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1 INTRODUCTION

This note is a short review of the paper [9] which is written by the author, M. Erbar and
K.-Th. Sturm.

There are several different ways to characterize $Ric\geq K$ and $\dim X\leq N$ on a
Riemannian manifold $X$ , where $K\in \mathbb{R}$ and $N\in(0, \infty)$ . Among them, the curvature
dimension condition introduced by Sturm [24], Lott and Villani [15] works well even in
the framework of abstract metric measure spaces. It is described in terms of optimal
transportation and it possesses many nice geometric stability properties. On the other
hand, Bochner’s inequality introduced by Bakry, and Emery is formulated for an abstract
diffusion generator. As Bochner’s formula has played significant roles in Riemannian
geometry, Bochner’s inequality provides enormous important functional inequalities in
geometric analysis. The purpose of the paper [9] is to unify these two concepts by intro-
ducing new conditions equivalent to either (and hence both) of them on metric measure
spaces. When $N=\infty$ , this program was essentially finished by Ambrosio, Gigli, Savar\’e

and their collaborators [1-4] and our main focus is in the case $N<\infty.$

2 FRAMEWORK AND MAIN RESULTS

Let $(X, d, m)$ be a Polish geodesic metric measure space, where the measure $m$ is locally
finite and a-finite. Here “geodesic space” means that the distance coincides with the
infimum of the length over all curves with fixed endpoints and a minimizing curve exists
(We call it geodesic). Suppose suppm $=X$ for simplicity. Fix $K\in \mathbb{R}$ and $N\in(0, \infty)$ .
Let us introduce comparison functions: for $\kappa\in \mathbb{R}$ and $\kappa\theta^{2}\leq\pi^{2},$

$\mathfrak{s}_{\kappa}(\theta):=\frac{\sin(\sqrt{\kappa}\theta)}{\sqrt{\kappa}}, \sigma_{\hslash}^{(t)}(\theta):=\frac{\mathfrak{s}_{\kappa}(t\theta)}{\mathfrak{s}_{\kappa}(\theta)}.$

We call a function $V$ on a metric space $(Y, d_{Y})(K, N)$ -convex if for each $x,$ $y\in Y$ there
is a constant speed geodesic $\gamma$ : $[0, 1]arrow Y$ from $x$ to $y$ such that the following holds:

$V_{N}(\gamma_{t})\geq\sigma_{K/N}^{(1-t)}(d_{Y}(x, y))V_{N}(\gamma_{0})+\sigma_{K/N}^{(t)}(d_{Y}(x, y))V_{N}(\gamma_{1})$ , where $V_{N}$ $:= \exp(-\frac{1}{N}V)$ .

We call $V$ strongly’ $(K, N)$ -convex if the last inequality holds for each (and at least one)
geodesic $\gamma$ . This is an integral formulation of the following inequality in the distributional
sense:

$\partial_{t}^{2}V_{N}(\gamma_{t})\leq-\frac{K}{N}d(x, y)^{2}V_{N}(\gamma_{t})$ .
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If $V$ is $C^{2}$-fUnction on a Riemannian manifold, then $V$ is $(K, N)$-convex if and only if

Hess V $- \frac{1}{N}\nabla V\otimes\nabla V\geq K.$

Let $\mathscr{P}_{2}(X)$ be the $L^{2}$-Wasserstein space, consisting of probability measures on $X$ with
finite second moment, equipped with the $L^{2}$ -Wasserstein distance $W_{2}$ given by

$W_{2}(\mu, \nu)$ $:= \inf$ { $\Vert d\Vert_{L^{2}(q)}|q$ : a coupling of $\mu$ and $\nu$ }.

Note that $(\mathscr{P}_{2}(X), W_{2})$ is also a Polish geodesic metric space. Moreover, for each $\mu_{0},$ $\mu_{1}\in$

