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Abstract

We consider the methods for guaranteed computations of solutions for nonlinear parabolic
initial-boundary value problems. First, in order to make the basic principle clear, we briefly in-
troduce the numerical verification methods of solutions for elliptic problems which we have devel-

oped up to now. Next, under some fundamental procedures of verification for parabolic problems

based on the fixed point theorem with Newton’s method, we describe a summary of our methods

including additional new technique which could yield some improvements. The main contents of

the paper consist of the guaranteed a posteriori estimates for the linearized inverse operators of
parabolic type. In order to confirm the effectiveness of our methods, we give some numerical ex-
amples for the guaranteed bounds of iverse operators as well as give some prototype results for

numerical verification of solutions of nonlinear parabolic problems. Moreover, we will mention an
extention of the present technique to the verification of time-periodic solutions.

Keywords: Numerical Verification Methods, Elliptic boundary value problem, Parabolic initial-
boundary value problem, Fixed point theorem, Newton’s method

1 Introduction

Since, we will mainly concern the arguments related to the Newton-type verifiaction methods, our
main task consists of the way how to estimate the norm of a linearized inverse operator for the original
nonlinear problem. Therefore, in this paper, we focus on the constructive a priori estimates of solution
for linear parabolic problems, which we sometimes call ‘a posteriori estimates’ of the inverse operator.

In [15, 17], solving parabolic problems with guaranteed error bounds were considered based on the
sequential iteration method with Schauder’s fixed point theorem. In these cases, due to the verification
principle, concerned operator is implicitly supposed to be retractive in a neighborhood of the solution.
As well known, e.g.[31], for a linear parabolic operator $\mathscr{L}_{t}u\equiv u_{t}-v\Delta u+(b\cdot\nabla)u+cu$ , the theoretical
norm estimates of the inverse operator $\mathscr{L}_{t}^{-1}$ is generally exponentially dependent on the time interval.
Therefore, it should be not efficient to use such a norm for the actual implementation of our verification
procedures based on the Newton method. In [12, 13], some verification procedures are presented
by using the theoretical estimates similar to that in [31], but the verification cost seems to be high
provided that the corresponding elliptic part, .i.e., $-v\Delta u+(b\cdot\nabla)u+cu$ , is not coercive. On the other
hand, in the results by [1, 32] on the numerical verifications of time-periodic solutions in one space
dimension, they use the spectral method with explicit eigenvalues and co esponding eigen-functions
for the linear part of concerned nonlinear equation. Their methods are fairly different from the present
approach based on the finite element methods.

In the present paper, after some consideration of the theoretical estimates, we will introduce two
kinds of a posteriori techniques. One of them, proposed in [23], uses a constructive error estimates for
spatial semidiscrete approximation by the finite element method to the simple heat equation as well as
the inverse operator estimates for a linear ordinary differential system obtained by the semidiscretiza-
tion. Another method uses a full-discrete numerical scheme which is based on an interpolation in time

数理解析研究所講究録

第 1905巻 2014年 112-131 112



by using the fundamental solution for spatial discretization. In this technique, the constructive a priori
error estimates for a full discretization of solutions to the heat equation play an essential role, which is
considered as the same situation in the elliptic case([19, 22, 29] etc In both techniques, combining
these estimates with an argument using the discretized inverse operator and the condition of contrac-
tion in the Newton-type formulation, the a posteriori estimates of the norm for the infinite-dimensional
operators are presented.

In order to clarify the basic and essential concepts of our numerical verification techniques, first
we give a brief summary of our method for the elliptic boundary value problems in Section 2. Next,

in Section 3, after describing a verification principle for parabolic problems using Newton-type for-
mulation, according to our results [8, 23, 24], we introduce three kinds of method for the estimation
of inverse operator $\mathscr{L}_{t}^{-1}$ and compare them by some numerical examples. Also we show some ex-
amples of the verification for solutions of a prototype nonlinear problem. Additionally, we mention a
possible refinement on the estimation for the inverse operators. In Section 4, we will consider a basic
formulation of the numerical enclosing time-periodic solutions for parabolic problems with known
and unknown periods. We summarize the paper in Section 5.

2 Elliptic problems

In this section, we briefly describe the basic principles for the numerical verification of solutions to
the following elliptic problems, see [14, 16, 18, 19] etc. for details,

$\{\begin{array}{l}-\Delta u = f(x,u, \nabla u) , x\in\Omega,u = 0, x\in\partial\Omega,\end{array}$ (1)

where $\Omega$ is a bounded domain in $R^{d}(1\leq d\leq 3)$ , $f$ is a nonlinear map. We use the homogeneous
Sobolev space $H_{0}^{1}(\Omega)(\equiv H_{0}^{1})$ for the solution of (1). Also some appropriate assumptions are imposed
on the map $f$ . In order to treat the problem as the finite procedure on computer, we use a finite
dimensional subspace $S_{h}$ of $H_{0}^{1}$ dependent on a parameter $h$ . Usually, $S_{h}$ means a finite element
subspace on $\Omega$ with mesh size $h$ with nodal functions $\{\phi_{i}\}_{1\leq i\leq n}.$

Denoting the inner product on $L^{2}(\Omega)$ by we define the $H_{0}^{1}$ -projection: $P_{h}\phi\in S_{h}$ for $\phi\in H_{0}^{1}$ , by

$(\nabla\phi-\nabla(P_{h}\phi),\nabla v_{h})=0, \forall v_{h}\in S_{h}$ . (2)

If $\Delta\phi\in L^{2}(\Omega)$ , then the following a priori error estimates plays an essential role to bridge between
the infinite and finite dimensional, i.e., continuous and discrete, problems.

$||(I-P_{h})\phi||_{H_{0}^{1}}\leq C(h)||\Delta\phi||_{L^{2}}$ . (3)

Here, $I$ stands for the identity on $H_{0}^{1}$ and $C(h)$ means a positive constant which can be numerically
determined such that $C(h)arrow 0$ as $harrow 0$ . For example it can be taken as $C(h)=h/\pi$ and $h/(2\pi)$ for
bilinear and biquadratic element, respectively, for the rectangular mesh on the square domain [6], and
$C(h)=0.493h$ for the linear and uniform triangular mesh of the convex polygonal domain [5]. Even
for the nonconvex domain, we can also numerically give such a constant, e.g., [30, 9, 10, 28].

For each $\psi\in L^{2}(\Omega)$ , we denote a solution $\phi\in H_{0}^{1}$ of the Poisson equation : $-\Delta\phi=\psi$ with
homogeneous boundary condition by $\phi\equiv(-\Delta)^{-1}\psi$ . Then, under some appropriate conditions on $f,$

(1) is rewritten as the fixed point equation of the form $u=F(u)$ with a compact map $F\equiv(-\Delta)^{-1}f$

on $H_{0}^{1}.$

The following decomposion of the fixed point equation gives an essential principle which enables us
to treat the problem by finite computational procedures.

$\{\begin{array}{ll}P_{h}u = P_{h}F(u) ,(I-P_{h})u = (I-P_{h})F(u) .\end{array}$ (4)
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Here, the first and second parts can be considered as the equations in $S_{h}$ and in the orthogonal com-
plement $S_{h}^{\perp}$ of $H_{0}^{1}$ , respectively.

Sequential iterative method A set $U\subset H_{0}^{1}$ which possibly includes a solution of (4) is called $a$

candidate set of solutions. Usually, for the sets $U_{h}\subset S_{h}$ and $U_{1}\subset S_{h}^{\perp}$ , the candidate set $U$ is taken as
$U=U_{h}\oplus U_{1}$ . Then, a verification condition based on Schauder’s fixed point theorem is given by

$\{\begin{array}{ll}P_{h}F(U) \subset U_{h},(I-P_{h})F(U) \subset U_{1}.\end{array}$ (5)

The set $U_{h}$ is taken to be a set of linear combinations of basis functions in $S_{h}$ with interval coefficients,

while $U_{1}$ a ball in $S_{h}^{\perp}$ with radius $\alpha\geq 0.$

Note that, it can be easily seen that $P_{h}F(U)$ is directly computed or enclosed for given $U_{h}$ and $U_{1}$

by solving a linear system of equations with interval right-hand side using some interval arithmetic
approaches. On the other hand, $(1-P_{h})F(U)$ can be evaluated as a positive real number by the use of
constructive a priori error estimates (3) of the form

$||(I-P_{h})F(U)||_{H_{0}^{1}} \leq C(h)\sup_{u\in U}||f(u)||_{L^{2}}$ . (6)

Thus, the former condition in (5) is validated as the inclusion relations of corresponding coefficient
intervals, and the latter part can be confirmed by comparing two nonnegative real numbers which
correspond to the radii of balls. In order to find the candidate set $U$ in the actual computations, some
iterative methods are effectively utilized([14]).

