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On two phase problem:

compressible-compressible model problem*

REARZHHEMER AR BE® (Takayuki Kubo)

Division of Mathematics, University of Tsukuba

Abstract

We consider the model problem for the two phase problem in cases of compress-
ible - compressible fluid flows without surface tension. In order to prove the local
in time existence theorem for our problem, the generation of analytic semigroup for
linearized problem and its maximal L, — L, regularity are needed in our method.
The key step of our method is to prove the existence of R-bounded solution operator
to the generalized resolvent problem corresponding to the linearized problem:

1 Introduction

Two phase problem appears in various situations. For example, in order to analyze
a motion of raindrops and air bubbles under water, we have to consider the two phase
problem. Mathematical analysis for two phase problem has been studied by some math-
ematicians. We shall introduce the results corresponding to two phase problem.

In two phase problem of compressible and incompressible viscous fluid, Denisova [1]
studied a local in time existence theorem for her problem under the technical condition.
Recently in Kubo, Shibata and Soga [2], the existence of R-bounded solution operator
to generalized resolvent problem corresponding to two phase problem is shown under
the natural condition derived from physics. By Weis’ operator valued Fourier multiplier
theorem with R-boundedness of solution operator, we can show the maximal regularity
for the linearized problem for two phase problem. A local in time existence theorem is
obtained by applying the maximal regularity to proving the convergence of the successive
approximations. ‘

On the other hand, in two phase problem of compressible and compressible viscous

* fluid, Tani [4],[5] studied a local in time existence theorem under the natural condition
in Holder space framework. In this article, we shall consider the two phase problem of
compressible and compressible fluid in LP — L? framework and prove the local in time
existence theorem of our problem in a similar way as [2].

For this purpose, we shall consider the model problem for the two phase problem in
cases of compressible-compressible fluid flows without surface tension. The key step of

*This article is based on the a joint work with Prof. Yoshihiro Shibata (Waseda University) and Prof.
Kohei Soga (CNRS-ENS Lyon).
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our method is to prove the existence of R-bounded solution operator to the generalized
resolvent problem corresponding to the linearized problem:

Mox + 7 dividy = fi in RY, (1.1)
iy — Div Si(ds, pt) = G in RY, (1.2)
Ty lonor — G- |oy—o = Kk on RY, (1.3)
S (@, pi)ilen=or — S— (G, p_)i|zy=0- = —h on RY. (1.4)
Here, py,ds = (ug1,...,us n)(N > 2) are unknown mass density and unknown velocity

fields. Si(@s,ps) = 2uED(d:) + (uFdiviie — v3p+)] is stress tensor, D(@) = (Vi +T .
Vi#)/2 is N x N matrix called the Cauchy deformation tensor and I denotes the N x N
identity matrix. Moreover for N x N matrix function M = (M;;), the ¢ th component of
DivM is defined by Z;V:I 9;M;;. i = (0,...,0,—1) is the unit outer normal to R and
pE,vE (i = 1,2) are all constants satisfying

pE >0, uf+uf >0, 48,45 >0. (1.5)

Here ,uli and ui are 1st and 2nd viscosity constants, respectively, and fyl*, 72:" are constants
appearing in the linearization of the original nonlinear problem. The resolvent parameter
A varies in A, », = X, 5, N K,,where

Tepo = A €C| argA| S m—e, A > Mo},
Ke={X€C| (ReX+ym +2)" +(ImA)* > (3 +€)°} (1.6)

with 7,, = max (_zf:z: _vl_vz_)
m N\ g u ey ) . .
Before stating our main results, we shall introduce several symbols and functional
spaces. For the differentations of N-vector § = (g1, ..., gn), we use the following symbols:

vé‘:(azf] lZ,j=1,,N), V2§=(616Jgk|z,31k:1:,N)

For any domain €, L,(Q2) and W*(Q2) denote the usual Lebesgue space and Sobolev
space, while || - ||, and || - |lwm) denote their norms, respectively. For any two
Banach spaces X and Y, £(X,Y) denotes the set of all bounded linear operators from
X to Y. Hol(U, X) denotes the set of all X-valued holomorphic functions defined on U.
N and C denote the set of all natural and complex numbers, respectively, and we set

Next we introduce the definition of R-boundedness which is the key word in our
method.

