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Abstract

In the approach of non-perturbative renormalization group (NPRG), the spon-
taneous chiral symmetry breaking induces a singularity in its solution, e.g., the
flow of the 4-fermi coupling constant blows up at a critical renormalization group
(RG) scale. Thus, as long as directly solving the NPRG equation as a partial
differential equation, the RG flow cannot go beyond the critical scale to obtain in-
frared quantities such as the chiral condensates. In order to treat this singularity
in a mathematically rigorous way, we introduce the notion of weak solution of the
NPRG equation. The weak solution is found to give a unique global solution toward
the infrared limit, and we can calculate infrared quantities without any ambiguities.

1 Introduction

The almost 100 percent of mass is originated from spontaneous chiral symmetry breaking
$(S\chi SB)$ , while a few percent of mass is given by the so-called Higgs mechanism. The
$S\chi SB$ is included by the strong interaction between quarks at the low energy scale which
is described by quantum chromodynamics (QCD). Because of the strong interaction, the
perturbation theory does not work, and so we need non-perturbative methods such as the
lattice simulation and the Schwinger-Dyson (SD) approach.

In this article, we use the approach of non-perturbative renormalization group (NPRG)
that is originated from the Wilsonian idea. This approach does not have the sign problem
at finite chemical potential just like the lattice simulation, and can improve the gauge
dependence of physical quantities, which the SD approach suffers, in systematic approxi-
mations [1, 2].

For simplicity, we are limited to the analysis using the Nambu-Jona Lasinio (NJL)
model with a simplified discrete chiral symmetry, which is a low energy model of QCD
explaining the $S\chi SB$ . Its Lagrangian is given by

$\mathcal{L}=\overline{\psi}\emptyset\psi-\frac{G_{0}}{2}(\overline{\psi}\psi)^{2}$ , (1)

where $\psi$ and $\overline{\psi}$ is a quark field and an antiquark field, respectively Here the discrete
chiral symmetry is that the Lagrangian is invariant under the following discrete chiral
transformation:

$\psiarrow\gamma_{5}\psi, \overline{\psi}arrow-\overline{\psi}\gamma_{5}$ . (2)
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The chiral symmetry thus forbids the mass term $m\overline{\psi}\psi$ and the chiral condensates $\langle\overline{\psi}\psi\rangle.$

However, when the 4-fermi coupling constant $G_{0}$ is larger than a critical coupling constant,
its strong coupling induces the $S\chi SB$ . If using the mean field approximation, the critical
coupling constant $G_{c}$ is $4\pi^{2}/\Lambda_{0}^{2}$ , where $\Lambda_{0}$ is the ultraviolet cutoff scale. Note that the
mean field approximation is equivalent to the self-consistency equation limited to the
large-N leading, where $N$ is the number of quark flavors.

Many NPRG analyses of $S\chi SB$ have been performed by introducing the bosoniza-
tion of the multi-fermi interactions [3-6], which is the so-called auxiliary field method or
Hubbard-Stratonovich transformation. However the analysis without the bosonization is
difficult because in the RG procedure the 4-fermi coupling constant blows up at a critical
scale as a signal of $S\chi SB[7$ , 8$]$ . Consequently we cannot go beyond the critical scale to
obtain infrared physical quantities such as the chiral condensates.

The goal of this article is to analyze $S\chi SB$ in the NPRG approach without introducing
the bosonization. For this goal we adopt the method of weak solution [9], which has firstly
been introduced in the NPRG approach by the authors [10]. As the NPRG equation is
given by a partial differential equation (PDE), the weak solution satisfies the integral-form
(weak) equation of the PDE. Since the weak solution is globally defined, it can include
singularities such as the explosive behavior of the 4-fermi coupling constant.

This article is organized as follows. In Sect. 2, we briefly explain the Wegner-Houghton
equation that is a formulation of the NPRG and the difficulty of the NPRG analysis of
$S\chi SB$ without the bosonization. In Sect3, the method of weak solution is adopted to
overcome this difficulty. In Sect4, the bare mass of quark is introduced to define the
chiral order parameters. In Sect5, the method of weak solution is applied to the first
order phase transition at finite chemical potential, and the convexity of the effective
potential given by the weak solution is discussed. Finally we summarize this article in
Sect 6.

