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Abstract

It is a survey on the study of limit shapes and fluctuation around relative

limit shapes for both the static and the dynamic two-dimensional Young di-

agrams. In particular, by studying the non-equilibrium fluctuation problem

[6] around their hydrodynamic limits established in [5] for the dynamics of

two-dimensional Young diagrams associated with the uniform and restricted

uniform statistics respectively, two linear stochastic partial differential equa-

tions are deduced to characterize the fluctuation limits. We will also see that

the results for limit shapes and fluctuation obtained in the static level can

be reinterpreted by that of the evolutional models of two-dimensional Young

diagrams.

1 Introduction

This note is survey for random Young diagram both in static and dynamic levels.

In particular, by the research on the fluctuation of the dynamics of two dimen-

sional Young diagrams around its hydrodynamic limit [6], we connect the theory of

stochastic partial differential equations (SPDEs, for short) with the research of large

scale interacting systems, which is an important application of SPDEs.

The stochastic partial differential equation is one of the most dynamically de-

veloping areas of mathematics which lies at the cross section of probability, partial

differential equations, population biology, mathematical physics, fluid mechanics,

geophysics and finance and others. The research on SPDEs is especially attrac-

tive because of its interdisciplinary nature and the enormous richness of current
and potential future applications. Roughly speaking, SPDEs are partial differen-
tial equations added with proper noises, like space-time Gaussian noise and colored

noises. SPDEs have been used to characterize many important models from various
fields, such as stochastic Navier-Stokes equations, stochastic Burgers equations, the

curve of interest rate, filtering. Especially, we point out that SPDEs often appear
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in the study of stochastic analysis on large scale interacting systems. For example,
Funaki and Olla [4] investigate the fluctuations of the height of a $\nabla\phi$ interface model
on a wall and prove that its limit is the solution of stochastic heat differential equa-
tion with reflection. Please see the lecture note [3] by Funaki for more information
relative to $\nabla\phi$ interface model.

In this note, we will deduce two SPDEs by studying the fluctuation of the
evolutional model of two-dimensional Young diagrams, which are initially introduced
by Funaki and Sasada [5] and the main results in published in [6] in 2013. Young
diagrams are convenient graphical representation of the partition of integers, named
after A. Young from 1900 and are very useful in the theory of group representation.
Before the work of [5], all of the study on random Young diagrams is in the static level
from the initial work of Vershik [9] in 1996. However, in the real world, everything is
developed, so it is important to consider the evolutional model for Young diagrams.

The following is organized as follows. In the next section, we will give an
explanation of Young diagrams and the review some result on the static model of
Young diagrams. In Section 3, we will introduce the dynamic model of 2-D Young
diagrams and consider the hydrodynamic limits of them based on [5] and then in
the last section, we will review the results of fluctuation problems around the the
hydrodynamic limits of the dynamic model of 2-D Young diagrams. It is shown that
the limits are characterized by two SPDEs.

2 Static Model of $2-D$ Young diagrams

A Young diagram is a diagram relative to partition of positive integers, which is
a combinatorial object useful in group representation theory of the symmetric and
general linear groups and named after by A. Young from 1900. In this part, we
mainly present some results on the limit shape and fluctuation around it of the
static Young diagrams associated with the uniform and restricted uniform statistics
respectively.

To make it clear, let us first introduce the partition of positive integers. For
each $n\in \mathbb{N}$ , let $\mathcal{P}_{n}$ be the set of all partitions $p=(p_{i})_{i\in N}$ satisfying $p_{1}\geq p_{2}\geq\cdots\geq$

$p_{i}\geq\cdots,$ $p_{i}\in \mathbb{Z}+andn(p)$ $:= \sum_{i\in N}p_{i}=n$ . For each partition $p\in \mathcal{P}_{n}$ , the two
dimensional Young diagram associated to it is the diagram by piling up $j$ sticks of
height 1 and side-length $p_{i}$ , see Figure 2 below.

Vershik in 1996 [9] connected the Young diagrams with the theory of probability.
He introduced some kinds of probability measures on Young diagrams known as
statistical mechanics and then studied the limit shapes of the boundary.of the Young
diagrams, i.e., the law of large numbers in probability terminology. There are many
examples, which particularly include the uniform and restricted uniform statistics.
These probabilities are known as canonical in Physics and the results relative to
them will be mainly summarized for our -goal.