$\mathscr{P}_{2}(X)$ , we can always find a probability measure $\pi$ on the space of constant speed
geodesics Geo(X) parametrized by $[0$ , 1$]$ whose projections consist of a $W_{2}$-geodesic in
$\mathscr{P}_{2}(X)$ . To state it more precisely, we denote the evaluation map $Geo(X)arrow X$ by $e_{t},$

that is, $e_{t}(\gamma)$
$:=\gamma_{t}$ for $\gamma\in Geo(X)$ and $t\in[0$ , 1$]$ . We also denote the push-forward of a

measure by $e_{t}$ by $e_{t}^{\#}$ . Then we call $\pi$ a dynamic optimal coupling if $\pi\in \mathscr{P}(Geo(X))$ such
that $e_{i}^{\#}\pi=\mu_{i}$ for $i=0$ , 1, $(e_{t}^{\#}\pi)_{t\in[0,1]}$ is a $W_{2}$-geodesic and $(e_{ts}^{\#_{\pi,e}\#_{\pi)}}$ is a optimal coupling

of $e_{t}^{\#}\pi$ and $e_{s}\pi\#$ for each $s,$ $t\in[0$ , 1 $].$

We denote the relative entropy by Ent: For $\mu\in \mathscr{P}(X)$ ,

$Ent(\mu):=\{\begin{array}{ll}\int_{X}\rho\log\rho dm if \mu=\rho m with (\rho\log\rho)_{+}\in L^{1}(X, m) ,\infty otherwise.\end{array}$

We say that $(X, d, m)$ satisfies the (strong) entropic curvature dimension condition with
parameters $K$ and $N$ $(CD^{e}(K, N)$ in short) if Ent is (strongly) $(K, N)$-convex on $\mathscr{P}_{2}(X)$

respectively.
Let Ch be Cheeger’s $L^{2}$ -energy functional given by a relaxation of the energy functional

associated with local Lipschitz constants. That is,

$Ch(f):=^{\underline{1}} \lim\inf \lim_{narrow}\inf_{\infty}\int_{X}|\nabla f_{n}|^{2}dm,$

2
$f_{n}arrow finL^{2}(m)f_{n}:$

Lipschitz

where $|\nabla f_{n}|$ is the local Lipschitz constant of $f_{n}$ . It can be written as an energy integral
in terms of the weak upper gradient $|\nabla f|_{w}$ , i.e.

Ch $(f)= \frac{1}{2}\int_{X}|\nabla f|_{w}^{2}dm$

(see [3]). We say $(X, d, m)$ infinitesimally Hilbertian if Ch coincides with a closed sym-
metric bilinear form $\mathcal{E}:2Ch(f)=\mathcal{E}(f, f)$ . In this case $\mathcal{E}(f,g)$ has a density denoted by
$\langle\nabla f,$ $\nabla g\rangle$ and in particular $|\nabla f|_{w}^{2}=\langle\nabla f,$ $\nabla f\rangle$ m-a.e. (see [4]). Let $\triangle$ be the associated
generator of $\mathcal{E}$ and $T_{t}$ a Markov semigroup generated by $\triangle$ . Note that $(X, d, m)$ need not
be infinitesimally Hilbertian in order to define $T_{t}$ or $\triangle$ (see [3]).

Example 2.1 Let $(X, d, m)$ be an $N$ -dimensional complete connected Riemannian man-
ifold, $\partial X=\emptyset$ , equipped with the Riemannian distance $d$ and the Riemannian volume
measure $m$ . Suppose $Ric\geq K.$ Let $V$ be $a(K’, N’)$ -convex function on $(X, d)$ . Then
$(X, d, e^{-V}m)$ satisfies $CU(K+K’,$ $N+N$ In this framework, $Ch$ coincides with the
usual Dirichlet energy (with respect to $e^{-V}m$ instead of $m$) and hence $(X, d, e^{-V}m)$ is
infinitesimally Hilbertian.
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To derive a nice geometric properties, the curvature dimension condition $CD(K, N)$

introduced first by Sturm [24] (Lott and Villani [15] also, when $K=0$ and $N<\infty$”

or $N=\infty)$ is modified to a reduced one $(we$ denote $it by CD^{*}(K, N)$ ) by Bacher and
Sturm [6]. We say $(X, d, m)$ satisfies $CD^{*}(K, N)$ if, for $\mu_{0}=\rho_{0}m,$ $\mu_{1}=\rho_{1}m\in \mathscr{P}(X)$ with

bounded supports, there exists an optimal coupling $q$ of them and a geodesic $\mu_{t}=\rho_{t}m\in$

$\mathscr{P}_{2}(X)$ with bounded supports such that for all $t\in[O$ , 1$]$ and $N’\geq N$ :

$\int_{X}\rho_{t}^{-1/N’}d\mu_{t}\geq\int_{XxX}[\sigma_{K/N}^{(1-t)},(d(x_{0}, x_{1}))\rho_{0}(x_{0})^{-1/N’}$

$+\sigma_{K/N}^{(t)},(d(x_{0}, x_{1}))\rho_{1}(x_{1})^{-1/N’}]q(dx_{0}, dx_{1})$ .