Finite dimensional Newton’s method Note that the verifiaction condition (5) is not applicable
except that the concerned operator $F$ is retractive around the fixed point. Therefore, in order to
overcome this difficulty, we need some Newton-type method for (4). Thus, we define the nonlinear
operator $N_{h}$ with an approximate solution $\hat{u}_{h}$ by

$N_{h}(u) :=P_{h}u-[P_{h}-P_{h}A’(\hat{u}_{h})]_{h}^{-1}(P_{h}u-P_{h}F(u))$ ,

where $A’(\hat{u}_{h})\equiv(-\Delta)^{-1}f’(\hat{u}_{h})$ and ’ means the Fr\’echet derivative of $f$ at $\hat{u}_{h}$ . Here, $[P_{h}-P_{h}A’(\hat{u}_{h})]_{h}^{-1}$

denotes the inverse on $S_{h}$ of the restriction operator $(P_{h}-P_{h}A’(\hat{u}_{h}))|s_{h}$ . The existence of such a finite
dimensional inverse operator can be validated by the usual invertibility of the corresponding matrix.
And we set

$T(u) := N_{h}(u)+(I-P_{h})F(u)$ .

Then $T$ is considered as the Newton-type operator for the former part of (4) but the simple iterative

operator for the latter part. It can be seen that $u=T(u)$ is equivalent to $u=F(u)$ , and the verification
condition is presented similar as before.

Infinite dimensional Newton’s mtheod By applying the verification principle to the linearized
equation for the original problem (1), we can also realize.an infinite dimensional Newton-type mtheod.
We now assume that the linearlized equation at $\hat{u}_{h}$ is written as

$\{\begin{array}{ll}\mathscr{L}u:=-\Delta u+b\cdot\nabla u+cu=\psi, in\Omega,u=0, on\partial\Omega.\end{array}$ (7)
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Here, we assume that $b\in W_{1}^{\infty}(\Omega)^{d},$ $c\in L^{\infty}(\Omega)$ , $\psi\in L^{2}(\Omega)$ . Also define the matrices $G=(G_{i,j})$ and
$D=(D_{i,j})$ by:

$G_{i,j} = (\nabla\phi_{j},\nabla\phi_{i})+(b\cdot\nabla\phi_{j},\phi_{i})+(c\phi_{j},\phi_{i})$ ,

$D_{i,j}$ $=$ $(\nabla\phi_{j},\nabla\phi_{i})$ , for $1\leq i,j\leq n.$

Let define $\rho$
$:=\Vert D\tau G^{-1}D2r1\Vert_{E}$ , which implies the Euclidean norm of the matrix. Then $\rho$ corre-

sponds to an approximate operator norm for $\mathscr{L}^{-1}$ in $H_{0}^{1}$ sense. Setting the constants as $C_{divb}:=$

$\Vert divb\Vert_{L^{\infty}(\Omega)},$
$C_{b}:=( \sum_{i=1}^{d}\Vert b_{j}\Vert_{L^{\infty}(\Omega)}^{2})^{1/2},$

$C_{c}:=\Vert c\Vert_{L^{\infty}(\Omega)}$ , and let $\tilde{C}_{1}:=C_{p}C_{divb}+C_{b},$ $\tilde{C}_{2}:=$

$C_{p}C_{c},$
$\tilde{C}_{3}$

$:=C_{b}+C_{p}C_{c},$ $\tilde{C}_{4}$ $:=C_{b}+C(h)C_{c}$ , where $C_{p}$ is a Poincar\’e constant on $\Omega$ . Then, we have
the following invertibility condition for $\mathscr{L}$ in (7).

Theorem 2.1 ([19]). If
$\kappa\equiv C(h)(\rho\tilde{C}_{3}(\tilde{C}_{1}+\tilde{C}_{2})C(h)+\tilde{C}_{4})<1$ , (8)

then the operator $\mathscr{L}$ in (7) is invertible. Here, $C(h)$ is the same constant in (3).

By using this result we derive a verificaion condition for the solution of the problem (1) to apply
the infinite dimensional Newton-type method.
On the other kind of verification methods for elliptic problems, refer [3, 25, 26, 28] and so on.

3 Parabolic initial-boundary value problems

We consider the following parabolic initial-boundary value problems:

$\{\begin{array}{ll}\frac{\partial u}{\partial t}-v\Delta u=f(x,t,u,\nabla u) in \Omega\cross J, (9a)u(x,t)=0 on\partial\Omega\cross J, (9b)u(x,O)=0 in\Omega, (9c)\end{array}$

where $x\in\Omega\subset R^{d}$ : a bounded convex domain, $t\in J:=(0, T)\subset R$ : a bounded interval for a fixed
$T$ , and $v\in R$ : a positive constant. We assume that $f$ is a continuous map from $L^{2}(J;H_{0}^{1}(\Omega))$ into
$L^{2}(J;L^{2}(\Omega))$ , and, for each bounded subset $U$ in $L^{2}(J;H_{0}^{1}(\Omega))$ , the image of $U$ by $f$ is also bounded
in $L^{2}(J;L^{2}(\Omega))$ .

In order for the verified computation of solutions for (9), in [15, 17], some sequential iterative
methods similar to that in the previous section are used. And not yet considered for the finite dimen-
sional Newton-type method, as in the second paragraph of the section 2, up to now. From the fact that
the invertibility of the linearlized operator for parabolic equation is always valid, some other Newton
type method is studied in [12, 13]. However, the numerical examples in those works are prototype
problems and it is not clear whether they can be applied to more realistic problems. In the present
section, we describe three kinds ofmethod, one a priori and two a posteriori, to compare the efficiency
by showing some numerical data.

We now define the space by

$V^{1}(J;L^{2}(\Omega))$ $:=\{u\in L^{2}(J;L^{2}(\Omega))$ ; $\frac{\partial u}{\partial t}\in L^{2}(J;L^{2}(\Omega))$ , $u(\cdot,0)=0$ in $L^{2}(\Omega)\}$

with inner product $(u,v)_{V^{1}(J;L^{2}(\Omega))}$ $:=(\partial^{\frac{u}{t}\prime}\tau_{t})_{L^{2}(J;L^{2}(\Omega))}$ . By using an appropriate approximate

solution $u_{h}^{k_{(}}v1(J;L^{2}(\Omega))\cap L^{2}(J;H_{0}^{1}(\Omega)\cap H^{2}(\Omega))$ and setting $u\equiv w+u_{h}^{k}$ , the original problem (9)
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can be rewritten in the following residual form

$\{\begin{array}{ll}\mathscr{L}_{t}w=g(w) in \Omega\cross J, (10a)w(x,t)=0 on\partial\Omega\cross J, (10b)w(x,O)=0 in\Omega, (10c)\end{array}$

where $\mathscr{L}_{t}$ $:=\partial\overline{r}\partial-v\Delta-f’(u_{h}^{k})$ . Here, $f’(u_{h}^{k})$ stands for a Fr\’echet derivative of $f$ at $u_{h}^{k}$ . And $g(w)\equiv$

$f(x,t,w+u_{h}^{k},\nabla(w+u_{h}^{k}))-\#_{t}^{\partial u^{k}}+v\Delta u_{h}^{k}-f’(u_{h}^{k})w.$

In order to consider the existence of a solution $w$ of (10), for any $\alpha>0$, we define the candidate set

by

$W_{\alpha}:=\{w\in L^{2}(J;H_{0}^{1}(\Omega));\Vert w\Vert_{L^{2}(J;H_{0}^{1}(\Omega))}\leq\alpha\}$ . (11)

If we find a constant $C_{\mathscr{L}_{t}^{-1}}$ satisfying

$\Vert \mathscr{L}_{t}^{-1}\Vert_{\mathscr{L}(L^{2}(J;L^{2}(\Omega)),L^{2}(J;H_{0}^{1}(\Omega)))}\leq C_{\mathscr{L}_{t}^{-1}}$ , (12)

then, we have

$\Vert \mathscr{L}_{t}^{-1}g(W_{\alpha})\Vert_{L^{2}(J;H_{0}^{1}(\Omega))}\leq C_{\mathscr{L}_{t}^{-1}}\sup_{w\in W_{\alpha}}\Vert g(w)\Vert_{L^{2}(J;L^{2}(\Omega))}.$

Therefore, using the compact imbedding from $V^{1}(J;L^{2}(\Omega))\cap L^{2}(J;H_{0}^{1}(\Omega)\cap H^{2}(\Omega))$ into $L^{2}(J;H_{0}^{1}(\Omega))$ ,

by the Schauder fixed point theorem we obtain the following existential condition of a solution $w\in W_{\alpha}$

to (10),

$C_{\mathscr{L}_{t}^{-1}} \sup_{w\in W_{\alpha}}\Vert g(w)\Vert_{L^{2}(J;L^{2}(\Omega))}\leq\alpha$
. (13)

This clearly implies a Newton-type verification condition of solutions for the original problem (9).