19



For each $n$ , the uniform statistics is a uniform probability measure denoted by
$\mu_{U}^{n}$ on the $\mathcal{P}_{n}$ and the restricted uniform statistics is a uniform probability measure
denoted by $\mu_{R}^{n}$ considered on the set $\mathcal{Q}_{n}$ , which is collection of all partitions with
$q=(q_{i})_{i\in N}\in \mathcal{P}_{n}$ and $q_{i}>q_{i+1}$ if $q_{i}>0$ . It is clear that $\mathcal{Q}_{n}$ is a proper subset of $\mathcal{P}_{n}.$

The uniform statistics is also called the Bose statistics, which applies only to those
particles not limited to single occupancy of the same state. The restricted uniform

statistics is also called the Fermi statistics, that is, the particles in the systems

satisfies the Pauli exclusion principle: two particles can not occupy the same state
at the same time.

To state his results for limit shapes, let us here introduce the height function of
the Young diagrams,

$\psi_{p}(u):=\sum_{i\in \mathbb{N}}1_{\{u<p_{i}\}}=\#\{i\in \mathbb{N}:p_{i}>u\}, u\geq 0.$

and the scaled height function in the static level

$\tilde{\psi}_{p}^{N}(u)=\frac{1}{N}\psi_{p}(Nu) , u\geq 0.$

Clearly, under such scaling, the area equals to 1, that is, $\int_{0}^{\infty}\tilde{\psi}_{p}^{N}(u)du=1$ . Fur-

thermore, it is known that $\tilde{\psi}_{p}^{N}(u)$ is non-negative, non-increasing and cadlag(right

continuous with left limits).

Figure 1: Young Diagram and the height for $n=24=(8,7,4,4,1)$ .

Let us also denote by $\mathcal{D}(A)$ the space of all functions $\psi$ defined on $A$ which are
$\tilde{\psi}_{p}^{N}(u)$ is non-negative, non-increasing and cadlag, where $A=\mathbb{R}+orA=\mathbb{R}_{+}^{o}$ $:=$

$(0, \infty)$ . We will
$\sim$

endow it with the topology of uniform convergence on any compact
subsets,

In [9], Vershik proved the law of large numbers holds, see also [7]. Such kind
of results are usually called the equivalence of ensembles in the field of statistical
physics.
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Proposition 2.1. For the uniform statistics, under the probability measure $\mu_{U}^{N^{2}}$ , it
is shown that $\tilde{\psi}_{p}^{N}(u)$ converges to the curve

$\psi_{U}(u)=-\frac{1}{\alpha}\log(1-e^{-\alpha u})$ ,

in probability in $\mathcal{D}(\mathbb{R}_{+})$ , where $\alpha=\pi/\sqrt{6}.$

Similarly, for the restricted uniform statistics, under the probability measure
$\mu_{R}^{N^{2}},$ $\tilde{\psi}_{q}^{N}(u)$ converges to the curve

$\psi_{R}(u)=\frac{1}{\beta}\log(1+e^{-\beta u})$ .

in probability in $\mathcal{D}(\mathbb{R}_{+}^{o})$ where $\beta=\pi/\sqrt{3}.$

$\mathbb{R}om_{\sim}$ the view point of physics, the limit shapes obtained in the above give the
explanation of the limit distribution of the particles’ energy. In addition, the limit
shapes $\psi_{U}$ and $\psi_{R}$ obtain in the above will be called Vershik’s curves.

Now it is natural to study the fluctuations of the random interfaces around their
limit shape under some proper scaling. Such problem is an equivalent of the central
limit theorem in probability theory, which is also studied by many authors, see for
example, Vershik et. $a1.[2]$ and Yakubovich [10]. Let

$\Psi_{N}^{U}(u) :=\sqrt{N}(\tilde{\psi}_{p}^{N}(u)-\psi_{U}(u)) , u>0$

$\Psi_{N}^{R}(u) :=\sqrt{N}(\tilde{\psi}_{q}^{N}(u)-\psi_{R}(u)) , u\geq 0,$

where $\psi_{U}(u)$ and $\psi_{R}(u)$ are Vershik’s curve, i.e., the limit shapes obtained in Proposi-
tion 2.1. Then the following fluctuations around the Vershik’s curves are established
in [2, 8, 10], see also [6] for the grandcanonical ensembles.

