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1 KPZ equation

The Kardar-Parisi-Zhang (KPZ) equation is a stochastic partial differential equa-
$\tau$

tion (SPDE), which describes the motion of a growing interface with a random
fluctuation. Denoting the height of the interface at time $t$ and position $x\in \mathbb{R}$ by
$h=h(t, x)$ , it has the form

(1) $\partial_{t}h=\frac{1}{2}\partial_{x}^{2}h+\frac{1}{2}(\partial_{x}h)^{2}+\dot{W}(t, x)$ ,

where $\dot{W}(t, x)$ is the space-time Gaussian white noise, whose covariance structure is
given by

(2) $E[\dot{W}(t, x)\dot{W}(s, y)]=\delta(x-y)\delta(t-s)$ .

We consider the equation (1) in one dimension. This equation is actually ill-posed
because of inconsistency between the nonlinearity and the roughness of the noise.
As is explained in Section 4 for linear stochastic equations under periodic boundary
condition, the solution $h(t, x)$ is expected to be $( \frac{1}{2}-\epsilon)$ -H\"older continuous in the

space variable $x$ for every $\epsilon>0$ , so that the nonlinear term $(\partial_{x}h)^{2}$ would diverge.
In fact, instead of (1), the renormalized equation

(3) $\partial_{t}h=\frac{1}{2}\partial_{x}^{2}h+\frac{1}{2}((\partial_{x}h)^{2}-\delta_{x}(x))+\dot{W}(t, x)$ ,

has the meaning in the following sense: Its Cole-Hopf solution defined as the loga-
rithm of the solution of the linear stochastic heat equation (SHE) with a multiplica-
tive noise:

(4) $\partial_{t}Z=\underline{1}_{\partial^{2}Z}+Z\dot{W}(t, x)$ ,
2 $x$

i.e., $h(t, x)$ $:=\log Z(t, x)$ is a mathematically well-defined object and, by applying
It\^o’s formula for this $h(t, x)$ , we obtain (3) from (4) at least at a heuristic level.
Note that, since $(dW(t, x))^{2}=\delta_{x}(x)dt$ from (2), the term - $\frac{1}{2}\delta_{x}(x)$ appears in (3)
as an It\^o correction term.
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2Approximation of KPZ equation

To give a meaning to (3) more precisely, we need to consider approximation schemes

for (3). First approximation is simple and introduced by

(5) $\partial_{t}h=\frac{1}{2}\partial_{x}^{2}h+\frac{1}{2}((\partial_{x}h)^{2}-\xi^{\epsilon})+\dot{W}^{\epsilon}(t, x)$ ,

where $\dot{W}^{\epsilon}(t, x)=\dot{W}*\eta^{\epsilon}(t, x)$ is a smeared noise defined by applying a usual con-
volution kernel $\eta^{\epsilon}$ which tends to $\delta_{0}$ as $\epsilon\downarrow 0$ , and $\xi^{\epsilon}=\eta_{2}^{\epsilon}(O)$ with $\eta_{2}^{\epsilon}=\eta^{\epsilon}*\eta^{\epsilon}.$

Then, by It\^o’s formula, we easily see that the solution $h=h^{\epsilon}$ of (5) is given by the

Cole-Hopf transform $h^{\epsilon}=\log Z^{\epsilon}$ of the solution $Z=Z^{\epsilon}$ of the following SHE with

the smeared noise:

(6) $\partial_{t}Z=\frac{1}{2}\partial_{x}^{2}Z+Z\dot{W}^{\epsilon}(t, x)$ .

It is also easy to see that $Z^{\epsilon}$ converges to the solution $Z$ of (4) as $\epsilon\downarrow 0$ . Thus, we
can show that the solution $h^{\epsilon}$ of (5) converges to the Cole-Hopf solution of the KPZ
equation. M. Hairer [2] has recently succeeded to give a meaning to (3), without

bypassing the Cole-Hopf transform, and proved that the Cole-Hopf solution is the

right solution of (3) under the periodic boundary condition.

In [1], we introduced a different type of approximation scheme for the KPZ

equation:

(7) $\partial_{t}h=\frac{1}{2}\partial_{x}^{2}h+\frac{1}{2}((\partial_{x}h)^{2}-\xi^{\epsilon})*\eta_{2}^{\epsilon}+\dot{W}^{\epsilon}(t, x)$ .

This type of approximation is appropriate from the view point to identify the in-

variant measures, since the applications of a certain operator $A$ (in our case, the

convolution operator) to the noise term and the same operator $A$ twice to the drift
term usually do not change the structure of the invariant measures; note that the

second derivative $\partial_{x}^{2}$ and the convolution operator commute. The Cole-Hopf trans-

form applied to this equation leads to an SHE with a smeared noise having an extra
complex nonlinear term involving a certain renormalization structure:

(8) $\partial_{t}Z=\frac{1}{2}\partial_{x}^{2}Z+\frac{1}{2}Z\{(\frac{\partial_{x}Z}{Z})^{2}*\eta_{2}^{\epsilon}-(\frac{\partial_{x}Z}{Z})^{2}\}+Z\dot{W}^{\epsilon}(t, x)$ .