Note that usually $\mathscr{L}_{t}$ is written of the form

$\mathscr{L}_{t}w\equiv\frac{\partial}{\partial t}w-v\Delta w+(b\cdot\nabla)w+cw$, (14)

where $b$ and $c$ are $L^{\infty}$ functions on $\Omega\cross J$ . Hence we now consider the linear problems:

$\{\begin{array}{ll}\mathscr{L}_{t}w=q in\Omega\cross J, (15a)w(x,t)=0 on\partial\Omega\cross J, (15b)w(x,0)=0 in\Omega, (15c)\end{array}$

where the right-hand side $q$ of (15a) means a given function in $x$ and $t$ . Thus, it is important and
essential for our purpose to find a constant $C_{\mathscr{L}_{t}^{-1}}$ satisfying the following a priori estimates of solution
$w$ to (15)

$\Vert w\Vert_{L^{2}(J;H_{0}^{1}(\Omega))} \leq C_{\mathscr{L}_{t}^{-1}}\Vert q\Vert_{L^{2}(J;L^{2}(\Omega))},$

which also implies that (12) holds for this constant $C_{\mathscr{L}_{t}^{-1}}.$

In the below, we consider the methods to give such a constant.
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3.1 A priori estimates

It is not so difficult to determine the constant $C_{\mathscr{L}_{t}^{-1}}$ by some theoretical consideration(e.g. [31]),

which we call ’a priori estimates’. However, in general, $C_{\mathscr{L}_{t}^{-1}}$ obtained by existing a priori methods
is exponentially dependent on the time interval $J$ unless that the elliptic part of the operator $\mathscr{L}_{t}$ is
coercive [11]. For example, in case of $b=0$, the following a priori estimate is easily derived [31],

$\Vert \mathscr{L}_{t}^{-1}\Vert_{\mathscr{L}(L^{2}(J;L^{2}(\Omega)),L^{2}(J;H_{0}^{1}(\Omega)))}\leq\exp(\beta T)\frac{C_{p}}{v}$ , (16)

where $C_{p}$ is a Poincar\’e constant on $\Omega$ and $\beta$ a nonnegative parameter defined as $\beta\equiv\max\{\sup_{\Omega\cross J}(-c),0\}.$

Therefore, if the function $c$ takes negative value, then the right-hand side of (16) becomes very large
and it leads to an over-estimation of the inverse operator $\mathscr{L}_{t}^{-1}$ . In [13], a weighted norm on the
time-dependent Sobolev space is used, but the influence of the exponential dependency on $T$ still
remains.

3.2 A posteriori estimates I

Let $S_{h}(\Omega)\equiv S_{h}$ be a finite element subspace for the spatial direction with the following approximation
properties as in the previous section.
Assumption 1. There exists a constant $C(h)$ such that

$\Vert u-P_{h}u\Vert_{H_{0}^{1}(\Omega)} \leq C(h)\Vert\Delta u\Vert_{L^{2}(\Omega)}, \forall_{u}\in H_{0}^{1}(\Omega)\cap\{\Delta u\in L^{2}(\Omega)\},$

$\Vert u-P_{h}u\Vert_{L^{2}(\Omega)} \leq C(h)\Vert u-P_{h}u\Vert_{H_{0}^{1}(\Omega)}, \forall_{u}\in H_{0}^{1}(\Omega)$ ,

where $P_{h}$ is the $H_{0}^{1}$ -projection defined in Section 2.
As well known, this property is valid for many standard finite element subspaces.
Now, we define the several functional spaces :
$y$ $:=V^{1}(J;L^{2}(\Omega))\cap L^{2}(J;H_{0}^{1}(\Omega))$ with $(u, v)_{V}$ $:=(\tau_{t}, \tau_{t})_{L^{2}(J;L^{2}(\Omega))}+v(\nabla u,\nabla v)_{L^{2}(J;L^{2}(\Omega))}.$

$V^{1}(J)$ $:=\{u\in H^{1}(J);u(O)=0\}$ with $(u,v)_{V^{1}(J)}$ $:=(u’,v’)_{L^{2}(J)}.$

Also let $V^{1}(J;S_{h}(\Omega))$ $:= \{u_{h}(x,t)\equiv\sum_{i=1}^{n}a_{i}(t)\phi_{i}(x)|ai\in V^{1}(J), 1\leq i\leq n\}$ , and $1etP_{h}^{V}:Varrow V^{1}(J;S_{h}(\Omega))$

be a semidiscrete projection defined by, denoting $u(\cdot,t)\equiv u(t)\in H_{0}^{1}(\Omega)$ ,

$( \frac{\partial}{\partial t}(u(t)-P_{h}^{V}u(t)),v_{h})_{L^{2}(\Omega)}+v(\nabla(u(t)-P_{h}^{y}u(t)),\nabla v_{h})_{L^{2}(\Omega)^{d}}=0,$ $\forall v_{h}\in S_{h}(\Omega)$ , a.e. $t\in J$ . (17)

For a solution $w$ of (15), setting $w_{1}:=(I-P_{h}^{y})w$ , the semidiscrete projection (17) leads to the fol-
lowing system of ODEs:

$(^{\partial}P^{V}w,v_{h})_{L^{2}(\Omega)}+v(\nabla P_{h}^{y}w,\nabla v_{h})_{L^{2}(\Omega)^{d}}+((b\cdot\nabla)P_{h}^{V}w+cP_{h}^{V}w,v_{h})_{L^{2}(\Omega)}$

$=(P_{h}^{0}(-(b\cdot\nabla)w_{1}-cw_{1}+g),v_{h})_{L^{2}(\Omega)}$

$\Leftrightarrow (L_{\phi}\frac{d}{dt}+Q_{\phi})\alpha=L_{\phi}\beta,$

where $P_{h}^{0}$ means the semidiscrete $L^{2}$-projection from $L^{2}(J;L^{2}(\Omega))$ into $V^{1}(J;S_{h}(\Omega))$ , and $n$-dimensional
two vectors $\alpha$ and $\beta$ are defined by

$P_{h}^{V}w= \sum_{i=1}^{n}\alpha_{i}(t)\phi_{i}(x)$ and $P_{k}^{0}(-(b \cdot\nabla)w_{1}-cw\perp+g)=\sum_{i=1}^{n}\beta_{j}(t)\phi_{i}(x)$ ,
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respectively. Here, $L_{\phi},Q_{\phi}$ are $n\cross n$ matrices such that

$L_{\phi_{ij}}:=(\phi_{j}, \phi_{i})_{L^{2}(\Omega)},$

$Q_{\phi_{ij}}:=v(\nabla\phi_{j}, \nabla\phi_{i})_{L^{2}(\Omega)}+((b\cdot\nabla)\phi_{j}, \phi_{i})_{L^{2}(\Omega)}+(c\phi_{j}, \phi_{i})_{L^{2}(\Omega)}.$

Next, we define the positive constant $M_{\phi}^{10}$ which corresponds to the norm of the semidiscrete

inverse operator such that

$\Vert D_{\phi}^{T/2}(L_{\phi}\frac{d}{dt}+Q_{\phi})^{-1}L_{\phi}^{1/2}\Vert_{\mathscr{L}(L^{2}(J)^{n},L^{2}(J)^{n})}\leq M_{\phi}^{10},$

where, $D_{\phi}$ is an $n\cross n$ matrix defined as $D_{\phi_{ij}}$ $:=(\nabla\phi_{j}, \nabla\phi_{i})_{L^{2}(\Omega)}.$

Now, by some arguments on the error estimates of semidiscrete projection $P_{h}^{V}$ with use of Assumption
1, we have the following theorem.

Theorem 3.1 ([23]). If
$0\leq\kappa_{\phi} :=2C(h)C_{2}(1+C_{1}M_{\phi}^{10})<v,$

then,

$\Vert \mathscr{L}_{t}^{-1}\Vert_{(L^{2}(J;L^{2}(\Omega)),L^{2}(J;H_{0}^{1}(\Omega)))}\leq\frac{vM_{\phi}^{10}+2C(h)+2C(h)C_{1}M_{\psi}^{10}}{v-\kappa_{\phi}}$ , (18)

where $C_{1}$ $:=C_{b}+C_{p}\Vert c\Vert_{L^{\infty}(J;L^{\infty}(\Omega))},$ $C_{2}:=C_{b}+4C(h)\Vert c\Vert_{L^{\infty}(J;L^{\infty}(\Omega))},$ $C_{b}:=\Vert\sqrt{b_{1}^{2}++b_{d}^{2}}||L^{\infty}(J;L^{\infty}(\Omega))$ .

In order to get an upper bound of $M_{\phi}^{10}$ , we need a priori bounds of a solution for the linear ODEs.

Let $S^{k}(J)\subset V^{1}(J)$ be a finite element subspace on $J$ with mesh size $k$ . Then $n$-dimensional $V^{1_{-}}$

projection $P_{k}^{1}$ : $V^{1}(J)^{n}arrow S^{k}(J)^{n}$ is defined for each $u\in V^{1}(J)^{n}$ by

$(u, v_{k})_{V^{1}(J)^{n}}=(P_{k}^{1}u, v_{k})_{V^{1}(J)^{n}}, \forall_{v_{k}\inS^{k}(J)^{n}}.$

We also assume that
Assumption 2. There exists a constant $C_{J}(k)$ s.t.