Proposition 2.2. The fluctuation fields $\Psi_{U}^{N}(u)$ and $\Psi_{R}^{N}(u)$ weakly converge to $\Psi_{U}(u)$

and $\Psi_{R}(u)$ under $\mu_{U}^{N^{2}}$ and $\mu_{R}^{N^{2}}$ , where $\Psi_{U},$ $\Psi_{R}$ are mean $0$ Gaussian processes with
covariance structures

$C_{U}(u, v)= \frac{1}{\alpha}\rho_{U}(u\vee v)$ , $u,$ $v>0$ and $C_{R}(u, v)= \frac{1}{\beta}\rho_{R}(u\vee v)$ , $u,$ $v\geq 0,$

and $\rho_{U}=-\psi_{U}’,$ $\rho_{R}=-\psi_{R}’$ are slopes of the Vershik’s $curve\mathcal{S}$, respectively.

These results can be reinterpreted from the dynamic point of view by identifying
the static fluctuation limits with the invariant measures of the limit SPDEs, which
are obtained in Section 4 below.
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3 Hydrodynamic limits of for the evolutional mod-
el of Young diagrams

In the above section, we reviewed the convergence of height function of static random
Young diagrams and the fluctuation around its limit shape. From this section, we
wll introduce the dynamics of two-dimensional Young diagrams based on the paper
[5] by Funaki and Sasada.

Let us first introduce the grandcanonical ensembles $\mu_{U}^{\epsilon}$ on $\mathcal{P}$ $:= \bigcup_{n}\mathcal{P}_{n}$ and $\mu_{U}^{\epsilon}$

on $\mathcal{Q}$ $:= \bigcup_{n}\mathcal{Q}_{n}$ respectively, where $\epsilon\in(0,1)$ . Let define

$\mu_{U}^{\epsilon}(p)=\epsilon^{n(p)}/Z_{U}(\epsilon),p\in \mathcal{P}$

on $\mathcal{P}$ and
$\mu_{R}^{\epsilon}(q)=\epsilon^{n(q)}/Z_{R}(\epsilon) , q\in \mathcal{Q}$

with the normalizing constants

$Z_{U}( \epsilon)=\prod_{k=1}^{\infty}(1-\epsilon^{k})^{-1}$ and $Z_{R}( \epsilon)=\prod_{k=1}^{\infty}(1+\epsilon^{k})$ .

It is known that $\mu_{U}^{\epsilon}(p)$ and $\mu_{R}^{\epsilon}(q)$ are two probability measures and the conditional
probabilities on $\mathcal{P}_{n}$ and $\mathcal{Q}_{n}$ respectively identify with canonical ensembles introduced
in Section 2.

Let us now introduce the dynamics of two-dimensional Young diagrams con-
structed in [5].

For $0<\epsilon<1$ , the dynamics $p_{t}$ $:=p_{t}^{\epsilon}=(p_{i}(t))_{i\in N}$ on $\mathcal{P}$ and $q_{t}:=q_{t}^{\epsilon}=(q_{i}(t))_{i\in N}$

on $\mathcal{Q}$ are introduced as Markov processes on these spaces having generators $L_{\epsilon,U}$ and
$L_{\epsilon,R}$ , respectively, defined as follows. The operator $L_{\epsilon,U}$ acts on functions $f$ : $\mathcal{P}arrow \mathbb{R}$

as

$L_{\epsilon,U}f(p)= \sum_{i\in N}[\epsilon 1_{\{Pi-1>p_{t}\}}\{f(p^{i,+})-f(p)\}+1_{\{p_{i}>p_{i+1\}}}\{f(p^{i,-})-f(p)\}],$

while the operator $L_{\epsilon,R}$ acts on $f^{r}u$nctions $f$ : $\mathcal{Q}arrow \mathbb{R}$ as

$L_{\epsilon,R}f(q)= \sum_{i\in N}[\epsilon 1_{\{qi-1>q_{i}+1\}}\{f(q^{i,+})-f(q)\}+1_{\{q_{t}>qi+1+1orq_{i}=1\}}\{f(q^{i,-})-f(q)\}],$

where $p^{i,\pm}=(p_{j}^{i,\pm})_{j\in N}\in \mathcal{P}$ are defined for $i\in \mathbb{N}$ and $p\in \mathcal{P}$ by $p_{j}^{i,\pm}=p_{j}$ for $j\neq$

