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Let $T$ and $r$ be positive constants. For $0<\epsilon\leq 1$ and a deterministic path $\eta\in C([-r,O];\mathbb{R}^{d})$ ,

consider the $\mathbb{R}^{d}$-valued process $X^{\epsilon}=\{X^{\epsilon}(t);-r\leq t\leq T\}$ determned by the equation

$\{\begin{array}{ll}X^{\epsilon}(t)=\eta(t) (-r\leq t\leq 0) ,dX^{\epsilon}(t)=A(X_{t}^{\epsilon})dt+\epsilon\sum_{i=1}^{d}B_{i}(X_{t}^{\epsilon})dW^{i}(t) (0<t\leq T) ,\end{array}$ (1)

where $A,$ $B_{1}$ , $\cdots$ , $B_{d}$ are $\mathbb{R}^{d}$-valued smooth functions on $C([-r,0];\mathbb{R}^{d})$ such that all derivatives

of any orders greater than 1 in the Fr\’echet sense are bounded, $W=\{(W^{1}(t), \ldots, W^{d}(t));0\leq$

$t\leq T\}$ is a $d$-dimensional Brownian motion starting from the origin, and $X_{t}^{\epsilon}=\{X^{\epsilon}(t+u);-r\leq$

$u\leq 0\}$ is the segment of $X^{\epsilon}$ . Such equation is called the stochasticfimctional differential equa-
tion, which was first introduced by It\^o-Nisio [2]. Since the current state of the solution depends

on the past history of the process, the solution $X^{\epsilon}$ is non-Markovian. Under the conditions

on the regularity and the boundedness of the coefficients $A,$ $B_{1}$ , $\cdots$ , $B_{d}$ , there exists a unique

solution $(cf. It\^{o}-$Nisio $I2],$ Mohammed $[5])$ . Write $X=X^{\epsilon}|_{\epsilon=1}.$

Example 1 Consider the case where $d=1$ and $\eta\in C([-r,O];\mathbb{R})$ is deterministic. Let $p(du)$

be a finite Borel measure on $[-r,O]$ , and $B$ be a constant.

$\{\begin{array}{ll}X(t)=\eta(t) (-r\leq t\leq 0) ,dX(t)=-\int_{-r}^{0}X(t+u)\rho(du)dt+BdW(t) (0<t\leq T) .\end{array}$
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Example2 Consider the case where $d=1$ and $\eta\in C([-r,O];\mathbb{R})$ is deterministic. Let $A$ and
$B$ be $\mathbb{R}$-valued smooth function on $\mathbb{R}^{2}$ such that all derivatives of any orders greater than 1 are
bounded.

$\{\begin{array}{ll}X(t)=\eta(t) (-r\leq t\leq 0) ,dX(t)=A(X(t), X(t-r))dJ+B(X(t), X(t-r))dW(t) (0<t\leq T) .\end{array}$

$\square$

Our goals are to study the large deviation principle for the family $\{\mathbb{P}oX^{\epsilon}(t)^{-1};0<\epsilon\leq 1\},$

and the asymptotic behaviour of the density $p^{\epsilon}(t,y)$ of the probability law of $X^{\epsilon}(t)$ as $\epsilonarrow 0.$

From now on, we shall suppose that the coefficients $B_{1}$ , $\cdots$ , $B_{d}$ in the equation (1) satisfy the

uniformly elliptic condition: there exists a positive constant $C_{1}$ such that

$\mathcal{V}\in \mathbb{S}^{d-1}f\in C([,0^{\sum_{-\gamma}^{d}(v\cdot B_{i}(f))^{2}\geq C_{1}}];\mathbb{R}^{d})_{i=1}.$$inf\inf$ (2)

1 Large deviation principle

Denote by $\mathbb{W}_{0}^{d}$ the family of $\mathbb{R}^{d}$ -valued continuous functions on $[0,T]$ starting from the origin,

and by $\mathbb{H}_{\subset}^{d}$ the subset of $\mathbb{W}_{0}^{d}$ such that each component is absolutely continuous, and that the
$\mathbb{L}^{2}([0, T];\mathbb{R}^{d})$ -norm of the derivative is bounded. For $f\in \mathbb{H}_{0}^{d}$ , let $Y^{f}=\{Y^{f}(t);-r\leq t\leq T\}$

be the solution to the functional differential equation of the form:

$\{\begin{array}{ll}Y^{f}(t)=\eta(t) (-r\leq t\leq 0) ,dY^{f}(t)=A(Y_{t}^{f})dt+\sum_{i=1}^{d}B_{i}(Y_{t}^{f})f(t)dJ (0<t\leq T) .\end{array}$ (3)

Denote by $\mathbb{W}_{\eta}^{d}$ the family of $\mathbb{R}^{d}$-valued continuous functions on $[-r, T]$ with the initial path $\eta\in$