Definition 1.1. Let X and Y be Banach spaces. A family of operator 7 C £(X,Y) is
called R-bounded on £(X,Y), if there exist constants C > 0 and p € [1,00) such that
for any n € N, {T}}7.;, € 7, {z;}}-; C X and sequences {r;(u)}}_; of independent,
symmetric, {—1, 1}-valued random variables on [0, 1] there holds the inequality:

1 n 1/p 1 n 1/p
{ / ||Zr,-<umxju§’/du} sc{ / uzrj(u)xjnszdu}
j=1 j=1

The smallest such C is called R-bound of 7', which is denoted by Rexy)(T).
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Then we can obtain the following main result.

Theorem 1.2. Let 1 < g<00,0<e<m/2and )\ > 0. Let . 5, and K, be the sets
defined in (1.6) and set A, = Zep, N K. Set

Y;] = {(f+7f—7§+a§—, E) E) ,
fr € WARY), 8 € LR, Fe WARMYY, ke W2RNMY,
Vo =A{(Foy, Fo, Fiy, Fi_, F5, F3, Fy, F5, Fg) | For € W, (RY),
Fis € L(RY)N, Fy, Fy'e LRV, Fy, Fy € LRY)N, Fy e LRV},
Then, there exist operator families
P+(X) € Hol(Ae g, L(Vg, W) (RY))),  Ux(A) € Hol(Ac g, £(Vg, W(RY)Y))
such that for any (fy, f—, G, G-, b k) € Yy and A € Acx,,

px = Pr(N(f+, f-, G4, G-, VR, \/2R, V2, \V2VE, AE),

@ =Us(N)(fy, f=, Gy G-y VR, NV?R, V2, N2V E, AK)

solve problem (1.1)-(1.4) uniquely. Moreover, there exists a constant C' depending on e,
Ao, ¢ and N such that :

Reewi@)n {0\ NPV} [ A €Tex}) SO (£=0,1),

1.7)
Ry pyeemsan {T0) GUN) | A €T £C (€=0,1),

where Gyu = (Au, yu, \2Vu, V2u) and X = v + 4.

2 Outline of the Proof of Theorem 1.2

In this section, we shall show the outline of the proof of Theorem 1.2. First step of
our method is to obtain the solution formula for (1.1)-(1.4) by Fourier transform with
respect to ' = (z1,...,Zy-1). Second step is to show the R-boundedness for solution
operator by using solution formula with technical lemmas.

2.1 Solution formula

In this section, we shall show the solution formula for (1.1)-(1.4). For simplicity, we
consider the case where fi = 0 and g = 0. Substitute (1.1) into (1.2) and (1.4), we can
reduce (1.1)-(1.4) to the following equations:

+.+ )
Avy — Div [ZuitD(vi) + (ugt +1 /\72 ) (divﬁi)IJ =0 in RY (2.1)

Vyg —VU_g= k] ' ) on Rév ) (22)
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i (Dyvy,j + Djvyn) = py (Dyv-j + Dju_n) = —h; on Ry  (2.3)

2ui Dnvy,v + (Mz + ; 2 ) divay

- [2MI_DNU_,N + (u; + /\72 ) divz‘;‘_} — —hy onRY (24)

Here and hereafter, j and J run from 1 through N —1 and N and we set 65 = 775 /)
for simplicity of notation. In order to obtain the solution formula of (2 1), we prepare
the following formula obtained by applying the divergence to (2.1):

[\ — (2uf + 5 + 65) Al div vy = 0.
By using the formula above and (2.1), we see that
A= (2uf +p7 + §5) Al (A — pfA)vy = 0. (2.5)

In order to obtain the solution formula of (2.1)-(2.4), we use the partial Fourier
transform with respect to ' = (z1,...,2ny-1) and the partial inverse Fourier transform
defined by

Fu[v](€,zN) =6=/ ey (¢, 2y )dd,

RN-1
1\ V-1 o
FE @) = (5) [ e Cuie e,
7 RN-1
respectively. Taking

2Fw[Div D(v))(¢, on) = —|¢[*5; + DiB; +i&;(i€’ - o/ + Dyiw),
fol[DiV D(’UN)](f,,CL‘N) = —'5 |2’UN + D ’UN + DN(if’ . ’17' + DN@;)

into account, we obtain the following equations by applying the partial Fourier transform
0 (2.1)-(2.4) and (2.5):