$i$ , and $p_{i}\pm 1$ for $j=i$ and $q^{i,\pm}\in \mathcal{Q}$ similarly for $q\in \mathcal{Q}$ . By convention, we set
$p_{0}=q_{0}=\infty.$

For each initial probability measure $v$ on $\mathcal{P}$ or $\mathcal{Q}$ , we will denote by $\mathbb{P}_{\nu}^{N}$ or $\mathbb{Q}_{\nu}^{N}$

the law of the trajectory of the Markov process $p_{t}^{\epsilon}$ or $q_{t}^{\epsilon}$ on $\mathcal{D}(\mathbb{R}_{+}^{o}, \mathcal{P})$ or $\mathcal{D}(\mathbb{R}_{+}, \mathcal{Q})$

respectively. Then, for every $\epsilon\in(0, i)$ , these Markov processes constructed in
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the above have the grandcanonical ensembles $\mu_{U}^{\epsilon}(p)$ and $\mu_{R}^{\epsilon}(q)$ as their invariant
measures, respectively.

In the following, we will choose $\epsilon=\epsilon(N)(=\epsilon_{U}(N), \epsilon_{R}(N))$ in such a way that
in each case the averaged size of the Young diagrams under $\mu_{U}^{\epsilon}$ or $\mu_{R}^{\epsilon}$ is equal to $N^{2},$

$i.e.$

$E_{\mu_{U}^{\epsilon(N)}}[n(p)\}=N^{2}$ and $E_{\mu_{R}^{\epsilon(N)}}[n(q)]=N^{2}$

Then under the above conditions, the behaviors of $\epsilon(N)$ as $Narrow\infty$ are formulated
as below.

Lemma 3.1.
$\epsilon_{U}(N)=1-\frac{\alpha}{N}+O(\frac{\log N}{N^{2}}) , \alpha=\pi/\sqrt{6}$

and
$\epsilon_{R}(N)=1-\frac{\beta}{N}+O(\frac{\log N}{N^{2}}) , \beta=\pi/\sqrt{12}.$

Such precise behaviors are very important to study the hydrodynamical limit
and especially, to the fluctuations of the evolutional model of Young diagrams.

Define the corresponding height functions scaled in space and time of the dy-
namics of the two dimensional.Young diagrams by

$\tilde{\psi}_{U}^{N}(t, u)$ $:= \tilde{\psi}_{p_{N^{2}t}^{\epsilon}}^{N}(u)=\frac{1}{N}\psi_{p_{N^{2}t}^{\epsilon}}(Nu)$ $and_{\backslash }\tilde{\psi}_{R}^{N}(t, u)$ $:= \tilde{\psi}_{q_{N^{2}t}^{\epsilon}}^{N}(u)=\frac{1}{N}\psi_{q_{N^{2}t}^{\epsilon}}(Nu)$ ,

with $\epsilon=\epsilon(N)$ and recalling that $\tilde{\psi}_{p}^{N}(u)=\frac{1}{N}\sum_{i\in \mathbb{N}}1_{\{Nu<p_{i}\}},$ $u\in \mathbb{R}_{+}.$

Let us now roughly summarize the results of hydrodynamic limit for dynamics of
Young diagrams obtained in [5] for the uniform statistics and the restricted statistics
respectively, please see Theorems 2.1 and Theorems 2.2 [5].

Theorem 3.2. Let $(\nu^{N})_{N\in \mathbb{N}}$ be a sequence of probability measures on $\mathcal{P}$ with$\cdot$ the
property: there exists a function $\psi_{0}\in X_{U}$ such that for many $\delta>0$ and every
junction $f$ with compact support in $\mathbb{R}_{+}^{o}$

$\lim_{Narrow\infty}\nu^{N}[|\int_{0}^{\infty}f(u)\tilde{\psi}_{p}^{N}(u)du-\int_{0}^{\infty}f(u)\psi_{0}(u)du|>\delta]=0.$

Then for each $t>0,$ $\tilde{\psi}_{U}^{N}(t, u)$ converges to $\psi_{U}(t, u)$ in probability in the following
sense: for any $\delta>0$

$\lim_{Narrow\infty}\mathbb{P}_{\nu^{N}}^{N}[|\int_{0}^{\infty}f(u)\tilde{\psi}_{U}^{N}(t, u)du-\int_{0}^{\infty}f(u)\psi(t, u)du|>\delta]=$ O.