$C([-r,0];\mathbb{R}^{d})$ , and by $\mathbb{H}_{\eta}^{d}$ the subset of $\mathbb{W}_{\eta}^{d}$ such that each component is absolutely continuous

on $[0,T]$ , and that its $\mathbb{L}^{2}([0, T];\mathbb{R}^{d})$ -norm of the derivative is bounded. Write $B=(B_{1}, \ldots,B_{d})$ .
Then, it holds that

Theorem 1 (cf. [3]) Under the condition (2) on the coeficients $B_{1}$ , $\cdots$ , $B_{d}$ of the equation (1),

the family of $\{\mathbb{P}o(X^{\epsilon})^{-1};0<\epsilon\leq 1\}$ satisfies the large deviation principle with the good rate
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function $\tilde{I,}$ where

$\tilde{I}(g)=\{\begin{array}{ll}\frac{1}{2}\int_{0}^{T}|B(g_{t})^{-1}\{\dot{g}(t)-A(g_{t})\}|^{2}dt (g\in \mathbb{H}_{\eta}^{d}) ,+\infty (g\not\in \mathbb{H}_{\eta}^{d}) .\end{array}$ (4)

Skethc of the proof. It is well known as the Schilder theorem (cf. Dembo-Zeitouni [1]) that

the family $\{\mathbb{P}o(\epsilon W)^{-1};0<\epsilon\leq 1\}$ satisfies the large deviation principle with the good rate

function $I$ given by

$I(f)=\{\begin{array}{ll}\frac{1}{2}\int_{0}^{T}|f(t)|^{2}dt (f\in \mathbb{H}_{0}^{d}) ,+\infty (f\not\in \mathbb{H}_{0}^{d}) .\end{array}$

At first, we shall consider the case where the $\mathbb{R}^{d}$-valued functions $B_{1}$ , $\cdots$ , $B_{d}a\infty$ bounded.

Let $a>0$ and write $\mathbb{H}_{0,a}^{d}=\{f\in \mathbb{H}_{(}^{d};\Vert\dot{f}\Vert_{L^{\dot{2}}([0,T];\mathbb{R}^{d})}\leq a\}$ . Then, it can be easily checked via the

routine work that the mapping $\Phi_{a}:\mathbb{H}_{0,a}^{d}\ni f\mapsto\Phi_{a}(f)$ $:=Y^{f}\in \mathbb{W}_{\eta}^{d}$ is continuous. Moreover,

for any $f\in \mathbb{H}_{0}^{d}$ and $p>0$ , we can find the positive constants $\alpha_{\rho}$ and $\epsilon_{\rho}$ such that

$\mathbb{P}[\sup_{-r\leq t\leq T}|X^{\epsilon}(t)-Y^{f}(t)|>\rho, \sup_{0\leq t\leq T}|\epsilon W(t)-f(t)|\leq\alpha_{p}]$

$\leq C_{2}\exp[-C_{3}\frac{\rho^{2}}{\epsilon^{2}}]$

for all $0<\epsilon\leq\epsilon_{\rho}$ , which can be derived by using the martingale representation theorem on

stochastic integrals. Hence, the assertion can be obtained from the Schilder theorem stated

above, via the argument stated in Dembo-Zeitouni [1].

We shall discuss the general case. Let $R>0$ be sufficiently large, and denote by $\sigma_{R}$ the

exit time of the process $X^{\epsilon}$ from the closed ball centered at the origin with the radius $R$ . Write
$X^{\epsilon,R}(t):=X^{\epsilon}(t\wedge\sigma_{R})$ . Then, the Chebyshev type inequality tells us to see that

$\lim_{Rarrow+\infty}\lim_{\epsilon\searrow}\sup_{0}\epsilon\ln \mathbb{P}[\sup_{-r\leq t\leq T}|X^{\epsilon}(t)|>R]=-\infty,$

$\lim_{Rarrow+\infty}Jim\sup_{0\epsilon\searrow}\epsilon In\mathbb{P}[\sup_{-r\leq t\leq T}|X^{\epsilon}(t)-X^{\epsilon,R}(t)|>\delta]=-\infty$

for any $0<\delta<1$ . Since we have already obtained the result on the large deviation principle

for the family $\{\mathbb{P}\circ(X^{\epsilon,R})^{-1};0<\epsilon\leq 1\}$ with the good rate function $\tilde{I}_{R}$ , the limiting procedure

as $Rarrow+\infty$ enables us to get the assertion. $\square$
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Corollary 1 (cf. [3]) For each $0<t\leq T$, the family $\{\mathbb{P}\circ X^{\epsilon}(t)^{-1};0<\epsilon\leq 1\}$ satisfies the

large deviation principle with the good ratefunction $\overline{I,}$ where

$\overline{I}(y)=\inf\{\tilde{I}(g);g\in \mathbb{H}_{\eta}^{d}, y=g(t)\}$ . (5)