$\Vert u-P_{k}^{1}u\Vert_{V^{1}(J)^{n}} \leq C_{J}(k)\Vert u"\Vert_{L^{2}(J)^{n}}, \forall_{u}\in V^{1}(J)^{n}\cap H^{2}(J)^{n},$

$\Vert u-P_{k}^{1}u\Vert_{L^{2}(J)^{n}} \leq C_{J}(k)\Vert u-P_{k}^{1}u\Vert_{V^{1}(J)^{n}}, \forall_{u}\in V^{1}(J)^{n}.$

We denote the basis of $S^{k}(J)^{n}$ by $\{\psi_{i}\}_{i=1,\cdots m}\rangle$ . Let $M_{\psi}^{1}$ be a positive constant such that

$M_{\psi}^{1}:=\Vert L_{\psi}^{\tau/2}G_{\psi}^{-1}D_{\psi}^{1/2}\Vert_{2},$

where, $L_{\psi},D_{\psi},G_{\psi}$ are $m\cross m$ matrices such that

$L_{\psi ij}:=(\psi_{j}, \psi_{i})_{L^{2}(J)^{n}}, D_{\psi_{ij}}:=(\psi_{j}’, V^{j_{i}})_{L^{2}(J)^{n}},$

$G_{\psi ij}:=(L_{\phi V^{j_{j}}V^{j_{i})_{L^{2}(J)^{n}}+}}(Q_{\phi\psi j,Y^{j_{i})_{L^{2}(J)^{n}}}}.$

Noting that $L_{\phi}$ is symmetric and positive definite, let $A_{c}>0$ be the minimum eigenvalue of $L_{\phi}$ . Then,
by using the arguments in [7] with approximation property in Assumption 2, we have the following
estimates corresponding to the semidiscrete inverse operator.
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Theorem 3.2. If

$0\leq\kappa_{\psi}:=C_{J}(k)\Vert Q_{\phi}\Vert_{L^{\infty}(J)^{n,n}}(1+M_{\psi}^{1}\Vert Q_{\phi}\Vert_{L^{\infty}(J)^{n,n}})<A_{c},$

then it holds that

$M_{\phi}^{10} \leq M_{\psi}^{1}+C_{J}(k)\frac{(1+M_{\psi}^{01}\Vert Q_{\phi}\Vert_{L^{\infty}(J)^{n,n}})^{2}}{Ac-\kappa_{\psi}}\Vert D_{\psi}^{T/2}\Vert_{2}\Vert L_{\phi}^{1/2}\Vert_{2},$

where $M_{\psi}^{1}:=\Vert L_{\psi}^{T/2}\hat{G}_{\psi}^{-1}D_{\psi}^{1/2}\Vert_{2},$ $\hat{G}_{\psi ij}:=(L_{\phi}^{T/2}D_{\phi}^{-T/2}\psi_{j}’, \psi_{i}’)_{L^{2}(J)^{n}}+(L_{\phi}^{-1/2}Q_{\phi}D_{\psi}^{-T/2}\psi_{j}, \psi_{i}’)_{L^{2}(J)^{n}}$

and $||\cdot||_{2}$ means the matrix 2-norm, i. e., spectral norm.

Note that $M_{\psi}^{1}$ means an approximate norm of the inverse operator $\mathscr{L}_{t}^{-1}.$

3.3 A posteriori estimates II

We now introduce an alternative approach to the method in the previous subsection.

Constructive a priori error estimates for th heat equation In this paragraph, according to the
arguments in [24], we give the constructive a priori $e\iota Tor$ estimates for a full discrete numerical so-
lution of the heat equation, which plays an esseential role in this subsection. This numerical scheme
consisits of a Galerkin finite element method with interpolation in time using fundamental solutions
for ODEs by spatial discretization. The present estimates is a basis for the verified computation of the
inverse for the linearlized parabolic operators.

Let $S_{h}(\Omega)\subset H_{0}^{1}(\Omega)$ be a piecewise linear finite element subspace for spatial direction with $\dim S_{h}=$

$n$ . Also let $S^{k}(J)\subset V^{1}(J)$ be a piecewise linear finite element subspace for time direction with
$\dim S^{k}=m.$

We define the interpolation $I^{k}$ : $V^{1}(J;S_{h}(\Omega))arrow S^{k}(J;S_{h}(\Omega))\equiv S_{h}(\Omega)\otimes S^{k}(J)$ by

$u(t_{i})=I^{k}(u(t_{i})) , i=1, m.$

Then we define the full-discrete projection $P_{h}^{k}$ : $Varrow S^{k}(J;S_{h}(\Omega))$ by

$P_{h}^{k}u:=I^{k}(P_{h}^{V}u)$ . (19)

For a given $f\in L^{2}(J;L^{2}(\Omega))$ consider the following equation with homogeneous initial and boundary
conditions:

$\frac{\partial}{\partial t}u-v\Delta u=f$ . (20)

For a solution $u\in V$ of (20), $P_{h}^{V}u(x,t)\in V^{1}(J;S_{h}(\Omega))$ can be represented, by using a vector-valued
function $\vec{u}_{h}\in V^{J}(J)^{n}$ , as

$P_{h}^{V}u(x,t)=\vec{u}_{h}(t)^{T}\Phi(x)$ .

Here, $\Phi(x)\equiv(\phi_{1}, \cdots, \phi_{n})^{T}$ . The above equality is equivalent to

$\{\begin{array}{ll}L_{\phi}\frac{d}{dt}\vec{u}_{h}+vD_{\phi}\vec{u}_{h}=\tilde{f} in J, (21a)\vec{u}_{h}(0)=0, (21b)\end{array}$

where $L_{\phi},D_{\phi}$ are $n\cross n$ matrices same as in the previous subsection and $n$-dimensional vector $\tilde{f}\equiv(f)$

is defined by $\tilde{f_{i}}=(f,\phi_{i})_{L^{2}(\Omega)}.$
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Noting that, by using the fundamental matrix for the ODE system, the solution of (21) can be
rewitten as

$\vec{u}_{h}(t)=\int_{0}^{t}\exp(vL_{\phi}^{-1}D_{\psi}(s-t))L_{\phi}^{-1}\tilde{f}(s)ds$ , (22)

which implies

$(P_{h}^{k}u)(x,t_{j})=( \int_{0}^{t_{j}}\exp(vL_{\phi}^{-1}D_{\phi}(s-t_{j}))L_{\phi}^{-1}\tilde{f}(s)ds)\Phi(x) , \forall x\in\Omega, 1\leq j\leq m$ . (23)

Remark 3.3. Let $\Omega$ be a rectangular domain, and take $S_{h}(\Omega)$ as a $Ql$ finite element space, namely,
piecewize $bi$-linear element which is constituted by the tensor product of one dimensional $Pl$ ele-
ment. If we use the unifonn mesh, then $L_{\phi}^{-1}D_{\phi}$ is a symmetric positive definite matrix(see [24]).

Therefore, the diagonalization of $L_{\phi}^{-1}D_{\phi}$ is easily obtained in this case. In other cases, it is also
diagonlizable([24]). Therefore, the computation of the exponential matrixfunctions in (23) is not so

difficult.
In what follows, for simplicity, we sometimes denote the symbols $L^{2}(J;H_{0}^{1}(\Omega))$ and $L^{2}(J;L^{2}(\Omega))$

by $L^{2}H_{0}^{1}$ and $L^{2}L^{2}$ , respectively, and so on, which will cause no confusion.
Now let $u$ be a solution of (20). Then observe that

$\Vert u-P_{h}^{k}u\Vert_{L^{2}H_{0}^{1}}\leq\Vert u-P_{h}^{y}u\Vert_{L^{2}H_{0}^{1}}+\Vert P_{h}^{V}u-P_{h}^{k}u\Vert_{L^{2}H_{0}^{1}}$ . (24)

By existing a priori estimates for the semidisctre approximation([15]), we have

$\Vert u-P_{h}^{V}u\Vert_{L^{2}H_{0}^{1}} \leq \frac{2C(h)}{v}\Vert f\Vert_{L^{2}L^{2}}$ , (25)

where $C(h)$ is the same constant in the subsection 3.2.
By the use of well-known inverse inequality for $S_{h}$ , there exists a positive constant $C_{inv}(h)$ satisfying

$\Vert\nabla(P_{h}^{V}u-P_{h}^{k}u)\Vert_{L^{2}L^{2}} \leq C_{inv}(h)\Vert P_{h}^{y}u-P_{h}^{k}u\Vert_{L^{2}L^{2}}$ . (26)

Note that, usually, $C_{inv}(h)\approx O(h^{-1})$ .
On the other hand, taking notice that the $V^{1}$ -projection defined in the previous subsection coincides

with the interpolation $I^{k}$ on $J$, by using Assumption 2 and a priori estimates for the solution of (20),

we have

$\Vert P_{h}^{y}u-P_{h}u\Vert_{L^{2}L^{2}} \leq C_{J}(k)\Vert f\Vert_{L^{2}L^{2}}$ . (27)

Therefore,

$\Vert P_{h}^{V}u-P_{h}^{k}u\Vert_{L^{2}H_{0}^{1}}\leq C_{inv}(h)C_{J}(k)\Vert f\Vert_{L^{2}L^{2}}$ . (28)

Thus by (24),(25),(28), we obtain the following constructive error estimates for the full-discrete ap-
proximation to the solution of (20)

$\Vert u-P_{h}^{k}u\Vert_{L^{2}H_{0}^{1}}\leq C_{1}(h,k)\Vert f\Vert_{L^{2}L^{2}}$ , (29)

where $C_{1}(h,k)$ $:= \frac{2C(h)}{v}+C_{inv}(h)C_{J}(k)$ .

