldede,

where ¢3 := (;_g)&“‘fz— 2€B>x1~x2+(2 g)ht
for £, > & and & > z; — ht, and
P(X:(2) € d&y, Xa(t) € d&)
2e-DE-8) | At)?
2—8 Vonpd eXp{_—

where ¢4 = (4 g)@—gl ( ﬂﬂ)zl—x2+(2 g)ht

=2(1-a)- }d&d&z,
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for £, > & and & > ;1 — ht. Furthermore, for the case {; = z; — ht > &, the local
time LY (-) does not accumulate, that is, the transition density is

P(X1(t) = 21 — ht, X(t) € d&) =

_ 1 (exp{-— (a—x1+$2+)\t)2}

V2mt 2t
2 _ (a4 =z + M)
€ &p { 2t }) a=m1—§2—htd£1 )

The transition densities for all the other cases are computable from the skew representa-
tions (8)-(9).

e For afixed T > 0 what is the dynamics of its time reversal X;(t) := X;(T —
t) — X;(T)? It follows from the skew representations (8)-(9) that with the backwards
filtration F(t), 0 < ¢t < T generated by Y(T), W(-) := W(T — ) - W(t), Q(-) :=
Q(T — -) — Q(T) the time reversal (X1(t), Xa(t)) for 0 < ¢ < T is given by

Xi(t) = —pt+pA(Y*(t) - ¥*(0)) - > (Y ~() - Y(0))

(PN () +(1- -+ T ()00 Q) (12)
Xa(t) = —pt = o*(¥YH(t) - Y(0)) + (Y (1) - Y(0))
—%(ptaﬁ)(%—72)F‘7(t)+(1—6—p2+02)3f’(t)+paé(t), (13)

where Y (t) := Y(T' —t) for 0 < ¢t < T. The time-reversal process (X1(-), X2())
has some applications to the study of financial equity markets (e.g., FERNHOLZ ET AL.
(2013)).

e What is the solvability of TANAKA equation (11) or the extended skew TANAKA
equation (10) driven by general semimartingales (i.e., after replacing Brownian motion
(B(-),9(-)) by general semimartingales)? This question is partially answered in ICHIBA
& KARATZAS (2014) for the skew TANAKA equation. An interesting case is the TANAKA
equation driven by OCONE martingales, in which the equation does not necessarily de-
termine the probability distribution uniquely anymore. That is a contrast from the case of
Brownian driven TANAKA equation (11).

e The study of skew TANAKA equation provides an excursion theoretic construction of
the solution to (1)-(2) in the following way.

Given the planar diffusion (X;(-), X2(-)) without friction,ie., 7, =¢=1,¢=1,2
on a probability space (2, §,P,F) with po > 0, and given any (n},¢}), ¢ = 1,2
with the condition (3), there exists a planar diffusion (X7 (-), X5(-)) with skew-elastic
collisions of given parameter (7},(}), ¢ = 1,2 on an enlargement (Q*, §*,P*, F*) such
that

(Xa(t) = Xa(t) + sup (Xa(s) ~ Xa(s))* = IX(8) = X5 (0,



for 0 <t < co. For the details of construction we refer ICHIBA & KARATZAS (2014).

e When o = 1, ( = 0, n # 0,thatis, (o, — (4 = 2 # m — 19, collisions
of particles occur with perfect reflections. Another perfect reflection is the case a =
0. Those two cases correspond to one-dimensional reflected Brownian motion. When
1-¢Gn+(1-m)¢ =0(g,m =1, = 1,1 = 1,2), the local time components
in (1)-(2) disappear, that is, there is no friction in the collisions of particles. Neither of
those cases is of elastic collision. Another interesting case n¢ + (7 = 0 is Brownian
motion reflected on another independent Brownian motion studied by SOUCALIUC, TOTH
& WERNER (2000), BURDZY & NUALART (2002) and others.

e In general, we may consider multidimensional stochastic differential equations that
involve local time supported on a smooth hyper surface starts with the work of AN-
ULOVA (1978), PORTENKO (1979) and TOMISAKI (1980), followed by OSHIMA (1982),
TAKANOBU (1987), SZNITMAN & VARADHAN (1986) and others. The recent work of
KARATZAS ET AL. (2012) studies systems of the form

dXi(t) = Y Lixig=xg @y (% + 0dt + 0xdBi(t)) (14)
k=1 .

- 1 _ 1 .
3" Lo [ (65— ) A0 X e (6)— (g - JdLFe-n—Xo 1)

k=1 )
where (X(1)(+), ..., X(n)(-)). are the reverse order statistics, i.e., X(1)(-) > -+ > X(n)(*),
and 9y, o}, q,f(z 0) are some constants that satisfy g +q,f+1 =0,k=1,...,n—1,

t=1,...,nfor 0 <t<oo.
In the no friction case with q,f = 1/2 and o4 > 0 in (14) the system admits the
pathwise, strong solution up to the time 7 of triple collision :

7 := inf{s: X(s) = X;(s) = Xi(s) for some different indices(s, j, k) }

(e.g., ICHIBA, KARATZAS & SHKOLNIKOV (2013)). Then strong solvability of the sys-
tem (14) reduces to the problem of finding the triple collision probability P(7 < o). For
the recent development of this line of research we refer KARATZAS ET AL. (2012) and
SARANSTEV (2013). This study is closely related to the theory of reflected diffusions in
nonnegative orthants and more generally, in polyhedral domains.
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