Proof. Since the mapping $\Pi_{t}$ : $\mathbb{W}_{\eta}\ni g\mapsto\Pi_{t}(g):=g(t)\in \mathbb{R}^{d}$ is continuous, the assertion is

the direct consequence of Theorem 1 and the contraction principle. $\square$

2 Density estimate

At the beginning, we shall apply the Malliavin calculus to the solution process $X^{\epsilon}$ . Denote

by $D=\{D_{u};u\in[0, T]\}$ the Malliavin-Shigekawa derivative operator. For each $0\leq t\leq T,$

successive approximation of the equation (1) tells us to see that $X^{\epsilon}(t)$ is smooth in the Malliavin

sense. Moreover, for each $0\leq u\leq T$ , the $\mathbb{R}^{d}\otimes \mathbb{R}^{d}$-valued process $\{D_{u}X^{\epsilon}(t);-r\leq t\leq T\}$

satisfies the equation of the form:

$D_{u}X^{\epsilon}(t)=0 (-r\leq t\leq 0 or t<u)$ ,

$D_{u}X^{\epsilon}(t)= \epsilon\int_{0}^{u\wedge t}B(X_{s}^{\epsilon})ds+\int_{0}^{t}\nabla A(X_{s}^{\epsilon})D_{u}X_{s}^{\epsilon}ds$

$+ \epsilon\int_{0}^{t}\sum_{i=1}^{d}\nabla B_{i}(X_{s}^{\epsilon})D_{u}X_{s}^{\epsilon}dW^{i}(s) (u\leq t\leq T)$ ,

where $\nabla$ is the Fr\’echet derivative. For each $s\in[O, T]$ , let $Z^{\epsilon}(\cdot,s)=\{Z^{\epsilon}(t,s);-r\leq t\leq T\}$ be

the $\mathbb{R}^{d}\otimes \mathbb{R}^{d}$-valued process determined by the equation

$Z^{\epsilon}(t,s)=0 (-r\leq t\leq 0 or t<s)$ ,

$Z^{\epsilon}(t,s)=I_{d}+ \int_{s}^{t}\nabla A(X_{u}^{\epsilon})Z_{u}^{\epsilon}(\cdot,s)du$

$+ \int_{s}^{t}\sum_{i=1}^{d}\nabla B_{i}(X_{u}^{\epsilon})Z_{u}^{\epsilon}(\cdot,s)dW^{i}(u) (s\leq t\leq T)$ ,

where $Z_{u}^{\epsilon}(\cdot,s)=\{Z^{\epsilon}(u+\sigma,s);-r\leq\sigma\leq 0\}$ . Then, we can compute

$D_{u}X^{\epsilon}(t)= \epsilon\int_{0}^{u\wedge t}Z^{\epsilon}(t,s)B(X_{s}^{\epsilon})ds$ , (6)

thus the associated Malliavin covariance matrix $V^{\epsilon}(t)$ can be obtained as follows:

$V^{\epsilon}(t)= \int_{0}^{t}Z^{\epsilon}(t,u)B(X_{u}^{\epsilon})B(X_{u}^{\epsilon})^{*}Z^{\epsilon}(t,u)^{*}du$ , (7)
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where the symbol $K^{*}$ indicates the transpose of a matrix $K$ . As stated in Kusuoka-Stroock [4],

the condition (2) implies that the probability law of $X^{\epsilon}(t)$ admits a smooth density $p^{\epsilon}(t,y)$ with

respect to the Lebesgue measure on $\mathbb{R}^{d}.$

Applying Corollary 1, the integration by parts formula and the Girsanov transform on $W,$

we can get

Theorem 2 Under the condition (2), it holds that

$\lim_{\epsilon\searrow 0}\epsilon^{2}\ln p^{\epsilon}(t,y)=-\overline{I}(y)$ , (8)

where $\overline{I}$ is thefunction introduced in Corollary 1.

Sketch of the proof. We shall prove the upper estimate only. See [3] as for the lower estimate.