2 Non-perturbative renormalization group

In the NPRG approach, a central object is the Wilsonian effective action $S_{eff}[\phi_{)}\Lambda]$ defined
by integrating the microscopic degrees of freedom $\phi_{H}$ with momentums higher than the

scale $\Lambda$ :

$\int \mathcal{D}\phi_{H}e^{-S_{0}[\phi_{L_{\rangle}}\phi_{H},\Lambda_{0}]}=e^{-S_{eff}[\phi_{L},\Lambda]}$ , (3)

where $S_{0}[\phi;\Lambda_{0}]$ is a bare action with the ultraviolet cutoff scale $\Lambda_{0}$ . Now we parametrize

the cutoff scale $\Lambda$ by a dimensionless scale $t$ such that

$\Lambda(t)=\Lambda_{0}e^{-t}$ . (4)

The $t$-dependence of the effective action $S_{eff}[\phi;\Lambda]$ is given by a NPRG equation as the
following functional partial differential equation:

$\partial_{t}S_{eff}[\phi;t]=\beta_{WH}[\frac{\delta S_{eff}}{\delta\phi}, \frac{\delta^{2}S_{eff}}{\delta\phi^{2}};t]$ , (5)

which is called the Wegner-Houghton (WH) equation [11] (see Ref. [12] for the detail form
of $\beta_{WH})$ . The WH equation is the exact equation that provides macroscopic informations,
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such as the chiral condensates and the effective quark mass, by setting the bare action $S_{0}$ to
the initial condition at $t=0$ and solving it as a differential equation toward the infrared
scale $(tarrow\infty)$ . Of course, it cannot be solved exactly, but various non-perturbative
approximation to solve it are available.

In this article, the WH equation is applied to the NJL model (3). As an approximation,
we restrict the full interaction space of the effective action $S_{eff}[\psi, \overline{\psi};t]$ to be the subspace
relevant to $S\chi SB$ as follows:

$S_{eff}[ \psi, \overline{\psi};t]=\int d^{4}x\{\overline{\psi}\beta\psi-V_{W}(x;t)\}$ , (6)

where a scalar fermion-bilinear field, $x=\overline{\psi}\psi$ , is introduced. The potential term $V_{W}(x;t)$ is
called the fermion potential here, whose initial condition is set to $V_{W}(x;t=0)=(G_{0}/2)x^{2}$

according to the NJL Lagrangian (1).
In addition to the restriction of the interaction space, the large-N non-leading parts

of the WH equation (3) are ignored. Then, the NPRG equation for the fermion potential
in the large-N approximation is given by the following partial differential equation:

$\partial_{t}V_{W}(x;t)=\frac{\Lambda^{4}}{4\pi^{2}}\log(1+\frac{1}{\Lambda^{2}}(\partial_{x}V_{W})^{2})\equiv-F(\partial_{x}V_{W};t)$ . (7)

Here the momentum cutoff A have been performed with respect to the length of four
Euclidean momentum $p_{\mu}$ : $\sum_{\mu=1}^{4}p_{\mu}^{2}\leq\Lambda$ . Note that the approximation used here is
equivalent to the mean field one,

Now we introduce the mass function, $M(x;t)=\partial_{x}V_{W}(x;t)$ , to interpret the $S\chi SB$ in
this framework. The value of the mass function at the origin is the coefficient of mass
term $\overline{\psi}\psi$ in the effective action as its name suggests. The chiral symmetry is realized by
the invariance of the fermion potential under the chiral transformation, $xarrow-x$ , given by
Eq. (2): $V(-x;t)=V(x;t)$ , and then $M(-x;t)=-M(x;t)$ . The NPRG equation (7) with
the chiral-invariant fermion potential is also invariant under the chiral transformation, and
thus its solution with the chiral-invariant initial condition maintain its chiral-invariant
structure at all scales. If the mass function is analytic, its value at the origin vanishes
since the mass function with the chiral invariance is odd with respect to $x.$

While the NPRG equation does not spontaneously break the chiral-invariant structure
of the fermion potential, its second derivative at the origin that is the 4-fermi coupling
constant $G(t)\equiv\partial^{2}V(x;t)/\partial x^{2}|_{x=0}$ blows up at a critical scale $t_{c}$ if its initial coupling
constant $G_{0}$ is larger than the critical coupling constant $G_{c}[7,8]$ . This explosive behavior is
nothing but a signal of the $S\chi SB$ , and suggests that the $S\chi SB$ solution of the mass function
after $t_{c}$ has a finitejump at the origin with the chiral-invariant structure. Mathematically,
such a singular solution of the PDE cannot be authorized. However the singular solution
can be defined as a weak solution and predict the physical quantities as shown in the next
section.