The strong $CD^{*}(K, N)$ can be defined analogously. Note that $CD^{*}(K, N)$ is a priori weaker
than $CD(K, N)$ and it is really weaker (see [17]). In what follows, we sometimes require
the following assumption. We will mention it explicitly when they are required.

Assumption 1

(a) There exists $c>0$ such that $\int_{X}\exp(-cd(x, x_{0})^{2})dm<\infty$ for some $x_{0}\in X.$

(b) $(X, d, m)$ is infinitesimally Hilbertian.

(c) Every $f\in L^{2}(m)$ with $Ch(f)<\infty and|\nabla f|_{w}\leq 1$ m-a. $e$ . has $a$ 1-Lipschitz represen-
tative.

We now turn to state our first main theorem, which extends the main theorem in [1,4]
to the case $N<\infty.$

Theorem 2.2 The following are equivalent:

(i) Assumption 1 (b) and $CD^{*}(K, N)$ holds.

(ii) Assumption 1 (b) and $CD^{e}(K, N)$ holds.

(iii) Assumption 1 (a) holds, and for each $\mu\in \mathscr{P}(X)$ with $Ent(\mu)<\infty$ there exists
a solution $(\mu_{t})_{t\geq 0}$ to the $(K, N)$-evolution variational inequality ($EV\ovalbox{\tt\small REJECT}_{K,N}$ in short)
with $\mu_{0}=\mu$ . That is, $(\mu_{t})_{t\geq 0}$ is a locally absolutely continuous curve in $\mathscr{P}_{2}(X)$ and,

for each $\sigma\in \mathscr{P}_{2}(X)$ ,

$\frac{d}{dt}\mathfrak{s}_{K/N}^{2}(\frac{W_{2}(\mu_{t},\sigma)}{2})+K\mathfrak{s}_{K/N}^{2}(\frac{W_{2}(\mu_{t},\sigma)}{2})$

$\leq\frac{N}{2}(1-\exp(-\frac{1}{N}$ (Ent $(\sigma)$ –Ent $(\mu_{t})$ ) $))$

Note that $CD^{e}(K, N)$ implies Assumption 1 (a). Moreover, the condition (ii) implies As-
sumption 1 (c). Since Assumption 1 (b) is included in the condition (i) or (ii), Assumption
1 is satisfied if either one of $(i)-(iii)$ is satisfied.
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In the condition (iii), the solution $\mu_{t}$ to $E\fbox{Error::0x0000}|_{K,N}$ can be regarded as a gradient flow of
Ent (in a stronger sense). It was (at least heuristically) known that the gradient flow of
Ent coincides with the heat distribution. We can verify it in this framework (see [3]) and
this fact together with Theorem 2.2 connects the curvature dimension condition in terms
of the optimal transportation with analysis of the heat semigroup $T_{t}$ . This connection
was hidden in $CD^{*}(K, N)$ when $N<\infty$ since there appears no Ent while $CD(K, \infty)$ is
written in terms of Ent. Thus, by introducing the new condition $CD^{e}(K, N)$ , we succeed
in keeping this connection even when $N<\infty.$

We call that $(X, d, m)$ satisfies $RCD^{*}(K, N)$ (Riemannian curvature-dimension con-
dition) if one of the conditions $(i)-(iii)$ is satisfied. Next we will state the connection
between $RCD^{*}(K, N)$ and the behavior of heat distributions or Bochner’s inequality.