It is shown that, under the situation that the corresponding tilt process is stationary,
this complex term (the middle term in the right hand side of (8)) can be replaced

by a simple linear term divided by 24 in the limit, so that the limit equation is the
linear SHE:

(9) $\partial_{t}Z=\frac{1}{2}\partial_{x}^{2}Z+\frac{1}{24}Z+Z\dot{W}(t, x)$ .
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The constant $\frac{1}{24}$ is specific and frequently appears in KPZ related papers. The
Wiener-It\^o expansion and a similar method for establishing the so-called Boltzmann-
Gibbs principle are effectively used to derive (9) from (8). As a result, it is shown
that the distribution of a two-sided geometric Brownian motion with a height shift
given by Lebesgue measure is invariant under the evolution determined by the SHE
(4) on $\mathbb{R}.$

3 Multi-component KPZ equation

Multi-component KPZ equation is an extension of (1) and written for $h(t, x)=$
$(h^{\alpha}(t, x))_{\alpha=1}^{d}\in \mathbb{R}^{d}$ as

(10) $\partial_{t}h^{\alpha}=\frac{1}{2}\partial_{x}^{2}h^{\alpha}+\frac{1}{2}\Gamma_{\beta\gamma}^{\alpha}\partial_{x}h^{\beta}\partial_{x}h^{\gamma}+\dot{W}^{\alpha}(t, x)$ ,

where $\Gamma_{\beta\gamma}^{\alpha}$ are constants which satisfy the condition $\Gamma_{\beta\gamma}^{\alpha}=\Gamma_{\gamma\beta}^{\alpha}=\Gamma_{\gamma\alpha}^{\beta}$ for all $\alpha,$
$\beta,$

$\gamma$

and $\{\dot{W}^{\alpha}(t, x)\}_{\alpha=1}^{d}$ are independent space-time Gaussian white noises. We introduce
its approximation:

(11) $\partial_{t}h^{\alpha}=\frac{1}{2}\partial_{x}^{2}h^{\alpha}+\frac{1}{2}\Gamma_{\beta\gamma}^{\alpha}(\partial_{x}h^{\beta}\partial_{x}h^{\gamma}-\xi^{\epsilon}\delta^{\beta\gamma})*\eta_{2}^{\epsilon}+\dot{W}^{\epsilon,\alpha}(t, x)$ ,

and study its invariant measures.

4 Regularity of solutions of linear SPDEs

Finally, we explain the regularity of the solutions of linear SPDEs, and see that it
is determined under the balance between the regularizing effect of the differential
operators and the roughness of the noise. Let us consider the linear SPDE on a
$d$-dimensional torus for simplicity:

(12) $\partial_{t}u=-(-\triangle)^{\alpha}u+\dot{W}(t, x) , x\in \mathbb{T}^{d}=[0, 1)^{d},$

with $\alpha\in \mathbb{R}$ and give a proof of

(13)
$u(t, \cdot)\in\bigcap_{s<\alpha-\frac{d}{2}}H^{s}(\mathbb{T}^{d})$

, a.s.

Let $\{\phi_{k}, \lambda_{k}\}_{k=1}^{\infty}$ be the eigenfunctions and corresponding eigenvalues of $-\triangle$ on $\mathbb{T}^{d}$

such that $\{\phi_{k}\}_{k=1}^{\infty}$ is a complete orthonormal system of $L^{2}(\mathbb{T}^{d})$ ; note that $\{\lambda_{k}\}$

behaves as $\lambda_{k}\sim ck^{2/d}$ with $c>0$ as $karrow\infty$ . Then,

$E[\Vert u(t)\Vert_{H^{s}(T^{d})}^{2}]=E[\Vert(1-\triangle)^{s/2}u(t)\Vert_{L^{2}(\mathbb{T}^{d})}^{2}]$
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$= \sum_{k=1}^{\infty}(1+\lambda_{k})^{s}E[u_{k}(t)^{2}],$

where $u_{k}(t)$ $:=(u(t), \phi_{k})_{L^{2}(\mathbb{T}^{d})}$ . It satisfies the stochastic differential equation (SDE):

$du_{k}(t)=-\lambda_{k}^{\alpha}u_{k}(t)dt+dw_{k}(t)$ ,

with independent Brownian motions $w_{k}(t)$ $:=(W(t), \phi_{k})$ . This SDE can be easily

solved:
$u_{k}(t)=e^{-\lambda_{k}^{\alpha}}tu_{k}(0)+ \int_{0}^{t}e^{-\lambda_{k}^{\alpha}(t-s)}dw_{k}(s)$ ,

and we have that

$E[u_{k}(t)^{2}]=e^{-2\lambda_{k}^{\alpha}t}u_{k}^{2}(0)+E[( \int_{0}^{t}e^{-\lambda_{k}^{\alpha}(t-s)}dw_{k}(s))^{2}]$

$=e^{-2\lambda_{k}^{\alpha}}tu_{k}^{2}(0)+ \int_{0}^{t}e^{-2\lambda_{k}^{\alpha}(t-s)}ds$

$=e^{-2\lambda_{k}^{\alpha}}tu_{k}^{2}(0)+ \frac{1}{2\lambda_{k}^{\alpha}}(1-e^{-2\lambda_{k}^{\alpha}t})$ .

Thus, if $u(0)\in H^{s}(\mathbb{T}^{d})$ ,

$E[ \Vert,u(t)\Vert_{H^{s}(\mathbb{T}^{d})}^{2}]\sim\sum_{k=1}^{\infty}\frac{(1+\lambda_{k})^{s}}{2\lambda_{k}^{\alpha}}<\infty\Leftrightarrow s<\alpha-\frac{d}{2}.$

This proves (13). In particular, in case $\alpha=1$ and $d=1$ , we see that $u(t, \cdot)\in$

$\bigcap_{s<1/2}H^{s}(\mathbb{T})$
(a.s.), and this suggests the ill-posedness of the KPZ equation (1).
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