Let $0<\sigma<1$ be sufficiently small, and $\Lambda_{\sigma}\in C_{0}^{\infty}(\mathbb{R}^{d};[0,1])$ such that

$\Lambda_{\sigma}(z)=\{\begin{array}{l}1 (|z-y|\leq\sigma) ,0 (|z-y|>2\sigma) .\end{array}$

Then, the integration by parts formula leads us to see that

$p^{\epsilon}(t,y)=\mathbb{E}[\mathbb{I}_{(y,+\infty)}(X^{\epsilon}(t))\mathbb{I}_{Supp[\Lambda_{\sigma}]}(X^{\epsilon}(t))\Gamma(X^{\epsilon},\Lambda_{\sigma}(X^{\epsilon}(t)))],$

where $\Gamma(X^{\epsilon},\Lambda_{\sigma}(X^{\epsilon}(t)))$ is the corresponding weight including the Skorokhod integral of $X^{\epsilon}(t)$ ,

$DX^{\epsilon}(t)$ , $\Lambda_{\sigma}(X^{\epsilon}(t))$ and the inverse of $V^{\epsilon}(t)$ . From Corollary 1, we can get

$\lim_{\epsilon\searrow 0}\sup\epsilon^{2}$
In $\mathbb{P}[X^{\epsilon}(t)\in Supp[\Lambda_{\sigma}]]\leq-\inf_{\mathcal{Y}\inSupp[\Lambda_{\sigma}]}\overline{I}(y)$

.

On the other hand, under the condition (2), we have

$\mathbb{E}[(\det V^{\epsilon}(t))^{-p}]\leq C_{4}\epsilon^{-2pd}$

for any $p>1$ . Taking the limit as $\sigma\searrow 0$ enables us to get the upper estimate. $\square$

3 Remark

Finally, we shall consider the special case:

$A(f)\equiv 0, B_{i}(f)=\tilde{B}_{i}(f(-r),f(O))(i=1, \ldots, d) , \eta(t)=x(-r\leq t\leq T)$ ,

where $\tilde{B}_{1}$ , $\cdots$ , $\tilde{B}_{d}$ are the $\mathbb{R}^{d}$ -valued smooth functions on $\mathbb{R}^{2d}$ such that all derivatives of any

orders greater than 1 are bounded. Denote by $p(t,y)=p^{\epsilon}(t,y)|_{\epsilon=1}$ . Then, we have
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Theorem 3 Suppose that thefunctions $\tilde{B}_{1}$ , $\cdots$ , $\tilde{B}_{d}$ satisfy the uniformly elliptic condition: there

exists a positive constant $C_{5}$ such that

$\inf_{v\in \mathbb{S}^{d-1}}\inf_{y,z\in \mathbb{R}^{d}}\sum_{i=1}^{d}(v\cdot\tilde{B}_{i}(y,z))^{2}\geq C_{5}$ . (9)

Then, for each $0\leq t\leq T$, the probability law $ofX(t)$ has a smooth density $p(t,y)$ such that

$\lim_{t\searrow 0}t\ln p(t,y)=-r\overline{I}(y)$ , (10)

where $\overline{I}$ is thefunction introduced in Corollary 1.

Sketch of the proof. The existence of the smooth density $p(t,y)$ on the probability law of $X(t)$

can be justified, because of the uniformly elliptic condition (9) on the coefficients $\tilde{B}_{1}$ , $\cdots$ , $\tilde{B}_{d}.$

On the other hand, since $X^{\epsilon}(t)=x$ for $-r\leq t\leq 0$ , we have

$X^{\epsilon}(r)=x+ \epsilon\int_{0}^{r}\sum_{i=1}^{d}\tilde{B}_{i}(X^{\epsilon}(s-r),X^{\epsilon}(s))dW^{j}(s)$

$=x+ \epsilon\int_{0}^{r}\sum_{i=1}^{d}\tilde{B}_{i}(x,X^{\epsilon}(s))dW^{i}(s)$ .

Similarly, since $X(t)=x$ for $-r\leq t\leq 0$ , we see that

$X( \epsilon^{2}r)=x+\int_{0}^{\epsilon^{2_{\Gamma}}}\sum_{i=1}^{d}\tilde{B}_{i}(X(s-r),X(s))dW^{i}(s)$

$=x+ \epsilon\int_{0}^{r}\sum_{i=1}^{d}\tilde{B}_{i}(X(\epsilon^{2}s-r),X(\epsilon^{2}s))d\tilde{W}^{i}(s)$

$=x+ \epsilon\int_{0}^{r}\sum_{i=1}^{d}\tilde{B}_{i}(x,X(\epsilon^{2}s))d\tilde{W}^{i}(s)$ ,

where $\tilde{W}=\{(\tilde{W}^{1}(t), \ldots,\tilde{W}^{d}(t));0\leq t\leq T\}$ is another Brownian motion starting from the

origin. In the second equality, we have used the scaling property of Brownian motions. Hence,

the uniqueness of the solutions yields that $X(\epsilon^{2}r)=X^{\epsilon}(r)$ , which implies

$p(\epsilon^{2}r,y)=p^{\epsilon}(r,y)$ .

As seen in Section 2, we have already obtained the asymptotic behavior of $p^{\epsilon}(r,y)$ as follows:

$\epsilon\searrow 0hm\epsilon^{2}\ln p^{\epsilon}(r,y)=-\overline{I}(y)$ .

Taking $t=\epsilon^{2}r$ completes the proof. $\square$
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