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1 Introduction

This short paper is concerned with boundary layers of a multicomponent plasma which

consists of electrons and several positive ion species. The motion of the multicomponent

plasma $iS$ governed by the Euler equations for the ion density $\rho_{i}$ and the ion velocity $u_{i}$

of the i-th component:

$(\rho_{i})_{t}+(\rho_{i}u_{i})_{x}=0$ , (l.la)

$m_{i}(u_{i})_{t}+ \frac{m_{i}}{2}(u_{i}^{2})_{x}+\frac{1}{\rho_{i}}(p_{i}(\rho_{i}))_{x}=e_{i}\phi_{x},$ $i=1$ , . . . , $k$ , (l.lb)

coupled with the Poisson equation for the electrostatic potential $-\phi$ :

$\epsilon_{0}\phi_{xx}=\sum_{i=1}^{k}e_{i}\rho_{i}-e_{0}\rho_{0}(\phi)$ . (l.lc)

The positive constants $m_{i}$ and $e_{i}$ denote the mass and the charge of the i-th ion, respec-

tively. In addition, $\epsilon_{0}$ is permittivity. The pressure $p_{i}$ is assumed to be a function of the

electron density $\rho_{i}$ given by
$p_{i}(\rho_{i})=\kappa T_{i}\rho_{i},$
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where $\kappa$ is the Boltzmann constant and $T_{i}$ is the temperature of the i-th ion. We assume
that the electron density $\rho_{0}$ obeys the Boltzmann relation, that is,

$\rho_{0}(\phi)=\rho_{0+}\exp(-\frac{e_{0}\phi}{\kappa T_{0}})$ ,

where the positive constants $\rho_{0+},$ $e_{0}$ and $T_{0}$ denote the reference density value, the charge

and the temperature of the electron, respectively.

We study an initial-boundary value problem to (1.1) over a one-dimensional half space
$\mathbb{R}_{+}:=\{x>0\}$ , where the initial and the boundary data are prescribed as

$(\rho_{i}, u_{i})(0, x)=(\rho_{i0}, u_{i0})(x)$ , $\lim_{xarrow\infty}(\rho_{i0}, u_{i0})(x)=(\rho_{i+}, u_{i+})$ , $i=1$ , . . . , $k$ , (1.2)

$\phi(t, 0)=\phi_{b}$ . (1.3)

Here, $\rho_{i+},$ $u_{i+}$ and $\phi_{b}$ are constants. We take a reference point of the potential $\phi$ at
$x=\infty$ , that is,

$\lim_{xarrow\infty}\phi(t, x)=0.$

In order to solve the Poisson equation (l.lc) in classical sense, the quasi-neutrality con-
dition is required:

$\sum_{i=0}^{k}e_{i}\rho_{i+}-e_{0}\rho_{0+}=0$ . (1.4)

The solution of this initial-boundary value problem is constructed in the region where

the positivity of the density (1.5) and the supersonic outflow condition (1.6) hold, that is,

$\inf_{x\in\pi_{+}}\rho_{i}>0$ for $i=1,$ $k$ , (1.5)

$\inf_{x\in \mathbb{R}_{+}}(m_{i}u_{i}^{2}-\kappa T_{i})>0,$ $\sup u_{i}<0$ for $i=1,$ $k$ . (1.6)
$x\in\pi_{+}$

Therefore we suppose that the initial data satisfies the same conditions:

$\inf_{x\in \mathbb{R}_{+}}\rho_{i0}>0, \inf_{x\in\pi_{+}}(m_{i}u_{i0}^{2}-\kappa T_{i})>0, \sup_{x\in \mathbb{R}+}u_{i0}<0$
, (1.7)

$\rho_{i+}>0, m_{i}u_{i+}^{2}-\kappa T_{i}>0, u_{i+}<0$ . (1.8)