3 Method of weak solution

In this $section_{\}}$ we define a weak solution [9] of the mass function and show how to
construct it. Differentiating the PDE (7) with respect to $x$ , we then obtain that for the
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mass function,

$\partial_{t}M(x;t)=-\frac{\partial}{\partial x}F(M(x;t);t)$

$=- \frac{\partial}{\partial M}F(\Lambda I;t)\cdot\frac{\partial JI}{\partial x}$ . (8)

This equation belongs to a class of conservation low type which includes the famous
Bergers’ equation without viscosity. To define the singular solution with finite jumps, we
extend the PDE into the following weak equation:

$\int_{0}^{\infty}dt\int_{-\infty}^{\infty}dx(M\frac{\partial\varphi}{\partial t}+F\frac{\partial\varphi}{\partial x})+\int_{-\infty}^{\infty}dxM\varphi|_{t=0}=0$ , (9)

where $\varphi(x;t)$ is any smooth and bounded test function. Compared to the strong equa-
tion (8), the derivative of the mass function is gotten rid off in the weak equation (9),
which can then have a singular solution with finite jumps. In general, weak solutions are
not uniquely determined depending on the initial conditions. However the physical initial
condition is expected to give the unique weak solution.

An important fact derived from the weak equation,(9) is the Rankine-Hugoniot (RH)
condition,

$(M_{L}-M_{R})dS(t)=[F(M_{L})-F(M_{R})]dt$ , (10)

where $S(t)$ is a jump position, and $M_{L}$ and $M_{R}$ are values of right and left limits of the
mass function at $x=S(t)$ . This RH condition will be used to construct the weak solution.

In the rest of this section, the method of characteristics to construct the weak solution
is shown. We now consider a characteristic curve, $x=\overline{x}(t)$ , and the mass function on
it, $\overline{M}(t)=M(\overline{x};t)$ , which satisfy the following coupled ordinary differential equations
(ODEs):

$\frac{d\overline{x}(t)}{dt}=\frac{\partial}{\partial M^{-}}F(\overline{M};t)$ , (11)

$\frac{d\overline{M}(t)}{dt}=\frac{\partial}{\partial\overline{x}}F(\overline{M};t)=0$ . (12)

Here the initial condition is given by

$\overline{x}(t=0)=x_{0}$ , (13)

$\overline{M}(t=0)=\partial_{x}V_{W}(x;t)|_{x=x0,t=0}$ . (14)

We now emphasize that $\overline{M}(t)$ is the value of the “local” strong solution of Eq. (8) on the
characteristic curve $\overline{x}(t)$ . Thus the initial value problem of the PDE (8) is transformed to
the partially equivalent one of the coupled ODEs (11), (12), although the set of (local”

strong solutions is not necessarily the global solution of the original PDE as will be seen
later. We can now easily construct the set of local strong solutions by varying the value
of $x_{0}$ and solving the coupled ODEs. Moreover the value $\overline{V}_{W}$ of the fermion potential on
$x(t)$ is obtained by solving the following ODE with Eqs. (11), (12):

$\frac{d\overline{V}_{W}(t)}{dt}=M^{-}\frac{\partial F(\overline{M};t)}{\partial M^{-}}-F(J^{-}I;t)$ . (15)
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Note that the PDE (7) is a Hamiltonian-Jacobi type equation well-known in the analytical
mechanics, where $t,$ $x,$ $V_{W}(x;t)$ , $M(x;t)$ and $F(M;t)$ correspond to the time, the coordi-
nate, the action, the momentum and the time-dependent Hamiltonian, respectively. Then
the coupled ODEs (11), (12) are nothing but the canonical equations of Hamiltonian.