(| — Sy
Xov; — it (DY - 1€ s + i€, div, | — (uf +8)igdive, =0,
AT — [( — 1€ ) + DNd/mI] — (4 + 1) Dydivi, =0, 06)
< e e .
AT — [(D —E2)T + i€ div- ] (45 + 65)ig;Aive. = 0,
| TN - ai [(D — €)Y + DNdwv_] — (45 + 67)Dydive. =0
and
A+ (20 + i +69)) (€12 — D3] A+ (g2 - DR)] oy = 0. (27)

By (2.7), we see that the characteristic roots of (2.6) are

As = \/(2uit FuE o)A+ A2, By= \/(uit)_lHAz, A=l



By using By and A, we rewrite (2.6) as follows:

wl (BE — DR)or; — (uf + pf + 6Y) ig;divr, =0,
pi (BY — DR)oew — (uf + 43 +6%) Dydiviy =0, (2.8)
pi (B2 — D})0_; — (pi + py + 6y ) i€;dive_ = 0,

2

pi (B2 — D3)o"n = (uf + 3 +85) Dndivi_ = 0.
From now, we shall find the solution 7 ; to (2.6) of the forms:

Uy =af(eBrov _ gmAvan) 4 Bre Bran 575 = o (eB-2n — eA-ov) 4 B7eB-om,
(2.9)

We see that (B2 — D%)ozy = (AL — B?)ateF4+%N and

Qivily = (i - of, +i€'- B, = By (ol + Bi))e P + (Aya}y — i€ - ol Je~ Ao,
divi_ = (ig - o +i€' - B + B_(ay + B3))eP-2N — (A_ay +i€' - o' )eA-¥,  (2.10)

where o, = (of,...,af_,) and 8, = (B%,...,8%_,).
Substituting (2.10) into (2.8) and equating the coefficients of e¥B+2N oFA+2N we have

(i€~ o, +i€'- B, — By(af + 5%) = 0,
i€ ol +i€" - B+ B_(ay + fy) =0,
) (A3 = BY)af — (uf + i +0%) i€j(Asay, — i€ -af) =0,
pui (AL = BY)ag + (uf +pf +6f) Ay (Araf — i€ - o)) =0,
pi (A2 = B2 )ag + (py + py + 65 ) i€(A—ay +14€'-al) =0,
\ 11 (A2 = B2)ay + (g +p +65) A-(A-af +4€ - al) =0.

(2.11)

Since pi (A7 — B%) + (uf + puf +6%) A2 = (uf + ug + 677) A2, the fourth equation in
(2.11) implies that oy = A72A i’ - o/,. By the first equation in (2.11), we have

" A? . A .
i€ oy = g i€’ B, — BiY), o= m@&' By — ByfB). (2.12)

Similarly, by the sixth equation and the second equation in (2.11), we obtain

A? —A_
i€ -BL+B_fy), ay= € Bl + B-By). (2.13)

Y] r
i€ ol B A,

 B_A_ — A2(

Next we consider the boundary condition (2.2)-(2.4). By applying the partial Fourier
transform to (2.2)-(2.4), we obtain

B — B3 = ky, | (2.14)
ui (A4 = By)of — Bof} +1i8%) — ur ((B- — A)ag + B_B; +ig;8y) = —hy,
(2.15)

(26 +43 +63) (As = By)afk — 2u" By B + (ud + 67) (i€ - B — B3y

— (247 + p3 +67) (B- — A )ay — 2ui BBy — (u3 +63)(i€' - B + B_fy) = —?fv- |
' 2.16

65
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Since by (2.12) and (2.13), we have

~ AL (A% — B2) A2(2A4,B, — B2 — A?)
VY= N R A ke o St A A - ++ + +
7’5 h Nl ( B+A+—A2 Zg ﬂ+ B+A+—A2 ﬁN)

C[A(B:-AY)_, ., AYA?+B2-24_B) _
—h (~B_A_—A2 Wbt ——p g —a ﬁ”)
and
— 1 Y
—hy = BA, — A [2uf (A} — Ay By) + (43 + 85)(A% — A%)] € - B,
A2 _ A2 A? _ A?

N S e (o= 4= 4 s-) , -

(26 + pg + %) B A, — AgBJr/BN (2u7 + p7 +95) B A _ AQB—ﬂN
1 _ e ,

"B A A2 [2u7 (A2 — A_B_) + (uy + 65 )(AZ — A?)] i€’ - B_.