If we take $k=h^{2}$ , then (29) means an $0(h)$ estimate.
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We also derive an $L^{2}$ -estimate as below. Namely, first, by using the existing $L^{2}$-estimates for
semidiscrete approximation ([23]), we have

“ $\Vert u-P_{h}^{V}u\Vert_{L^{2}L^{2}}\leq\frac{8C(h)^{2}}{v}\Vert f\Vert_{L^{2}L^{2}},$ $\forall u\in V$. (30)

On the other hand, we have by Assumption 2

$\Vert P_{h}^{V}u-P_{h}^{k}u\Vert_{L^{2}L^{2}} \leq C_{J}(k)\Vert P_{h}^{V}u\Vert_{V^{1}(J;L^{2}(\Omega))}$ , (31)

which implies, by using the estimates $\Vert P_{h}^{V}u\Vert_{V^{1}(J;L^{2}(\Omega))}\leq\Vert f\Vert_{L^{2}L^{2}},$

$\Vert P_{h}^{V}u-P_{h}^{k}u\Vert_{L^{2}L^{2}}\leq C_{J}(k)\Vert f\Vert_{L^{2}L^{2}}$ . (32)

Thus, setting

$C_{0}(h,k):= \frac{8C(h)^{2}}{v}+C_{J}(k)$ ,

we have
$\Vert u-P_{h}^{k}u\Vert_{L^{2}L^{2}}\leq C_{0}(h,k)\Vert f\Vert_{L^{2}L^{2}}$ . (33)

If $k=h^{2}$ , then (33) gives the $O(h^{2})$ estimates.

Estimation of the inverse operator In the present paragraph, we give an outline of the arguments
in [8]. Combining the results obtained in the previous paragraph with an argument for the discretized
inverse operator and a contraction property of the Newton-type formulation, we derive an a posteriori
estimate for the operator $\mathscr{L}_{t}^{-1}.$

First, we set $\Delta_{t}$ $:=\tau_{t}\partial-v\Delta$ and $\mathscr{A}$ $:=-\Delta_{t}^{-1}(b\cdot\nabla)-\Delta_{t}^{-1}c$, where $v,b,c$ are same as before,

and $\Delta_{f}^{-1}$ stands for the solution operator of the heat equation with homogeneous initial and boundary
conditions. Next, we rewrite (15) as the following fixed point form

$\frac{\partial w}{\partial t}-v\Delta w+(b\cdot\nabla)w+cw=q$

$\Leftrightarrow$ $w=\Delta_{t}^{-1}(q-(b\cdot\nabla)w-cw)$ . (34)

Furthermore, we decompose it into the following two parts similar to the elliptic case in Section 2.

$\{\begin{array}{ll}P_{h}^{k}w=P_{h}^{k}(\Delta_{t}^{-1}q+\mathscr{A}w) , (35a)(\mathscr{J}-P_{h}^{k})w=(\mathscr{J}-P_{h}^{k})(\Delta_{t}^{-1}q+\mathscr{A}w) . (35b)\end{array}$

Here, $\mathscr{J}$ means the identity map on $L^{2}(J;H_{0}^{1}(\Omega))$ .
Note that (35a) can be rewritten as:

$P_{h}^{k}w-P_{h}^{k}\mathscr{A}P_{h}^{k}w=P_{h}^{k}(\Delta_{t}^{-1}q+\mathscr{A}(\mathscr{J}-P_{h}^{k})w)$ .

Let define $M_{\phi,\psi}$ by
$M_{\phi,\psi}:=\Vert[\mathscr{J}-\mathscr{A}]_{hk}^{-1}\Vert_{\mathscr{L}(L^{2}(J;H_{0}^{1}(\Omega)),L^{2}(J;H_{0}^{1}(\Omega)))},$

which can be computed by the matrix norm estimation corresponding to the finite dimensional oper-
ator $[\mathscr{J}-\mathscr{A}]_{hk}^{-1}$ on $S_{h}^{k}\equiv S_{h}(\Omega)\otimes S^{k}(J)$ . Here, $[\mathscr{J}-\mathscr{A}]_{hk}^{-1}$ means the invese of $P_{h}^{k}(\mathscr{J}-\mathscr{A})|_{s_{h}^{k}}$ on $S_{h}^{k}.$
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For detailed computational procedures of $M_{\phi,\psi}$ , see [8].

Then, on the estimates for the finite dimensional part, we have

$\Vert P_{h}^{k}w\Vert_{L^{2}H_{0}^{1}}\leq M_{\psi,\psi}\Vert\mu_{h}(\Delta_{t}^{-1}q+\mathscr{A}(\mathscr{J}-P_{h}^{k})w)\Vert_{L^{2}H_{0}^{1}},$

which yields the estimates

$\Vert P_{h}^{k}w\Vert_{L^{2}H_{0}^{1}}\leq \mathscr{C}_{2}\Vert b\Vert_{L^{\infty}L^{\infty}}\Vert w_{1}\Vert_{L^{2}H_{0}^{1}}+\mathscr{C}_{2}\Vert c\Vert_{L^{\infty}L^{\infty}}\Vert w_{1}\Vert_{L^{2}L^{2}}+\mathscr{C}_{2}\Vert q\Vert_{L^{2}L^{2}}$ (36)

where we have set $w_{1}:=(\mathscr{J}-P_{h}^{k})w$ and $\mathscr{C}_{2}$ $:=M_{\psi,\psi}(_{v}^{c_{1}}-+C_{inv}(h)C_{J}(k))$ .
On the other hand, for the infinite dimensional part, by the arguments using the a priori error estimates
(29) and (33), we obtain the following inequality

$\Vert w_{1}\Vert_{L^{2}H_{0}^{1}}\leq C_{1}(h,k)\mathscr{C}_{3}\Vert^{\mu_{h}}w\Vert_{L^{2}H_{0}^{1}}+C_{1}(h,k)\Vert b\Vert_{L^{\infty}L^{\infty}}\Vert w_{1}\Vert_{L^{2}H_{0}^{1}}+C_{1}(h,k)\Vert q\Vert_{L^{2}L^{2}}$

$+C_{1}(h,k) \frac{C_{0}(h,k)\Vert c||_{L^{\infty}L^{\infty}}}{1-C_{0}(h,k)||c||_{L^{\infty}L^{\infty}}}(\mathscr{C}_{3}\Vert P_{h}^{k}w\Vert_{L^{2}H_{0}^{1}}+\Vert b\Vert_{L^{\infty}L^{\infty}}\Vert w_{1}\Vert_{L^{2}H_{0}^{1}}+\Vertq\Vert_{L^{2}L^{2}})$ , (37)

where $\mathscr{C}_{3}\equiv C_{1}$ , same constant as in Theorem 3.1.
Combining this estimates with (36), we get a system of two dimensional inequality with respect to
$\Vert P_{h}^{k}w\Vert_{L^{2}H_{0}^{1}}$ and $\Vert w_{1}\Vert_{L^{2}H_{0}^{1}}$ . Thus by solving it we obtain the following theorem.

Theorem 3.4. Define the constant $\kappa_{\phi,\psi}$ by

$\kappa_{\phi,\psi}:=\frac{\Vert b\Vert_{L^{\infty}L^{\infty}}(1+\mathscr{C}_{2}\mathscr{C}_{3})C_{1}(h,k)+\mathscr{C}_{2}\mathscr{C}_{3}C_{0}(h,k)\Vert c\Vert_{L^{\infty}L^{\infty}}}{1-C_{0}(h,k)||c\Vert_{L^{\infty}L^{\infty}}}$ . (38)

If $0\leq\kappa_{\phi,\psi}<1$ , then

$\Vert \mathscr{L}_{t}^{-1}\Vert_{\mathscr{L}(L^{2}(J;L^{2}(\Omega)),L^{2}(J;H_{0}^{1}(\Omega)))} \leq\frac{1}{1-\kappa_{\phi,\psi}}\frac{\mathscr{C}_{2}+(1+\mathscr{C}_{2}\mathscr{C}_{3})C_{1}(h,k)}{1-C_{0}(h,k)||c\Vert_{L^{\infty}L^{\infty}}}$ . (39)

3.4 Numerical Comparisons

We show some numerical results by three kinds of methods, namely, a priori estimates (16), a poste-
riori estimates I (18) and II (39). Also other comparison results are presented in [8].

We considered the norm estimates for an inverse operator of the following $\mathscr{L}_{t}$ with $\Omega=(0,1)$ and
$J=(0, T)$ , i.e., one space dimensional case,

$\mathscr{L}_{t}:=\frac{\partial}{\partial t}-v\Delta-2u_{h}^{k}$ , (40)

which implies that $b=0$ and $c=-2u_{h}^{k}$ in (14). Here, the function $u_{h}^{k}\in V^{1}(J;L^{2}(\Omega))\cap L^{2}(J;H_{0}^{1}(\Omega)\cap$

$H^{2}(\Omega))$ is chosen as an approximation of the function $u(x,t)\equiv 0.5t\sin(\pi x)$ by using a piecewise-
cubic and piecewise-linear interpolations in space and time, respectively. And the constant $v$ is set as
$v=0.1$ (Example 1) and $v=1.0$ (Example 2).

In the application of the a posteriori estimates, we used the finite-dimensional spaces $S_{h}(\Omega)$ and
$S^{k}(J)$ , spanned by piecewise linear functions with uniform mesh size $h$ and $k$, respectively. Then, it
is seen that the constants in previous subsections could be taken as $C(h)=h/\pi,$ $C_{inv}(h)=\sqrt{12}/h,$

$C_{J}(k)=k/\pi$ , and $C_{p}=1/\pi.$
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Figure 1: $v=0.1$ Figure 2: $v=1$

For the a posteriori estimates I, i.e., (18), the finite element meshes were taken as $h= \frac{1}{6},k=\frac{1}{700\cdot T^{2}}$

for Example 1. On the other hand, in the a posteriori estimates II, i.e., (39), we chose meshes $h=1/8$

and $h=1/16$, with $k=h^{2}.$

Figures 1 and 2 show the estimated norms $\Vert \mathscr{L}_{t}^{-1}\Vert_{\mathscr{L}(L^{2}(J;L^{2}(\Omega)),L^{2}(J;H_{0}^{1}(\Omega)))}$ for Example 1 and 2,

plotted out on $\log$-linear coordinates.
In case of $v=1$ , i.e., Example 2, due to the stiffness of the co1Tesponding ODEs in the estimation

process, we were not successful in computing the inverse operator by a posteriori estimates I, except
that $T$ was very small.