Theorem 2.3 If $(X, d, m)$ satisfies $RCD^{*}(K, N)$ , the the following holds:

(iv) [Space-time $W_{2}$-control] For $\mu_{0},$ $\mu_{1}\in \mathscr{P}_{2}(X)$ and $t,$ $s\geq 0,$

$\mathfrak{s}_{K/N}^{2}(\frac{W_{2}(T_{t}\mu_{0},T_{s}\mu_{1})}{2})$

$\leq e^{-K(s+t)}\mathfrak{s}_{K/N}^{2}(\frac{W_{2}(\mu_{0},\mu_{1})}{2})+\frac{N}{2}\frac{1-e^{-K(s+t)}}{K(s+t)}(\sqrt{t}-\sqrt{s})^{2}$

(v) [Bakry-Ledoux gradient estimate] For $f\in D(Ch)$ and $t>0,$

$| \nabla T_{t}f|_{w}^{2}+\frac{2tC(t)}{N}|\triangle T_{t}f|^{2}\leq e^{-2Kt}T_{t}(|\nabla f|_{w}^{2})$ $m$ - $a$ . $e.,$

where $C(t)>0$ is a function satisfying $C(t)=1+O(t)$ as $tarrow 0.$

(vi) [(weak) Bochner’s inequality] For $f\in D(\triangle)$ with $\triangle f\in D(Ch)$ and all $g\in D(\Delta)\cap$

$L^{\infty}(X, m)$ with $g\geq 0$ and $\triangle_{9}\in L^{\infty}(X, m)$ ,

$\frac{1}{2}\int_{X}\triangle g|\nabla f|_{w}^{2}dm-\int_{X}g\langle\nabla f, \nabla\Delta f\rangle dm\geq K\int_{X}g|\nabla f|_{w}^{2}dm+\frac{1}{N}\int_{X}g(\triangle f)^{2}dm.$

Conversely, if Assumption 1 holds, then one of $(iv)-(vi)$ implies $(i)-(iii)$ and hence $(i)-(vi)$

are all equivalent.

Note that we can extend the heat semigroup $T_{t}$ to a linear operator on the space of
probability measures when Assumption 1 holds (see [2-4]). We should interpret $T_{t}$ in (iv)
in this sense. The constant $C(t)$ in (v) can be explicit, but it becomes different if we obtain
it from (iv) or from (vi). However, the exact value of $C(t)$ is irrelevant to the implications
from (v). The reason why we call (vi) weak is in the fact that we formulate the condition
in integral form by using a test function $g$ . All the conditions $(i)-(vi)$ becomes weaker as
$K$ decreases and $N$ increases. In particular, by taking $Narrow\infty$ , in a suitable way, we can
recover the corr’esponding conditions for $N=\infty.$

As a review, we mention an overview of the proof of Theorem 2.2 and Theorem 2.3.
First of all, we remark that the essence of the proof is mostly similar to the one in the case
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$N=\infty$ studied in [1, 2,4], although they are technically more involved and require some
new idea in many cases. Possibly, the most difficult part of the proof of the equivalence is
to find the conditions (ii) and (iv). Actually, the conditions (i), (v) and (vi) are already
known and (iii) can be found from (ii). Implications dealt in the proof of Theorem 2.2
and Theorem 2.3 are hsted as follows:

$\bullet$ (i) and (ii) are equivalent.

$\bullet$ (ii) and (iii) are equivalent.

$\bullet$ (iii) implies (iv) and Assumption 1.

$\bullet$ (iv) and Assumption 1 implies (v).

$\bullet$ Under Assumption 1 (b), (v) is equivalent to (vi).

$\bullet$ Under Assumption 1, (v) implies (ii).

Among them, we discuss something more on the equivalence between (i) and (ii) because
we require an additional argument which does not appear in the case $N=\infty$ . Indeed, as
$Narrow\infty,$ $CD^{*}(K, N)$ and $CD^{e}(K, N)$ yield the same condition (so-called $CD(K,$ $\infty$ A key
observation is that we can localize $CD^{*}(K, N)$ along each geodesic in the following sense:
If $CD^{*}(K, N)$ holds and $(X, d)$ admits no branching geodesics, then for $\mu_{0},$ $\mu_{1}\in D(Ent)$

with bounded support, there exists a dynamic optimal coupling $\pi$ of $\mu_{0}$ and $\mu_{1}$ such that,
$e_{t}^{\#}\pi\ll m$ (we denote $e_{t}^{\#}\pi=\rho_{t}m$) for each $t\in[O$ , 1$]$ and