The numerical solution of the characteristic curves and the set of local strong solutions
$M(x;t)$ constructed by them are shown in Fig. 2 (a), (b). The characteristic curves $\overline{x}(t)$

can be regarded as the contour lines of $lII(x;t)$ because the right-hand side of Eq. (12)
vanishes. After $t_{c}$ , the contour lines cross each other, and then the set of the local strong
solutions $\Lambda\ell(x;t)$ has a folding structure. Thus the set, which has the multi values, can
no longer be the global solution of the PDE (8). On the other hand, the weak solution
can be constructed by the patchwork of the local strong solutions, which is determined
using the RH condition (10).

Figure 1: Equal (vanishing) area rule.

For the practical purpose, we here convert the RH condition to a geometric one equiv-
alent to it as follows. The total derivatives of left and right limits of the fermion potential
$V_{W}(x;t)$ on the jump position $S(t)$ is given by

$dV_{W}^{L,R}= \frac{\partial V}{\partial x}|_{L,R}dS+\frac{\partial V}{\partialt}|_{L,R}dt$

$=M|_{L,R}dS-F|_{L,R}dt$ , (16)

The difference between the left and right limits of Eq. (16) vanishes because of the RH
condition: $d(V_{W}^{L}-V_{W}^{R})=0$ . Since no singular point doesn’t exist at the initial condition,
the fermion potential is entirely continuous even at the jump position $S(t)$ :

$V_{W}^{L}=V_{W}^{R}$ . (17)

Next, we integrate the set of the local strong solutions of $lII(x;t)$ as follows:

$\int_{L}^{R}Mdx=\int_{L}^{R}\frac{\partial V_{W}}{\partial x}dx$

$=V_{W}^{R}-V_{W}^{L}$

$=0$ . (18)
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Thus the jump position can geometrically be determined by the equal (vanishing) area
rule (Fig. 1). In Fig. 2, we now show the weak solution constructed from the local strong
solutions at $G_{0}=1.005G_{c}$ using the equal area rule. The jump appears at the origin
after the critical scale $t_{c}$ . The uniqueness of our weak solution is proved because of the
entropy condition, which guarantees the uniqueness of weak solution when the selected
characteristic curves fill the x-t plane [9] as shown in Fig. 2 (a’).

(a) (b)

(a’) (b’)

Figure 2: (a) Characteristics. (b) Set of local strong solutions of mass function given by
the characteristics. (a’) Characteristics selected by the RH condition and jump
(discontinuity). (b’) Weak solution of mass function. The jump position obey
the equal (vanishing) area rule.

4 Bare mass

In the previous section, we have obtained the $S\chi SB$ weak solution with a finite jump at
the origin. However the physical mass of quark as an order parameter of chiral symmetry
cannot be determined since the mass function at the origin is not defined. To define the
order parameter, we introduce the bare mass term $m_{0}\overline{\psi}\psi$ , which explicitly breaks the
chiral symmetry, to the Lagrangian (1). The bare mass term modifies the initial condition
of the PDE (8): $M(x;t=0)=G_{0}x+m_{0}$ . Then, because of the translation invariance of
the PDE with respect to $x$ , the mass function at $m_{0}\neq 0$ is given by the one at $m_{0}=0$ as
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follows:

$M(x;t, m_{0})=M(x+m_{0}/G;t, m_{0}=0)$ . (19)

Then the mass function at the origin is well defined because the jump appears not at the
origin but at $x=-m_{0}/G$ . Thus, taking the limit $m_{0}arrow+0$ (called the chiral limit), we
can define the $t$-dependent effective mass $M_{phs}(t)$ as the order parameter:

$M_{phys}(t)= \lim_{m0arrow+0}M(x;t, m_{0})|_{x=0}$ . (20)

Fig. 3 shows the RG evolutions of the physical masses in the chiral limit and at the
non-zero bare mass.1 The physical mass in the chiral limit shows the second order phase

transition due to the singular behavior of the mass function at the origin, while the
physical mass at $m_{0}\neq 0$ shows the cross over. The reader may think that the weak-
solution method is not necessary if $m_{0}\neq 0$ . However global methods, such as the weak
solution, is needed at the small bare mass compared to the physical mass since the mass
function has the jump near the origin. Actually, Ref. [2] shows that the Taylor expansion
to solve the PDE7 does not work at the small bare mass.