Here $\psi(t, u)$ $:=\psi_{U}(t, u)$ is a unique solution of the following nonlinear partial dif-
ferential equation $(PDE)$ in $X_{U}$ :

$\partial_{t}\psi=(\frac{\psi’}{1-\psi})’+\alpha\frac{\psi’}{1-\psi’}, u\in \mathbb{R}_{\mathring{+}}$ , (3.1)

23



with the initial condition $\psi(0, \cdot)=\psi_{U,0}(\cdot)$ , where

$X_{U}=\{\psi$ : $\mathbb{R}_{\mathring{+}}arrow \mathbb{R}_{+}^{o};\psi\in C^{1},$ $\psi’<0,$
$\lim_{u\downarrow 0}\psi(u)=\infty,$

$\lim_{u\uparrow\infty}\psi(u)=0\}.$

Theorem 3.3. Let $(\nu^{N})_{N\in N}$ be a sequence of probability measures on $\mathcal{Q}$ with the
property: there exists a function $\psi_{0}\in X_{R}$ such that for many $\delta>0$ and every

function $f$ with compact support in $\mathbb{R}_{+}$

$\lim_{Narrow\infty}\nu^{N}[|\int_{0}^{\infty}f(u)\tilde{\psi}_{q}^{N}(u)du-\int_{0}^{\infty}f(u)\psi_{0}(u)du|>\delta]=0.$

Then for each $t>0,$ $\tilde{\psi}_{U}^{N}(t, u)$ converges to $\psi_{U}(t, u)$ in probability in the following
sense: for any $\delta>0$

$\lim_{Narrow\infty}\mathbb{Q}_{\nu^{N}}^{N}[|\int_{0}^{\infty}f(u)\tilde{\psi}_{R}^{N}(t, u)du-\int_{0}^{\infty}f(u)\psi(t, u)du|>\delta]=0.$

Here $\psi(t, u)$ $:=\psi_{U}(t, u)$ is a unique solution of the following nonlinear partial dif-
ferential equation $(PDE)$ in $X_{R}$ :

$\partial_{t}\psi=\psi"+\beta\psi’(1+\psi u\in \mathbb{R}+,$ (3.2)

with the initial condition $\psi(0, \cdot)=\psi_{R,0}(\cdot)$ , where

$X_{R}$ $:=\{\psi$ : $\mathbb{R}_{+}arrow \mathbb{R}_{+};\psi\in C^{1},$ $-1\leq\psi’\leq 0,$ $\psi’(0)=-1/2,$ $\lim_{u\uparrow\infty}\psi(u)=0\}.$

It is easy to see that the Vershik’s curves $\psi_{U}$ and $\psi_{R}$ obtained in the law of
large numbers in Section 2 are the unique stationary solution in PDEs (3.1) and
(3.2). In this sense, the derivation of the Vershik’s curves is understandable from
the dynamical point of view.

In the end of this section, we give some ideas to the proof of Theorem 3. $2^{t}$ and
Theorem 3.3. For the grandcanonical uniform and restricted uniform statistics, it
is known that if we consider the gradients of their height functions of the dynam-
ics of $p_{t}^{\epsilon}$ and $q_{t}^{\epsilon}$ , then they can be transformed to a weakly asymmetric zero-range
process, respectively a weakly asymmetric simple exclusion process on a set of pos-
itive integers with a stochastic reservoir at the boundary site $0$ in both processes as
natural time evolutions of the Young diagrams. The weakly asymmetric zero-range
process can be further transformed into a weakly asymmetric simple exclusion pro-
cess $\overline{\eta}_{t}\in\{0, 1\}^{\mathbb{Z}}$ on the whole integer lattice $\mathbb{Z}$ without any boundary conditions
by rotating the $xy$-plane around the origin by 45 degrees counterclockwise and pro-
jecting the system to the $x$-axis rescaled by $\sqrt{2}$ . This involves quite a nonlinearity
$s$ observed in Section 4 of [5]. Anyway, to prove the hydrodynamic limits above,
we can turn to study that of a weakly asymmetric simple exclusion process with a
stochastic reservoir at the boundary site $0$ and the discrete type of Hopf-Cole trans-
formation is adapted, which avoid the one-block and two-block estimates. We point
out for the restricted case, the study of the boundary behavior of the transformed
process is vital.
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4 Fluctuation in evolutional Young diagrams and
invariant measures