From the above computational results, we could conclude:

$\bullet$ A posteriori methods give more accurate value than existing a priori estimate. Particularly, there
is a possibility to remove the exponential dependency on time, even if the corresponding elliptic
problem is not coercive.

$\bullet$ As far as the test problems are concerned, the a posteriori estimates II (39) seems to give finer
bounds and to be more efficient in computational cost than the a posteriori estimates I (18) in
many cases.

3.5 Verification of solutions for nonlinear parabolic problrems

In the present subsection, as an application of the a posteriori estimates II, i.e., the inequality (39),

we describe on the verified computations of solutions for nonlinear parabolic equations with some
numerical examples. In order to show more clearly the detailed verification procedures, we consider
the following prototype problem:

$\{\begin{array}{ll}\frac{\partial u}{\partial t}-v\Delta u=u^{2}+f_{f} in \Omega\cross J, (41a)u(x,t)=0, on\partial\Omega\cross J, (41b)u(x,O)=0, in\Omega. (41c)\end{array}$

In the below, $\Omega$ and $J$ are the same as in the previous subsection. And the function $f$ is chosen so
that the problem (41) has the exact solution $u(x,t)=0.5t\sin(\pi x)$ , and the constant $v$ as $v=0.1$ and
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$v=1.0$ which are corresponding to Example $1(v=0.1)$ and Example $2(v=1)$, respectively, in 3.4.
Also $u_{h}^{k}$ is taken as the same interpolation for $u$ as before.

First, we consider the following residual equation:

$\{\begin{array}{ll}\mathscr{L}_{t}w\equiv\frac{\partial w}{\partial t}-v\Delta w-2u_{h}^{k}w=g(w) , in \Omega\cross J, (42a)w(x,t)=0, on\partial\Omega\cross J, (42b)w(x,O)=0, in\Omega, (42c)\end{array}$

where

$g(w) :=w^{2}+ \epsilon(x,t) , \epsilon(x,t) :=(u_{h}^{k})^{2}+f-(\frac{\partialu_{h}^{k}}{\partial t}-v\Delta u_{h}^{k})$ .

Note that if the approximate solution $u_{h}^{k}$ well approximates the exact solution of (41), then $w\approx O,$

$\epsilon\approx 0$ , and $g(w)\approx O$ . Thus, as described in the beginning of Section 3, we have the following fixed-
point equation of the compact map $F$ on $L^{2}(J;H_{0}^{1}(\Omega))$ :

$w=\mathscr{L}_{t}^{-1}g(w)=:F(w)$ . (43)

In the actual application of the verification principle, we need the norm estimates in the space
$V^{1}(J;L^{2})$ . Therefore, for any positive constants $\alpha$ and $\beta$ , we define the candidate set $W_{\alpha,\beta}$ as

$W_{a,\beta}:=\{w\in V;\Vert w\Vert_{L^{2}H_{0}^{1}}\leq\alpha, \Vert w\Vert_{y\downarrow L^{2}}\leq\beta\}$ , (44)

which is a bit of different from the set defined in (11). Taking notice of the continuity of the map $F$ in
the space $L^{2}(J;H_{0}^{1}(\Omega))$ , by Schauder’s fixed-point theorem, if $W_{\alpha,\beta}$ satisfies

$F(W_{\alpha,\beta})\subset W_{\alpha,\beta}$ , (45)

then a fixed point of (43) exists in the set $\overline{W_{\alpha,\beta}}$, where $\overline{W_{\alpha,\beta}}$ stands for the closure of the set $W_{\alpha,\beta}$ in
$L^{2}(J;H_{0}^{1}(\Omega))$ .

Now, setting $C_{L^{2}L^{2},L^{2}H_{0}^{1}}$ $:=\Vert \mathscr{L}_{t}^{-1}\Vert_{\mathscr{L}(L^{2}L^{2},L^{2}H_{0}^{1})}$ , by some simple calculations using the Sobolev

embedding theorem and the Poincar\’e inequality, it is easily seen that the following inequalities hold
for any $w\in W_{\alpha,\beta}$ :

$\Vert F(w)\Vert_{L^{2}H_{0}^{1}}\leq C_{L^{2}L^{2},L^{2}H_{0}^{1}}(\alpha\beta\sqrt{\frac{T}{8}}+\Vert\epsilon\Vert_{L^{2}L^{2}})$ ,

$\Vert F(w)\Vert_{V^{1}L^{2}}\leq(\frac{2}{\pi}C_{L^{2}L^{2},L^{2}H_{0}^{1}}\Vert u_{h}^{k}\Vert_{L^{\infty}L^{\infty}}+1)(\alpha\beta\sqrt{\frac{T}{8}}+\Vert\epsilon\Vert_{L^{2}L^{2}})$ .

From these inequalities, we have the following sufficient condition for (45):

$\{\begin{array}{l}C_{L^{2}L^{2},L^{2}H_{0}^{1}}(\alpha\beta\sqrt{\frac{T}{8}}+\Vert\epsilon\Vert_{L^{2}L^{2}})\leq\alpha,(\frac{2}{\pi}C_{L^{2}L^{2},L^{2}H_{0}^{1}}\Vert u_{h}^{k}\Vert_{L^{\infty}L^{\infty}}+1)(\alpha\beta\sqrt{\frac{T}{8}}+\Vert\epsilon\Vert_{L^{2}L^{2}})\leq\beta.\end{array}$

Solving the above simultaneous algebraic inequalities in $\alpha$ and $\beta$ , we have the error bounds of the
form $\Vert u-u_{h}^{k}\Vert_{L^{2}H_{0}^{1}}\leq\alpha$ and $\Vert u-u_{h}^{k}\Vert_{V^{1}L^{2}}\leq\beta$ . We show the verification results for the solutions of

(42) in Table I. In the table, ’Residual’ $\equiv\Vert\epsilon\Vert_{L^{2}L^{2}}$ and $C_{\mathscr{L}_{t}^{-1}}\equiv C_{L^{2}L^{2},L^{2}H_{0}^{1}}.$

From this table, it is seen that the error bounds increase in proportion to the residual norms. This
property should be expected in our verification conditions. Namely, the validated accuracy of the
present method is essentially dependent on the residual norm of the approximate solutions.
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Table 1: $u(x,t)=0.5t\sin(\pi x)$ , $h=1/8,$ $k=h^{2}.$

3.6 A possible refinement of inverse norm estimates

In this subsection, we consider some refinement on the inverse norm estimates in Theorem 3.4. Note
that if we take the mesh size such as $k\approx h$ , then the constant $C_{1}(h,k)$ in (38) implies $C_{1}(h,k)\approx O(1)$

by the definition (29). Hence in case that $b\neq 0$ , the numerator in the right-hand side of (38) might be
not so small even if we use fine mesh, i.e., $h$ is sufficiently small. Therefore, in.such a case it should
be difficult to attain the condition $\kappa_{\phi,\psi}<1$ in Theorem 3.4. On the other hand, as shown in (33), the
$L^{2}$ error estimates of the projection $P_{h}^{k}$ still remains $O(h^{2})+0(k)$ independent of the relation between
$h$ and $k.$

In the below, we consider a method to obtain the invertibility condition which is always attained
for sufficiently small $h$ and $k$ even if $k\approx h.$

Now we consider again the linear parabolic equation: $\Delta_{t}u=f-(b\cdot\nabla)u-cu$ which is correspond-
ing equation to (34) and the following decomposed form as in (35a), (35b).

$\{\begin{array}{ll}P_{h}^{k}u=P_{h}^{k}(\Delta_{t}^{-1}f+\mathscr{A}u) , (47a)(\mathscr{J}-P_{h}^{k})u=(\mathscr{J}-P_{h}^{k})(\Delta_{t}^{-1}f+\mathscr{A}u) . (47b)\end{array}$

From (47a), using the definition of the operator $\mathscr{A}$ , we have

$P_{h}^{k}u=P_{h}^{k}(\mathscr{A}(P_{h}^{k}u+u_{1})+\Delta_{t}^{-1}f)$ .