Substituting 87 = 87 +E; by (2.14) into the formula of —i¢’ - ' and —gj\v, we obtain

A (A2—B2) |, ~ _A%2A,B, — B? — A?) ~ .

_ +/ e 10 — +2+ + it Bt
I’l‘l B+A+""A2 7’6 k +ll‘1 B+A+—A2 kN Zé h
S FENCEYC PP

Pl /
:ul B+A+ _ A2. I‘L]. B_A_ _ A2 7’§ /8—

2A,. B, — B — A2 9A_B_ — A? — B?
_ A2 + +£+ + - 2 _
A [M B A, — A? M —p a1 i By
and
—i& K T
B~ 2u (43— AvBy) + (3 +60)(4] - 4]
(A2 — A)B.ky —~
+(oud a4 8) o B
i€’ - Bl
= o= 2 (AL~ AuBy) + (] +8)(A] - A7)
&g o
g 20T (A — ABL) (g + 6)(A2 — A7)
(Ag_ - A2)B+,@KI B B ~ (A2_ —AZ)B—,B;r
_(21‘1}-4‘#;—4‘5;) B, A, — A? —(2/‘1 + W +(5,\) B A Az

Here setting

A, (B2 — A2) A_(B? — A2)
+ _ + + - _ - —
Lll - _/‘l’l B+A+ _ A2 ) Lll = —Hq B__A_ _ A2 )
2A.B, — B2 — A? 2A_B_ — A* - B?
_ 2442+ + — =42 Z
LB - _MTA B+A+ _ A2 ) L12 =M A B_A_ _ A2 )
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1

Liv = g (2 (A% = Ay Bo) + (uf +6{)(A% — A7),
_ 1 _ o e
Ly = —p——5 (20 (AL = A_B_) + (i3 +67)(A2 — 47)],
A2 — A? . L AT oA
L3y = — (2uf + 43 +55) m&, Ly =~ (2u7 + 43 +65) B A —a2b-
and L;; = L+ + Ly, L= (ﬁ; é;i), we obtain
A —ig' W — L€ - K — Lky
S U B (2.17)
By —hy — Ljit' - k' — Liky

If det L # 0, we have the inverse of L and obtain

(éf’~ﬂ’_)= 1 (ng —Lu) i€’ - — Lfi¢' - B - Ly
By det L \—Lar L —hN—L;'lif'-k" L;QkN

Then we get the formula of i¢' - o/,,af and BF by (2.12), (2.13) and (2.14). Since we
have the formula of a by (2.11), we can obtain the solution formula of (1.1)- (1.4) if
‘det L # 0. In next sectlon we shall consider the Lopantmskl determinant det L when
)\EAS,\O—EE)\OQK

2.2 Analysis of Lopatinéki determinant

In order to analyze Lopatinski determinant, we shall prove the following lemma, which
is one of the essential steps in this article.

Lemma 2.1. Let L be the matriz defined in section 2.1.
(I) there exists a positive constant w depending on i, us, e, Ao and & such that
|Adet L] > w(|]A|Y2 + A)3 . (2.18)
for any (\,¢') € fa,)«o-
(II) For any multi-index &' € NY™* and (A, €') € Tz 5,, the following inequalities hold:

|05 {(70:) (Adet L)'} < Co(INY2 + A)=247®I (£=0,1) (2.19)

" Proof. Since we can prove (2.19) by using Leibniz rule and the Bell formula:

'] ,
9% f( wa S T (@) (9a(E)

,,,,,
nl+~~-+né=n’, |i|>1
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with f(t) = 1/t and g(¢') = Adet L with (2.18), it is sufficient to. prove (2.18). In order
to prove (2.18), we consider the three cases: (i) Ri|A[Y/2 < A, (ii) ReA < AV, (iii)
R;YA|Y? < A < Ry|\|V/2 for large R; and Ry.