Similar to the static level, when the hydrodynamic limit for dynamics of Young dia-
grams, it is natural to consider the fluctuation of the interface around hydrodynam-
ic limit. In this part, we will review some results on the non-equilibrium dynamic
fluctuation for two-dimensional evolutional Young diagrams associated with both
uniform and restricted uniform statistics based on the work [6].

The theory of the equilibrium dynamic fluctuation around the hydrodynamic
limit is well established based on the so-called Boltzmann-Gibbs principle. However,
the results on the non-equilibrium dynamic fluctuations are rather limited and is
due to a special feature of the models.

We will also see that the fluctuations studied in the static level can be reinter-
preted from the dynamic point of view by identifying the static fluctuation limits
with the invariant measures of the limit SPDEs.

More precisely, we consider the fluctuations processes $\tilde{\psi}_{U}^{N}(t, u)$ and $\tilde{\psi}_{R}^{N}(t, u)$

around their limits:

$\Psi_{U}^{N}(t, u):=\sqrt{N}(\tilde{\psi}_{U}^{N}(t, u)-\psi_{U}(t, u))$ and $\Psi_{R}^{N}(t,.u)$ $:=\sqrt{N}(\tilde{\psi}_{R}^{N}(t, u)-\psi_{R}(t, u))$ ,

which are elements of $D([O, T], D(\mathbb{R}_{\mathring{+}}))$ and $D([O, T], D(\mathbb{R}_{+}))$ , respectively. Here let
us first state the result for the case of the restricted uniform statistics [6]. In the
following, we will omit all of the assumptions for our main results, please see [6] for
details.

Theorem 4.1. ($RU$-case) Under some proper assumption, the fluctuation process
$\Psi_{R}^{N}(t, u)$ converges weakly to $\Psi_{R}(t, u)$ as $Narrow\infty$ on the space $D([O, T], D(\mathbb{R}_{+}))$ for
every $T>0$ . The limit $\Psi_{R}(t, u)$ is in $C([O, T], C(\mathbb{R}_{+}))(a. s.)$ and characterized as
a solution of the following SPDE:

$\{\begin{array}{l}\partial_{t}\Psi_{R}(t, u)=\Psi_{R}"(t, u)+\beta(1-2\rho_{R}(t, u))\Psi_{R}’(t, u)+\sqrt{2\rho_{R}(t,u)(1-\rho_{R}(t,u))}\dot{W}(t, u) ,\Psi_{R}’(t, 0)=0,\Psi_{R}(0, u)=\Psi_{R,0}(u) ,\end{array}$ (4.1)

where $\rho_{R}(t, u)=-\psi_{R}’(t, u)$ and $\dot{W}(t, u)$ is the space-time white noise on $[0, T]\cross \mathbb{R}_{+}.$

Here space-time white noise $\dot{W}(t, u)$ means that it is a Gaussian type space-time
noise with covariance

$\mathbb{E}[\dot{W}(t, u)\dot{W}(s, v)]=\delta(t-\mathcal{S})\delta(u-v)$ .

Let us give some explanation for the concept of the solutions to the SPDE (4.1).
We first introduce the concept of weak solutions. Similar to that in PDEs, we say
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$\Psi_{R}(t, u)$ is a solution of the SPDE (4.1) if it is adapted, satisfies $\Psi_{R}\in C([0, T], C(\mathbb{R}_{+}))\cap$

$C([O, T], L_{e}^{2}(\mathbb{R}_{+}))(a.s.)$ and for every $f\in C_{0}^{1,2}([0, T]\cross \mathbb{R}_{+})$ satisfying $f’(t, 0)=0$

the following holds:

$\langle\Psi_{R}(t)$ , $f(t)\rangle=\langle\Psi_{R,0},$ $f(0) \rangle+\int_{0}^{t}\langle\Psi_{R}(s)$ , $f”(s)-\beta((1-2\rho_{R}(s))f(s))’+\partial_{s}f\rangle ds$