By the definition of the operator $[\mathscr{J}-\mathscr{A}]_{hk}^{-1}$ , this implies

$P_{h}^{k}u=[\mathscr{J}-\mathscr{A}]_{hk}^{-1}P_{h}^{k}(\mathscr{A}u_{\perp}+\Delta_{t}^{-1}f)$ . (48)

Now we set as

$M^{0,0}:=\Vert[\mathscr{J}-\mathscr{A}]_{hk}^{-1}\Vert_{\mathscr{L}(L^{2}(J;L^{2}(\Omega)),L^{2}(J;L^{2}(\Omega)))}$ , (49)

which can be estimated by the following matrix norm

$M^{0,0}=\Vert L_{\phi,\psi}^{T/2}G_{\psi_{\rangle}\psi}^{-1}L_{\phi,\psi}^{-\tau/2}\Vert_{2}.$
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Thus we have by (48)

$\Vert P_{h}^{k}u\Vert_{L^{2}L^{2}}\leq M^{0,0}(\Vert^{\mu_{h}}\mathscr{A}u\perp\Vert_{L^{2}L^{2}}+\Vert P_{h}^{k}\Delta_{f}^{-1}f\Vert_{L^{2}L^{2}})$ . (50)

We now estimate the first term in the right-hand side of (50).
First, we set $\psi:=\mathscr{A}u_{1}$ , then noting that $\Delta_{t}\psi=-b\cdot\nabla u_{1}-cu\perp we$ have

$\int_{0}^{T}\{(\psi_{t}, \psi)+v(\nabla\psi,\nabla\psi)\}dt=\int_{0}^{T}(-b\cdot\nabla u_{1}-cu\perp, \psi)dt$

$= \int_{0}^{T}(u_{\perp},\nabla\cdot(b\psi)-c\psi)dt$

$\leq\Vert u_{1}\Vert(C_{p}|\nabla\cdot b|+\mathscr{C}_{3})\Vert\nabla\psi\Vert$ . (51)

Here, and in what follows, we suppress the space dependency in the symbols for the $L^{2}$ -norm, namely,
$||\cdot||_{L^{2}L^{2}}$ is denoted as $||$ . and also for a function $\phi\in L^{\infty}(\Omega\cross J)$ , we simply denote $|\phi|\equiv||\phi||_{L^{\infty}(\Omega\cross J)}.$

From (51), taking notice of the initial condition in the integration of the first term of left-hand side,

we obtain

$\Vert\nabla\psi\Vert\leq\frac{1}{v}(C_{p}|\nabla\cdot b|+\mathscr{C}_{3})\Vertu_{1}\Vert$

$=K\Vert u_{1}\Vert$ , (52)

where $K$ $:= \frac{1}{v}(C_{p}|\nabla\cdot b|+\mathscr{C}_{3})$ .
We also have the following lemma.

Lemma 3.5. For a solution $u$ of$\Delta_{t}u=f-(b\cdot\nabla)u-cu$, it holds that

$|| \nabla u||\leq\frac{\mathscr{C}_{3}}{v}||u||+\frac{C_{p}}{v}||f||$ . (53)

Indeed, we have by the assumption

$\int_{0}^{T}\{(u_{t},u)+v(\nabla u,\nabla u)+(b\cdot\nabla u+cu,u)\}dt=\int_{0}^{T}(f,u)dt.$

Therefore, taking account of the initial condition, it is easy to obtain the following inequality

$v||\nabla u||\leq(|b|+C_{p}|c|)||u||+C_{p}||f||,$

which proves the lemma.
Next, by using the estimates (33), (29) and the definition of $\psi$, we have

$\Vert P_{h}^{k}\psi\Vert\leq\Vert\psi\Vert+C_{0}(h,k)\Vert\Delta_{t}\psi\Vert$

$\leq C_{p}\Vert\nabla\psi\Vert+C_{0}(h,k)\Vert-b\cdot\nabla u_{1}-cu_{1}\Vert$

$\leq C_{p}\Vert\nabla\psi\Vert+C_{0}(h,k)\mathscr{C}_{3}\Vert\nabla u_{1}\Vert$

$\leq C_{p}\Vert\nabla\psi\Vert+C_{0}(h,k)\mathscr{C}_{3}C_{1}(h,k)\Vert\Delta_{t}u\Vert$

$=C_{p}\Vert\nabla\psi\Vert+C_{0}(h,k)\mathscr{C}_{3}C_{1}(h,k)\Vert-b\cdot\nabla u-cu+f\Vert$ . (54)

Here, $C_{0}(h,k)$ and $C_{1}(h,k)$ are same constants in 3.3.
Furthermore, by using Lemma 3.5, we get

$\Vert-b\cdot\nabla u-cu+f\Vert\leq|b|\Vert\nabla u\Vert+|c|\Vert u\Vert+\Vert f\Vert$

$\leq|b|(\frac{\mathscr{C}_{3}}{v}||u||+\frac{C_{p}}{v}||f||)+|c|||u||+||f||$

$\leq((b|\frac{\mathscr{C}_{3}}{v}+|c|)||P_{h}^{k}u||+(|b|\frac{\mathscr{C}_{3}}{v}+|c|)||u_{1}||+(|b|\frac{C_{p}}{v}+1)||f||.$
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Therefore, from (52) and (54), we have

$\Vert P_{h}^{k}\psi\Vert\leq C_{p}K\Vert u_{1}\Vert+C_{0}(h,k)\mathscr{C}_{3}C_{1}(h,k)\{(|b|\frac{\mathscr{C}_{3}}{v}+|c|)||P_{h}^{k}u||+(|b|\frac{\mathscr{C}_{3}}{v}+|c|)||u\perp||+(|b|\frac{C_{p}}{v}+1)||f||\}.$

(55)

We now set

$C^{(0)}(h,k) :=C_{0}(h,k) \mathscr{C}_{3}C_{1}(h,k)(|b|\frac{\mathscr{C}_{3}}{v}+|c|)$ ,

$C^{(2)}(h,k) :=C_{0}(h,k) \mathscr{C}_{3}C_{1}(h,k)(|b|\frac{C_{p}}{v}+1)$ .

Then, we have

$\Vert P_{h}^{k}\mathscr{A}u_{1}\Vert\leq C^{(0)}(h,k)\{||P_{h}^{k}u||+(C_{p}K+C^{(0)}(h,k))||u\perp||+C^{(2)}(h,k)||f||\}$ . (56)

We also have the following estimate by Lemma 5.3 in [24]

$\Vert P_{h}^{k}\Delta_{t}^{-1}f\Vert_{L^{2}L^{2}}\leq C_{p}\Vert P_{h}^{k}\Delta_{t}^{-1}f\Vert_{L^{2}H_{0}^{1}}$

$\leq C_{p}(\frac{C_{p}}{v}+C_{inv}(h)C_{J}(k))||f||.$

Hence by (50) and (56) imply the following estimate as the finite dimensional part

$\Vert P_{h}^{k}u\Vert\leq M^{0,0}\{C^{(0)}(h,k)||P_{h}^{k}u\Vert+(C_{p}K+C^{(0)}(h,k))||u_{1}||+(C_{p}(\frac{C_{p}}{v}\dotplus C_{inv}(h)C_{J}(k))+C^{(2)}(h,k))||f||\}$

$=O_{1}||P_{h}^{k}u||+(Q_{1}+O_{12})||u\perp||+(Q_{2}+O_{13})||f||$ , (57)

where we have defined the constants $O_{11}\equiv O_{12}:=M^{0,0}C^{(0)}(h,k)$ , $O_{13}:=M^{0,0}C^{(2)}(h,k)$ and $Q_{1}$ $:=$

$M^{0,0}C_{p}K,$ $Q_{2}:=M^{0,0}C_{p}(_{v}^{C}u+C_{inv}(h)C_{J}(k))$ .
On the other hand, by considering the $L^{2}L^{2}$ norm of (47b), from Theorem 3.2 in [8] and Lemma 3.5,
we have

$\Vert u\perp\Vert_{L^{2}L^{2}}\leq C_{0}(h,k)\Vert-(b\cdot\nabla)u-cu+f\Vert_{L^{2}L^{2}}$

$\leq C_{0}(h,k)(|b|\Vert\nabla u\Vert+|c|\Vert u\Vert+\Vert f\Vert)$

$\leq C_{0}(h,k)(|b|(\frac{\mathscr{C}_{3}}{v}||u||+\frac{C_{p}}{v}||f||)+|c|\Vert u\Vert+\Vert f\Vert)$

$\leq C_{0}(h,k)((\frac{|b|\mathscr{C}_{3}}{v}+|c|)||u||+(\frac{|b|C_{p}}{v}+1)||f||))$

$\leq O_{21}\Vert P_{h}^{k}u\Vert+O_{22}\Vert u_{1}\Vert+O_{23}||f||$ , (58)

where we have defined the constants $0_{21}\equiv O_{22}$ $:=C_{0}(h,k)$ $( \frac{|b|\mathscr{C}_{3}}{v}+|c|)$ and $0_{23}$ $:=C_{0}(h,k)$ $( \frac{|b|C_{p}}{v}+1)$ .
Thus from (57) and (58), we get the following simultaneous inequality,

$(\begin{array}{ll}1-O_{11} -Q_{1}-O_{12}-o_{21} 1-O_{22}\end{array})(^{1}|_{|u_{1}|}^{P_{h}^{k}u}|^{1})\leq(\begin{array}{l}Q_{2}+O_{13}O_{23}\end{array})\Vert f\Vert$ . (59)

Now, observe that

$\det(\begin{array}{lll}1- O_{11} -Q_{1}-O_{12}-O_{21} l-O_{22}\end{array})=1-O_{11}-O_{22}-Q_{1}O_{21}.$
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Therefore, defining

$\kappa_{\phi,\psi}^{0}:=O_{11}+(1+Q_{1})O_{22}$ , (60)

if $1-\kappa_{\phi,\psi}^{0}>0$ , then the above determinant is positive and the inequality (59) can be solved, which

yields the following $L^{2}$-based inverse norm estimates.