First we consider the case: Ri|A|Y/? < A with large R; > 1. We see that |aX + §] >
(sine/2)(a|A| + B) for any A € ., £ € RY and o, 8 > 0 by elemental calculation. By
using this 1nequahty, we notice that there exists a very small posmve constant d3 such
that |[(sypf + sou + 6F)"IAA™2| < (sin(e/2)) ~H(s1pf + souy) TRy < 83 for 51,82 € R.
Therefore we have Ay = A(1+ O(d3)), By = A(1 + O(83)) as small d5. Therefore we can
obtain

) i2 i+,ui+(5i) (:i:)
Li:_ﬂl(/h 2 M A2+ 0(8)), LE = M1 A2(1 4+ 0(8,)),
11 3,u1i+,u,2i+53\t (2+ 0(3)) 12 :F3 ?:+ :2|: 5i ( (d3))

2(# ) 2(2uf + +5i)(uf)
=7 L 140 LE = — A A(1 + 0(83)),
L21 3Mi 5i( ( )) 22 3N1i 'ué: 5;‘;: ( ( 3))

(2.20)

which imply that

pi (U7 + py + 0y )) (MT(MT+MJ+5§’) _) 2
det I = A%(4 4+ O(65)).
© ( * 3uy + pg + 0y 3uf + ud + 6y i (4+0())

Taking the fact: puf > 0, uf + pf > 0 into account, we see

pEBuT + u) + uf (Wf + ) + 67 (i + 47)

pf (i +p3 +65)|
3uf + pf +6F

> 0.
3uf + uf +of

w+

Summing up, we can show that there exists a positive constant w such that | det L| > wA?.
Since the case Ry A < |\|Y/2 for large Rj is shown in a similar way to the case A > Rj|A|*/2,
we omit the case Ry A < |AY/2. B

Finally, we consider the case R;!|A|Y/? < A < Ry|A|Y/2. Set A = A/(|A|Y/% + A)? and

A A a + + +\-1% 4 % n +\-1Y | &
A=|‘m, Ai=\/(2ﬂ1+ﬂz+5,\)1)\+142, By =1/ (pi) ™A + A2
and

D(Ry, R,)

={(A) | 1+R)2< N <RQ+Ry)%,(14+R) ' <A<R(1+R)™}.

We remark (), JZ) € D(Ry, Ry) if (), &) satisfies the condition R'1|)\|1/2 < A< RV
We also define L,] by replacmg Ay, A and By by Ai, A and B, respectlvely And we set
det L = Ly Loy — L12L21 and then we have det L = (|)\|1/2 + A)%det L.

We shall prove that det L # 0 provided that (X\,A) € D(Ry,R;) and X € X, by

contradiction. To this end, we assume that det L = 0, namely det L = 0. In this case, in
view of (2.17) that Wi(zn) = (we1(zn),. .., wen(zn)) # (0,...,0) satisfy (2.1)- (2.4)
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with E(O): 0,hx(0) = 0 and ks(0) = 0, that is, they satisfy the following homogeneous
equations:

N-1
Mwsj— Y ilelibwy o + i€wy ;)
=1 _
— i D (i€wen + Dywag) — (43 + 63 )i6; (i€ - wly + Dywan) =0, (2.21)
N-1
Mgy — pf Z i€(Dywsg + i€ws N) — 2u Dayws v
l=1 .
— (43 + 65)Dn (i€ - wly + Dyws y) = 0, (2.22)
11 (Dnwyj + €Wy n)|ey=0 — 7 (Dnw—j + i€w_ n)|oy=0 = 0, (223)
2uy Dywyn + (ug + 65)(z€' - wl + Dywy n)|zy=0
— (2p; Dyw_ n + (pg + 65 ) (@€ - w" + Dyw_ n)|zy=0 = 0. (2.24)

Here we set
‘ +oo . :
@be== [ aloxlamiioy, ol = Vo

Multipling (2.21) by Wz and (2.22) by Wz 5 and by integration by parts, we obtain

N-1 .
Mwsglld + 1D (e we g, i&wa 3)x + li€we s 12) + pF(i€wen, Dywsg)e
=1

+ i | Dyws I3 + (4 + 65) (€ W, i&wa )+ + (Dywa , i€wa )+) = 0

and

N-1

Muwenld + 43 Y (Dyvwee, iews v)s + li€wsn12) + 205 | Dyws, 12
=1

+ (k3 +6%) (i€ - wl, Dywe n)s + || Dyvwe n[3) = 0.