$\rho_{t}(\gamma_{t})^{-1/N}\geq\sigma_{K/N}^{(1-t)}(d(\gamma_{0}, \gamma_{1}))\rho_{0}(\gamma_{0})^{-1/N}+\sigma_{K/N}^{(t)}(d(\gamma_{0}, \gamma_{1}))\rho_{1}(\gamma_{1})^{-1/N}$ (2.1)

for $\pi-a.e.$ $\gamma\in Geo(X)$ . We can recover $CD^{*}(K, N)$ from (2.1) by integrating it by $\pi$

and hence (2.1) is equivalent to $CD^{*}(K, N)$ under the “non-branching” assumption. On
the other hand, by taking a logarithm on the both hand side of (2.1) and integrating
it by $\pi$ together with the Jensen inequality, we can obtain $CD^{e}(K, N)$ . In addition, we
can also localize $CD^{e}(K, N)$ to derive (2.1) and hence $CD^{e}(K, N)$ is equivalent to (2.1)
under the “non-branching” assumption again. Thus the equivalence holds under the “non-
branching” assumption. Under the condition (i) or (ii), we can employ the result in [19]
and it follows that geodesics in $(X, d, m)$ are essentially non-branching. It is weaker than
the “non-branching”’ assumption but it is suffcient to make the same argument as above
valid. Hence the equivalence of (i) and (ii) follows. Note that, as a by-product of the
proof, strong $CD^{*}(K, N)$ or strong $CD^{e}(K, N)$ holds if $RCD^{*}(K, N)$ holds.

3 PROPERTIES, APPLICATIONS AND RELATED RESULTS

First we review some properties of $RCD^{*}(K, N)$ . From geometric point of view, this
condition behaves well under deformations. For instance, $RCD^{*}(K, N)$ is stable under the
convergence of metric measure spaces: If a sequence of metric measure spaces satisfying
$RCD^{*}(K, N)$ with a universal $K$ and $N$ converges in the measured Gromov-Hausdorff
topology or $\mathbb{D}$-topology introduced in [24], then the metric measure space in the limit
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enjoys the same condition (See [11] in the case that $X$ is not compact). $RCD^{*}(K, N)$ is also
stable under tensorization: If we take a product of two metric measure spaces satisfying
the Riemannian curvature dimension condition (with possibly different parameter), then
the product metric measure space again satisfies the condition as it does for Riemannian
manifolds. In addition, $RCD^{*}(K, N)$ enjoys a local-to-global property. Roughly speaking,
if $RCD^{*}(K, N)$ holds on (possibly small) open sets which covers the whole space with the
same parameter $K$ and $N$ , then the whole space satisfies the $RCD^{*}(K, N)$ . Stability under
taking a cone is also proved [13]. Note that, as a consequence of Theorem 2.3, all the
same stability holds for $(iv)-(vi)$ if it is combined with Assumption 1.

As geometric applications, it is known that $CD^{*}(K, N)$ produces several sharp com-
parison theorems in Riemannian geometry. For example, $CD^{*}(K, N)$ yields the measure
contraction property $MCP(K, N)[8]$ . As a result, the Bishop-Gromov volume compar-
ison theorem, the Bonnet-Myers diameter bound etc. hold with a sharp constant. In
particular, the local uniform volume doubling property and the local uniform Poincar\’e

inequality holds [18, 20]. In other direction, a natural extension of the maximal diameter
theorem holds under $RCD^{*}(K, N)[13]$ . It describes what happens if the equality in the
Bonnet-Myers diameter bound is attained, and the result is as optimal as we can expect.
Note that the proof of this theorem in [13] requires (vi), and hence Theorem 2.3.

The curvature-dimension condition has a strong connection with several functional
inequalities. In particular, when $K>0$ and $N=\infty$ , it is well known that $CD(K, \infty)$

yields the so-called HWI inequality and it produces the logarithmic Sobolev inequality,
and Talagrand’s transport inequality (see e.g. [25]). By a similar argument, $CD^{e}(K, N)$

with $K>0$ and $N<\infty$ produces the following analogous inequalities:

$\bullet$ [$N$-HWI inequality] For $\mu_{0},$ $\mu_{1}\in \mathscr{P}_{2}(X)$ with $\mu_{0}=\rho m,$

$\exp(\frac{1}{N}(Ent(\mu_{0})-Ent(\mu_{1})))$

$\leq \mathfrak{s}_{K/N}’(W_{2}(\mu_{0}, \mu_{1}))+\frac{1}{N}\mathfrak{s}_{K/N}(W_{2}(\mu_{0}, \mu_{1}))\sqrt{\int_{X}\frac{|\nabla\rho|_{w}^{2}}{\rho}dm}$