Figure 3: RG evolution of the physical masses in $m_{0}arrow 0$ and $m_{0}=$ O. The NPRG
equation given by Eq. (21) $(\mu=0, G=1.7G_{c})$ is used for evaluating the
physical mass to compare the result at finite chemical potential $\mu\neq 0.$

5 First order phase transition at finite chemical po-
tential

Let us consider the first order phase transition at finite chemical potential $(\mu\neq 0)$ using
the weak-solution method. The first order phase transition is more non-trivial than the
second order phase transition because the RG evolution of the physical mass has a finite
jump even at $m_{0}\neq 0$ (as shown in Fig. 4). Moreover the non-uniqueness of weak solution
is associated with the fact that the effective potential, which is non-convex, has the multi-
local minima in the mean-field analysis. In this section, we show that the weak solution
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Figure 4: RG evolutions of the physical mass at finite density.

at finite chemical potential is uniquely determined, and the effective potential constructed
by the weak solution is automatically “convexised” with only the one correct minimum.

The chemical potential $\mu$ is introduced by adding the term $\mu\overline{\psi}\gamma_{0}\psi$ to the Lagrangian (1).
For the simple NPRG equation, we use the spacial momentum cutoff: $\sum_{i=1}^{3}p_{i}^{2}\leq\Lambda^{2}$ . Then
the right-hand side of Eq. (8) changes $to^{2}$

$-F(x;t)= \frac{\Lambda^{3}}{\pi^{2}}[\sqrt{\Lambda^{2}+M^{2}}+(\mu-\sqrt{\Lambda^{2}+M^{2}})\cdot\Theta(\mu-\sqrt{\Lambda^{2}+M^{2}})]$ , (21)

where $\Theta(x)$ is the Heaviside step function. The characteristic curve is consequently given
by the following ODE:

$\frac{d\overline{x}(t)}{dt_{ノ}}=-\frac{\Lambda^{3}M}{\pi^{2}\sqrt{\Lambda^{2}+M^{2}}}\Theta(\sqrt{\Lambda^{2}+M^{2}}-\mu)$ . (22)

In Fig. 5, we show the characteristic curves and those selected by the RH condition which
are evaluated at $m_{0}=0,$ $\mu=0.7$ . and $G_{0}=1.7G_{c}$ . Fig. 5 (b) shows the uniqueness of
our weak solution because the entropy condition is satisfied. Fig. 6 (a), (b) show the weak
solutions of the mass function and the fermion potential at $m_{0}=0.01\Lambda_{0}$ . These figures
shows that in the RG procedure the two jumps simultaneously appear, move toward each
other, and finally merge into one. Thus the RG evolution of the physical mass shows the
first order phase transition as shown in Fig. 4.

In the rest of this section, we discuss the convexity of the Legendre effective potential
constructed by the weak solution. At first, we define the free energy $W(j;t)$ by intro-
ducing the external source for the chiral condensates $\langle\overline{\psi}\psi\rangle$ : its source term $j\overline{\psi}\psi$ , which
is distinguished from the mass term, is added to the Lagrangian (1). Then the initial
condition of the fermion potential is

$V_{W}(x;t=0,j)=m_{0}x+ \frac{G_{0}}{2}x^{2}+jx$ . (23)

lIn the real world the bare mass has the non-zero value given by the Higgs mechanism.
2The critical coupling constant also changes: $G_{c}=2\pi^{2}/\Lambda_{0}.$
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(a) (b)

Figure 5: (a) Characteristics. (b) Characteristics selected by the RH condition and jump
(discontinuity).