Theorem 3.6. Let $O_{ij},$ $Q_{i}$ and $\kappa_{\phi,\psi}^{0}$ be constants defined above. If $\kappa_{\phi,\psi}^{0}<1$ , then the following
estimates hold.

$(^{1} |\begin{array}{l}P_{h}^{k}u|u_{1}|\end{array}|)\leq\frac{1}{1-\kappa_{\phi,\psi}^{0}}(\begin{array}{lll}1- O_{22} Q_{1}+O_{11}O_{22} 1-O_{11}\end{array}) (\begin{array}{l}Q_{2}+O_{13}O_{23}\end{array})\Vert f\Vert$ . (61)

This estimates will give the desired result. Namely, since the constants $O_{11}$ and $O_{22}arrow 0$ when
$harrow 0$ even if we take $k=h$, it holds that $1-\kappa_{\phi,\psi}^{0}>0$ for sufficiently small $h$ . Therefore, we can

effectively compute the $L^{2}$ norm of the inverse operator, while it might occur that Theorem 3.4 does
not work in the case of $b\neq 0$ . In that sense, we could say this result should be an essential improvement
of the estimates in Theorem 3.4. Thus it is also expected that Theorem 3.6 presents a more efficient
verification techniques for nonlinear problems.

4 Periodic problems

4.1 The problem with known period

As discussed above, in order to implement the infinite dimensional Newton-type method, it is essential
to estimate the norm for the linearlized inverse opeartor. Therefore, we consider the following linear
parabolic problem with time-periodic condition:

$\{\begin{array}{ll}\frac{\partial u}{\partial t}-v\Delta u+(b\cdot\nabla)u+cu=f(x,t) , in \Omega\cross J, (62a)u(x,t)=0, on \partial\Omega\cross J, (62b)u(x,O)=u(x,T) , in \Omega, (62c)\end{array}$

Therefore, it will be essential and important to get a constructive error estimates for a full-discrete ap-
proximation to the time-periodic solution of the following simple problem with any $f\in L^{2}(J;L^{2}(\Omega))$

$\{\begin{array}{ll}\gamma_{t}^{u}\partial-v\Delta u=f, in \Omega\cross J, (63a)u(x,t)=0, on \partial\Omega\cross J, (63b)u(x,O)=u(x,T) , in \Omega. (63c)\end{array}$

Note that the existence and uniqueness of a weak solution for the above problem is well known,

e.g., [31]. Let $S_{h}(\Omega)\subset H_{0}^{1}(\Omega)$ be the same finite element subspace in the section 3.3. Also let
$\tilde{S}^{k}(J)\subset\tilde{V}^{1}(J)$ $:=\{u\in V^{1}(J)|u(O)=u(T)\}$ be a piecewise linear finite element subspace for time
direction.
Then a full-discrete approximation $P_{h}^{k}:Varrow\tilde{S}^{k}(J;S_{h}(\Omega))$ of a solution $u$ of the problem (63) can be
defined same as in (19):

$P_{h}^{k}u:=I^{k}(P_{h}^{V}u)$ .

Namely, we consider the following ODEs with constant coefficients which is from the semidiscrete
approximation of (63)

$\{\begin{array}{ll}L_{\phi}\frac{d}{dt}\vec{u}_{h}+vD_{\phi}\vec{u}_{h}=\tilde{f} in J, (64a)\vec{u}_{h}(0)=\vec{u}_{h}(T) . (64b)\end{array}$
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Here, $L_{\phi},D_{\phi}\in R^{n\cross n}$ and $\tilde{f}\in R^{n}$ are same as defined in (21). Then by using the fundamental matrix:
$\Theta(t)=\exp(-vL_{\phi}^{-1}D_{\phi}t)$ for the operator $L_{\phi} \frac{d}{dt}+vD_{\phi}$ with setting $\vec{b}(t)=L_{\phi}^{-1}\tilde{f}(t)$ , we have

$\{\begin{array}{ll}\vec{u}_{h}(t)=\Theta(t)\vec{u}_{h}(0)+\int_{0}^{t}\Theta(t-s)\vec{b}(s)ds in J, (65a)\vec{u}_{h}(0)=\vec{u}_{h}(T) . (65b)\end{array}$

Assuming that $(I-\Theta(T))$ is nonsingular, by considering the periodic condition, we have by (65)

$\vec{u}_{h}(t)=\Theta(t)(I-\Theta(T))^{-1}\int_{0}^{T}\Theta(T-s)\vec{b}(s)ds+\int_{0}^{t}\Theta(t-s)\vec{b}(s)ds$ . (66)

Therefore,

$P_{h}^{k}u(x,t_{j})=( \Theta(t_{j})(I-\Theta(T))^{-1}\int_{0}^{T}\Theta(T-s)\vec{b}(s)ds+\int_{0}^{t_{j}}\Theta(t_{j}-s)\vec{b}(s)ds)\Phi(x)$ .

We can also derive the $L^{2}(J;H_{0}^{1}(\Omega))$ and $L^{2}(J;L^{2}(\Omega))$ error estimates for $P_{h}^{k}u$ as before to formu-
late the verification condition of nonlinear periodic problems.

4.2 The problem with unknown period

We consider a basic formulation of the verification of time-periodic solutions for parabolic problems
with unknown period. Denote the nonlinear parabolic problem with unknown period $T$ by

$\{\begin{array}{l}u_{t}-v\Delta u = f(x,t,u) in \Omega\cross(0, T) ,u(x,0) = u(x, T) in \Omega.\end{array}$ (67)

Here, we try to find a solution such that $u(\cdot,t)\in H_{0}^{1}(\Omega)$ for any $t\in(O, T)$ . Then, using the transfor-

mation $s:= \frac{t}{T}$ and setting $\hat{u}(s)$ $:=u(Ts)$ we have for $J\equiv(O, 1)$

$\{\begin{array}{ll}\frac{1}{T}\hat{u}_{s}-v\Delta\hat{u} = f(x, Ts,\hat{u}(s)) in \Omega\cross J,\hat{u}(x,O) = \hat{u}(x, 1) in \Omega,T = T-v||\nabla\hat{u}||_{L^{2}(Q)}+\int_{0}^{1}(f(x, Ts,\hat{u}(s)),\hat{u}(s))_{\Omega}ds. \end{array}$ (68)

Here, the third equation is followed by multiplying both side of the first equation by $\hat{u}$ and integrating
on $Q:=\Omega\cross J$ taking account of the periodic condition in (68).

In order to formulate a Newton-type method, rewrite the above as follows:

find $\exists_{\hat{u}}\in H^{1}(J;L^{2})\cap L^{2}(J:H_{0}^{1})\cap\{\hat{u}(\cdot,0)=u$ 1 $\exists_{\tau}>0$ satisfying

$\{\begin{array}{ll}\hat{u}_{s}-Tv\Delta\hat{u}-Tf(x,Ts,\hat{u}(s)) = 0 in Q,v||\nabla\hat{u}||_{Q}^{2}-\int_{0}^{1}(f(x,Ts,\hat{u}(s)),\hat{u}(s))_{\Omega}ds = O.\end{array}$ (69)

By differentiating (69), we have the following linearized problem. Namely, for each $\phi\in L^{2}(J;L^{2})$

and $r\in R^{1}$

find $\exists_{\mathcal{V}}\in H^{1}(J;L^{2})\cap L^{2}(J : H_{0}^{1})\cap\{v(\cdot,0)=\nu$ 1 $\exists_{T}>0$ satisfying
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$\{$

$v_{s}-\kappa_{0}\Delta v+b\cdot\nabla v+cv+e\tau$ $=$ $\phi$ in $Q,$

$(g_{1},\nabla v)_{Q}+(g0,v)_{Q}+\delta\tau$ $=$ $r.$

(70)

Here, $\kappa_{0},$

$\delta$ are constants, and $b,c,e,g_{0},g_{1}$ are scalar or vector functions in $(x,s)\in Q$ which are de-
termined by an approximate solution of (69). Also $)_{Q}$ denotes the $L^{2}$ inner product on $Q$ . The

constructive a priori estimates for the splution $(v, \tau)$ of (70) will be possible by combining the argu-
ments in the previous subsection for known period with the tecniques presented in [4]. Therefore, we
can give a norm estimation for the linearized operator defined by the left-hand side of (70).

Thus, it will be possible to derive a Newton-type verification condition for the solution $\hat{u}$ and the
unknown period $T$ , in which the constructive error estimates for the projection $P_{h}^{k}$ in the previous
subsection will also play an essential role.

5 Conclusion

We considered some enclosure methods for solutions of parabolic initial-boundary value problems.
Our method is based on the finite element approximation and the constructive error estimates for the
simple heat equation. Particularly, the author believes that the full discrete method in the section 3.3
using the fundamental matrix obtained by spatial approximation should be sufficiently practical and
useful from the viewpoint of computational efficiency. It implies that the verification principle for
elliptic problems could also be used to enclose the solutions of evolutional equations. Moreover, we
emphasize that our method has an advantage by the use of finite element method, because it enables us
to apply the method to problems with arbitrary polygonal or polyhedral spatial domains. Therefore,

it has more wider application fields than the methods based on the spectral method as in [1, 2, 32].
However, it is still in a germinal stage and it will be necessary to apply the technique to more realistic
parabolic problems including the periodic solutions in the section 4 and to comfirm the efficiency of
the verified computation.
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