$\bullet$ [N-log Sobolev inequality] Suppose $m\in \mathscr{P}_{2}(X)$ . Then for $\mu\in \mathscr{P}_{2}(X)$ ,

$KN( \exp(\frac{2}{N}\dot{E}nt(\mu))-1)\leq\int_{X}\frac{|\nabla\rho|_{w}^{2}}{\rho}dm.$

$\bullet$ [$N$-Talagrand inequality] Suppose $m\in \mathscr{P}_{2}(X)$ . Then for $\mu\in \mathscr{P}_{2}(X)$ , we have
$W_{2}(\mu, m)\leq\pi\sqrt{N}/4K$ and

$W_{2}(\mu, m)\leq\sqrt{\frac{N}{K}}\arccos(\exp$ $(- \frac{1}{N}$ Ent $(\mu)))$ .

Note that the $N$-Sobolev inequality yields the global Sobolev inequality (with a possibly
non-optimal constant). See [7, Proposition 6.2.3]. By other means, we can obtain a sharp
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global Poincare or the spectral gap inequality involving $N$ and $K$ on spaces satisfying
$RCD^{*}(K, N)$ . It immediately yields a lower bound of the first nonzero eigenvalue of $-\Delta$

$($Note that $RCD^{*}(K, N)$ with $K>0$ and $N<\infty$ implies the compactness of $X$). We do
not know what happens if the equality holds on $RCD^{*}(K, N)$ spaces.

The $RCD^{*}(K, N)$ condition also ensures some sort of regularity of the solution to the
heat equation, or the heat semigroup $T_{t}$ . First of all, on spaces satisfying $RCD^{*}(K, N)$ ,
the heat semigroup $T_{t}$ is associated with a heat kernel density with respect to $m$ which
enjoys the two-sided Gaussian bound since the local Poincar\’e inequality and the volume
doubling property hold (See [23]). Note that the absolute continuity also follows from the
fact $T_{t}\mu,$ $\mu\in \mathscr{P}(X)$ coincides with the gradient flow of Ent since $Ent(T_{t}\mu)<\infty$ implies
$T_{t}\mu\ll m$ . In addition, $RCD(K, \infty)$ ensures the Lipschitz continuity of $T_{t}f(f\in L^{2}(m))$ ,
the heat kernel and in particular eigenfunctions [1, 4]. More precisely, we can obtain
the following quantitative Lipschitz regularization bound for $T_{t}($ [ $4$ , Proposition 6.9]
or [1, Theorem 7.3]):

$|\nabla T_{t}f|\leq\sqrt{\frac{K}{e^{2Kl}-1}}\Vert f\Vert_{\infty}.$

Note that this estimate is related with Assumption 1 (c) (See [1, 2, 4 By a potential
theoretic approach based on the parabolic Harnack inequality, it is known that the two-
sided Gaussian bound implies the H\"older continuity of the heat kernel. We can improve
it if $(X, d, m)$ satisfies the stronger assumption $RCD^{*}(K, N)$ .

Finally we exhibit related results appeared after [9]. Some of them are already men-
tioned at the end of the second version of [9] and hence we treat what is not mentioned
there. The list is probably far from being complete but the author hopes it is helpful for
readers. First, F.-Y. Wang’s dimension-free Harnack inequality is extended to $RCD(K, \infty)$

spaces [14], with the aid of a self-improvement of the gradient estimate in [21]. The local-
ized version of the Bochner’s inequality (vi) and its relation with (vi) are studied in [5].
The behavior of Bochner’s inequality under transformations in Riemannian geometry and
in the theory of Dirichlet forms is discussed in [22]. The $(K, N)$-convexity for $N<0$
is considered in [16]. Even in that case, many results still hold true but some do not.
Especially the connection between $(K, N)$-convexity of the relative entropy and behavior
of heat distributions does not seem to be completely understood. The question on the
existence and the uniqueness of the optimal transport map on $RCD^{*}(K, N)$ spaces and its
relation with an extension of the exponential map on those spaces are discussed in [12].
We will close this exhibition by remarking that there are ongoing extensive studies on
geometric structure of $RCD^{*}(K, N)$ spaces. For instance, see [10] and references therein.
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