Now the free energy and the chiral condensates are given by

$W(j;t)=V_{W}(x=0;t,j)$ , (24)

$\phi(j;t)\equiv\langle\overline{\psi}\psi\rangle_{j}=\frac{\partial W(j;t)}{\partial j}$ , (25)

respectively. We eventually define the Legendre effective potential of the chiral condensate
as follows:

$V_{L}(\phi;t)=j\phi(j;t)-W(j;t)$ , (26)

where $\partial V_{L}/\partial\phi=j$ is satisfied.
As seen in the previous section, because of the translation invariance of the PDE with

respect to $x$ , the fermion potential at $j\neq 0$ is given by the one at $j=0$ :

$V_{W}(x;t, j)=V_{W}(x+j/G_{0};t,j=0)- \frac{m_{0}j}{G_{0}}-\frac{j^{2}}{2G_{0}}$ , (27)

Thus the free energy and the chiral condensates are given by the quantities at $j=0$ as
follows:

$W(j;t)=V_{W}(x=0;t,j)=V_{W}(j/G_{0};t,j=0)- \frac{m_{0}j}{G_{0}}-\frac{j^{2}}{2G_{0}}$ , (28)

$\phi(j;t)=\frac{1}{G_{0}}[M(j/G_{0};t, j=0)-m_{0}-j]$ . (29)

Since the set of local strong solutions of the mass function $M(j/G_{0};t,j=0)$ is multi-
valued, that of $\phi(j;t)$ is so. Obeying the equal area rule, the weak solution of $\phi(j;t)$ is
then constructed from its local strong solutions as well as the mass function.

The set of strong solutions of $V_{L}(\phi;t)$ is not convex and has multi local minima as
shown Fig. 6 (c). On the other hand, we can prove that its weak solution is the “con-
vexised”’ potential whose minimum agrees with the global minimum of the set of the local
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strong solution as follows. Because of the continuity of the fermion potential (17), the free
energy is also continuous at the jump position $j_{s}$ of the mass function $M(j/G_{0};t,j=0)$ :

$W^{L}-W^{R}=V_{W}^{L}-V_{W}^{R}=0$ . (30)

Using this continuity of the free energy and Eq. (26), we obtain

$\frac{V_{L}^{L}-V_{L}^{R}}{\phi^{L}-\phi^{R}}=j_{s}$ , (31)

which means that the line connecting the Legendre effective potential $V_{L}(\phi;t)$ at the two
positions $\phi^{L},$ $\phi^{R}$ agrees with the envelope since $\partial V_{L}/\partial\phi|_{L,R}=j_{S}$ . Thus the weak solution
of the effective potential is automatically convexised and has the correct minimum which
agrees with the global minimum of the local strong solutions as shown in Fig. 6.

6 Summary

In this article, we have introduced the weak solution to define the singular $S\chi SB$ solution
of NPRG equation that can predict physical quantities such as the physical quark mass
and the chiral condensates. The weak solution satisfies the integral-form (weak) of the
PDE. Specifically we have evaluated the weak solution of the large-N NPRG equation for
the mass function which is the first derivative of the fermion potential with respect to the
scalar bilinear-fermion field $\overline{\psi}\psi.$

We have constructed the weak solution by the method of characteristics. The set of
local strong solutions given by the characteristics is multi-valued and thus no longer is the
global solution of the PDE. The weak solution can geometrically be constructed by the
patchwork of the local strong solutions using the equal area rule, which is derived by the
Rankine-Hugoniot condition. The uniqueness of the weak solution has been guaranteed
by the entropy condition. Then we have obtained the $S\chi SB$ weak solution of the mass
function with a finite jump at the origin.

The method of weak solution has also been applied to the first order phase transition
at finite chemical potential. We have shown that in the RG procedure two jump appear
simultaneously, move toward each other, and finally merge into one. This RG evolution
is nothing but the first order phase transition. Finally we have discussed the convexity

of the Legendre effective potential of the chiral condensates which is constructed by the

weak solution of the fermion potential. The weak solution of the effective potential, which

shows the first order phase transition in the RG procedure, is automatically “ convexised”
with only one correct minimum, while the effective potential obtained by the mean-field
analysis has the multi local minima.
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Figure 6: RG evolution of physical quantities by weak solution with non-zero bare mass
$(G_{0}=1.7G_{c}, m_{0}=0.01\Lambda_{0}, \mu=0.7, t=0.3,0.4,0.5,0.5615, \infty)$ . (a) Mass
function. (b) Fermion potential. (c) Legendre effective potential. The thick
solid lines denote the weak solution, and the dashed lines denote the local strong
solutions dropped by the equal area rule. The thin solid line in (c) denotes the
envelope. Origins of $y$-axis in (b) and (c) are arbitrary.
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