$+ \int_{0}^{t}\int_{\mathbb{R}_{+}}f(s, u)\sqrt{2\rho_{R}(s,u)(1-\rho_{R}(\mathcal{S},u))}W$ (dsdu) $a.s.$

(4.2)

As in the theory of PDEs, we can show that the solution of (4.1) is equivalent
to its mild form, that is, $\Psi_{R}(t, u)$ is an $L_{e}^{2}(\mathbb{R}_{+})$-valued adapted process and the
following holds:

$\Psi_{R}(t, u)=\int_{\mathbb{R}_{+}}g(t, u, v)\Psi_{R,0}(v)dv+\int_{0}^{t}\int_{\mathbb{R}_{+}}2\beta g(t-s, u, v)\rho_{R}’(s, v)\Psi_{R}(s, v)dvds$

$- \int_{0}^{t}\int_{\mathbb{R}_{+}}\frac{\partial}{\partial v}g(t-s, u, v)\beta(1-2\rho_{R}(s, v))\Psi_{R}(s, v)dvds$

$+ \int_{0}^{t}\int_{\mathbb{R}_{+}}g(t-s, u, v)\sqrt{2\rho_{R}(s,v)(1-\rho_{R}(s,v))}W$ (dsdv) $a.s.,$

where $g(t, u, v)$ is the fundamental solution to $\partial_{t}\Psi(t, u)=\Psi"(t, u)$ with the homo-
geneous Neumann boundary condition at $0$ , that is

$g(t, u, v)= \frac{1}{\sqrt{4\pi t}}\{e^{-\frac{(u-v)^{2}}{4t}}+e^{-\frac{(u+v)^{2}}{4t}}\}, u, v\in \mathbb{R}+\cdot$

It can be proved that the uniqueness of it also holds in the restricted uniform case.
The following, the two SPDEs will obtained by considering the problems of

fluctuations. The definition for solutions can be introduced similarly as above. So
we will omit the explanation at that time.

Before we state the result for the fluctuation of the uniform case, let us consider
the fluctuation for its rotation process of it. In fact, a natural idea in the $U$-case is
to investigate the fluctuation of the curve $\check{\psi}_{U}^{N}(t)$ around $\check{\psi}_{U}(t)$ , which are obtained
by rotating the original curves $\tilde{\psi}_{U}^{N}(t)$ and $\psi_{U}(t)=\{(u, y);y=\psi_{U}(t, u), u\in \mathbb{R}_{+}^{o}\}$

located in the first quadrant of the uy-plane by 45 degrees counterclockwise around
the origin $O$ , respectively, where $\tilde{\psi}_{U}^{N}(t)$ is a continuous indented curve obtained
from the graph $\{(u, y);y=\tilde{\psi}_{U}^{N}(t, u), u\in \mathbb{R}_{+}\}$ of the original function $\tilde{\psi}_{U}^{N}(t, u)$ by
filling all jumps by vertical segments. In particular, this contains a part of $y$-axis:
$\{(0, y);y\geq\tilde{\psi}_{U}^{N}(t,$ $0$

Then it is also interesting to consider the diffusive fluctuation

$\check{\Psi}_{U}^{N}(t, v):=\sqrt{N}(\check{\psi}_{U}^{N}(t, v)-\check{\psi}_{U}(t, v)) , v\in \mathbb{R},$
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which is an element of $D([O, T], C(\mathbb{R}))$ . The fluctuation $\check{\Psi}_{U}^{N}(t)$ defined as above is
a natural object to study, since the Young diagrams corresponding to the class $\mathcal{P}$

belong to the same class under the reflection with respect to the line $\{y=u\}$ , while
those corresponding to $\mathcal{Q}$ do not have such property in general.

Now we can state the result for $\check{\Psi}_{U}^{N}(t)$ and then apply it to $\Psi_{U}^{N}(t)$ .