Summing up, we see
‘ N
0=AD Jlwe )2
j=1

N-1 N-1
+pr (HZE' wWilll+ ) lliwe it + > (i€ws v, Dywsj)s
£j=1 =1

N-1 N-1
+ ) IDvwe 1%+ (Dywe e, i€ws n) s + li€ws vlI2) + 2||DNwﬂ:,N”2i)
j=1 =1 '

+ (g +8%) (i€ - willZ + (i€ - why, Dywi ) s + (Dywen, i€ - wl)s + | Dywan|[2) -
' S (2.25)
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Taking the fact 5 = %7 (ReA — Im)) and

lli€jwz 5 + Dnwall3

= (i€wx N, Dnwsy)s + |Dyws i3 + (Dyws 5, i€5we,n)+ + |[€5we, w2,
l|i€’ - wl + Dyws nlI%

= ||i€" - w)|% + (i€’ - wl, Dywen)s + (Dywen, i€ - wh)s + | Dvws I3,

into account and taking the real part and the imaginary part in (2.25), we have
N ,Y:}:,Y:t
(ImA) [ Y llwe g1l - —m%itz'g' -w, + Dywen|2 | =0 (2.26)
j=1 . -
and

N
ReA ) [lwy l%
j=1

N-1 N-1
+ (llz‘g' Wil 4 D lliewe sk + ) li&we; + Dvwa gl + 2“DNw:i:,N“:2t)
£5=1 i=1 |

+,.+ .
+ (/463: + 7{1}\");2 Re)\) ||7,§I . ’w;: + DNwi,NHi = 0. (227)

When Im A = 0 and ReX > 0, we see |lwy ||+ = 0, namely wy = 0, which contradict to
wy # 0. When Im A # 0, by (2.26), (2.27) and

N-1
i€ - willd + D lli€ews sl + 2 Dvwe n Ik > 2 (1€ - will + | DywsnlI2)
=1
> |ji€ - w} + Dywe i3,
we obtain |
N-1
l|i€" - w)y + Dywy w3 (2Re)\% + i+ lfat) + 4t Y ll#€5we,; + DyvwayllE < 0.

=1

since ¥ > 0and

’ + + " + + £ o+ \2 + 4
1 Y2 + + M7 Tl 1 72 2 1 V2
oReATL V2 4y b P T Hy <Re/\+————> + (Im\) -(——> ,
AP T A2 ut + wE+ us

the condition A € K, ), implies ||¢¢’- w} + Dyws n||+ = 0 namely wy = 0 by (2.26) which
contradict to wy # 0. Therefore we see that there exists a positive constant ¢ such that
|det L| > c. Therefore we obtain |det L| > ¢(|A|*/? + A)?, which implies Lemma 2.1. O
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2.3 Technical Lemma

In this section, we shall introduce one of technical lemmas which we need to prove Theo-
rem 1.2. In order to prove the R-boundedness of solution operator, we use the following
lemmas which is proven by Kubo, Shibata and Soga [2].

Lemma 2.2. Let A be a domain in C and set A= Ax R\ {0}). Let ni(\¢€)
(i = 1,2) be multipliers defined on A such that

19 {78 ma (A €D} < Cr (N2 + 42471,
105 { (76, )tma(A, €)}] < C (IA[? + A) 211

(€ =0,1) for any &' € N7 and (\,¢') € A. Let K (i = 1,2,3,4) be operators defined
by

+oo
Kf(A\)g ==+ i Fa' (X §)AAL My (an +yw)3(€, yn)l(@') dyw,
+o00-

Ky(\g =+ Fo'lni(A, €) AeTPEEN TN ( yn)](2') dyw,
0

+o0

Ky(Ng =+ ; Fetlna(\ €) A Ms(zn +yn)9(€, yn)l(2") dyn,

+o00
Ki(\g==+ Feo'tlna(X, €)eFBEntvmlg(¢ y))(a') dyn,
0

where
e:FB:i:xN — e;AimN

By — Ay

M(zy) =
Then, there exists a constant C such that
Rﬁ(‘Lq(Rg)»Lq(Rg)l'*N“"Nz)({(TaT)eG}\Ki:h(X) ‘ A€ A}) <C (f =0,1, 1=1,2,3, 4)7

where Gy is an operator defined by Gyu = (\u, yu, \'/?Vu, V2u).
By the Volevich trick;

a(z)b(0) = - / "6 o+ )b(uw) + alen +um)¥ () Yo
= '/_0 {d'(zy + yn)b(yn) + a(afN + '!/N)b/(yN)}dyN7

‘we can reduce the solution formula obtained in section 2.1 into the form which we can
apply Lemma 2.2. We can check that the multipliers in the solution formula satisfy the
condition of Lemma 2.2. Therefore we can prove the R-boundedness of solution operator
to problem (1.1)-(1.4), namely we can show the main theorem.
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