Theorem 4.2. ( $U$-case under rotation) Under some proper assumption, the fluc-
tuation process $\check{\Psi}_{U}^{N}(t, v)$ converges weakly to $\check{\Psi}_{U}(t, v)$ as $Narrow\infty$ on the space
$D([O, T], C(\mathbb{R}))$ for every $T>$ O. The limit $\check{\Psi}_{U}(t, v)$ is in $C([O, T], C(\mathbb{R}))(a. \mathcal{S}.)$

and characterized as a solution of the following SPDE:

$\{\begin{array}{l}\partial_{t}\check{\Psi}_{U}(t, v)=\frac{1}{2}\check{\Psi}_{U}"(t, v)+\frac{\alpha}{\sqrt{2}}(1-2\rho(t, \sqrt{2}v))\check{\Psi}_{U}’(t, v)+2^{\frac{3}{4}\sqrt{\rho(t,\sqrt{2}v)(1-\rho(t,\sqrt{2}v))}\dot{W}(t,v)},\check{\Psi}_{U}(0, v)=\check{\Psi}_{U,0}(v) ,\end{array}$ (4.3)

where $\rho(t, \cdot)$ is the solution of the $PDE^{\cdot}$

$\{\begin{array}{ll}\partial_{t}\rho(t, v)=\rho"(t, v)+\alpha(\rho(t, v)(1-\rho(t, v t>0, v\in \mathbb{R},\rho(0, v)=\rho_{0}(v) . \end{array}$

and $\dot{W}(t, v)$ is the space-time white noise on $[0, T]\cross \mathbb{R}.$

Although the directions of the fluctuations are different in $\check{\Psi}_{U}^{N}$ and $\Psi_{U}^{N}$ , we still
are able to deduce the next theorem from Theorem 4.2. As pointed out before, the
transformation is nonlinear, so it is important that the convergence in Theorem 4.2
is shown in a function space $D([O, T], C(\mathbb{R}))$ .

Theorem 4.3. ($U$-case) Under some proper assumption, the fluctuation process
$\Psi_{U}^{N}(t, u)$ converges weakly to $\Psi_{U}(t, u)$ as $Narrow\infty$ on the space $D([O, T], D(\mathbb{R}_{+}^{o}))$ for
every $T>0$ . The limit $\Psi_{U}(t, u)$ is in $C([O, T], C(\mathbb{R}_{+}^{o}))(a. s.)$ and a solution of the
following SPDE:

$\{\begin{array}{l}\partial_{t}\Psi_{U}(t, u)=(\frac{\Psi_{U}’(t,u)}{(1+\rho_{U}(t,u))^{2}})’+\alpha\frac{\Psi_{U}’(t,u)}{(1+\rho_{U}(t,u))^{2}}+\sqrt{\frac{2\rho_{U}(t,u)}{1+\rho_{U}(t,u)}}\dot{W}(t, u) ,\Psi_{U}(0, u)=\Psi_{U,0}(u) ,\end{array}$

(4.4)
where $\rho_{U}(t, u)=-\psi_{U}’(t, u)$ and $\dot{W}(t, u)$ is the space-time white noise on $[0, T]\cross \mathbb{R}_{+}^{o}.$

Theexistence of SPDE (4.4) is shown by our proof which depends on a nonlinear
transformation. However, because of the nonlinearity, the uniqueness of it is just
proved in some small function space, see Section 3[6].
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Finally, let us study the invariant measures for the SPDEs (4.4) and (4.1).
Roughly speaking, an invariant measure to a Markov process is a probability measure
$\mu$ such that for any time, the process has the same law $\mu$ . Let

$Q_{U}=- \frac{\partial}{\partial u}\{\frac{1}{\rho_{U}(u)(1+\rho_{U}(u))}\frac{\partial}{\partial u}\}$

and
$Q_{R}=- \frac{\partial}{\partial u}\{\frac{1}{\rho_{R}(u)(1-\rho_{R}(u))}\frac{\partial}{\partial u}\}.$

Then we have the following results, see Theorem 5.2 and Theorem 5.4 in [6].

Theorem 4.4. The Gaussian measure $N(0, Q_{U}^{-1})$ is the unique invariant measure

of the SPDE (4.4), which appeared in Theorem 4.3.
Similarly, the Gaussian measure $N(O, Q_{R}^{-1})$ is the unique invariant measure of

the SPDE (4.1), which appeared in Theorem 4.1.

Since $C_{U}(u, v)$ and $C_{R}(u, v)$ are the Green kernels of $Q_{U}^{-1}$ and $Q_{R}^{-1}$ respectively,
the above theorem gives another proof of fluctuation in the static level for the
uniform and the restricted uniform case.
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