Before we close this section, we briefly discuss about the physical background of our

problem and the related mathematical works. A boundary layer problem occurs in plasma

devices when the plasma contacts with a surface. Due to the difference of the mobilities

of electrons and positive ions, the surface has a negative potential with respect to the

plasma. The non-neutral potential region between the plasma and the surface is called a
sheath. The readers are referred to [4,5,7]. For the sheath formation, physical observation
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requires that the positive ions must enter the sheath region with a high velocity. Bohm

in [3] treated a simple case when the plasma contains electrons and only one component

of mono-valence ions and derived the original Bohm criterion for the velocity $u_{1}$ :

$\kappa T_{0}+\kappa T_{1}<m_{1}u_{1+}^{2}, u_{1+}<0$ . (1.9)

By studying the stationary problem of the system (1.1), Riemann in [8] obtained the

generalized Bohm criterion for the multicomponent plasma. This criterion claims that

the velocity of positive ions should satisfy (1.8) and

$B_{+}:=- \sum_{i=1}^{k}\frac{e_{i}^{2}\rho_{i+}}{m_{i}u_{i+}^{2}-\kappa T_{i}}+\frac{e_{0}^{2}\rho_{0+}}{\kappa T_{0}}>0$ . (1.10)

Let us mention mathematical results which study the sheath formation and the original

Bohm criterion (1.9). Ambroso, M\’ehats and P.-A. Raviart in [2] showed the existence of

the monotone stationary solution to (1.1) with $k=1$ under (1.9) over a one-dimensional

bounded domain. Later Ambroso in [1] numerically showed that the solution to (1.1)

approaches the stationary solution as time tends to infinity in the same setting as in [2].

Suzuki in [9] interpreted the sheath to be a monotone stationary solution to (1.1) with

$k=1$ over a one-dimensional half space and showed that the Bohm criterion is sufficient

for the unique existence of the monotone stationary solution. In [6], the asymptotic

stability of the stationary solution is proved under (1.9). Consequently, these results

ensure the mathematical validity of the original Bohm criterion (1.9).

In this short paper, we briefly study the rigorous justification of the generalized Bohm

criterion (1.10). More precisely, we introduce the existence and the stability theorems

on the stationary solution to the system (1.1) for the multicomponent plasma. For the

detailed discussion on this research, please see the paper [10].

2 Unique existence of the stationary solution

This section is devoted to the discussion on the unique existence of the monotone

stationary solution. The stationary solution $(\tilde{\rho}_{1},\tilde{u}_{1}, \ldots,\tilde{\rho}_{k},\tilde{u}_{k},\tilde{\phi})$ is a solution to (1.1)

independent of the time variable $t$ . Hence, it verifies

$(\tilde{\rho}_{i}\tilde{u}_{i})_{x}=0$ , (2.1a)

$\frac{m_{i}}{2}(\tilde{u}_{i}^{2})_{x}+\frac{\kappa T_{i}}{\tilde{\rho}_{i}}(\tilde{\rho}_{i})_{x}=6_{i}\tilde{\phi}_{x},$ $i=1$ , . . . , $k$ , (2.1b)

$\epsilon_{0}\tilde{\phi}_{xx}=\sum_{i=1}^{k}e_{i}\tilde{\rho}_{i}-e_{0}\rho_{0+}\exp(-\frac{e_{0}\tilde{\phi}}{\kappa T_{0}})$ (2.1c)

182



and the conditions $(1.2)-(1.6)$ :

$\lim_{xarrow\infty}(\tilde{\rho}_{1},\tilde{u}_{1}, \ldots,\tilde{\rho}_{k},\tilde{u}_{k})(x)=(\rho_{1+}, u_{1+}, \ldots, \rho_{k+}, u_{k+})$ , (2.2a)

$\tilde{\phi}(0)=\phi_{b}, \lim_{xarrow\infty}\tilde{\phi}(x)=0$ , (2.2b)

$\inf_{x\in\pi_{+}}\tilde{\rho}_{i}>0,$ $\inf_{x\in \mathbb{R}+}(m_{i}\tilde{u}_{i}^{2}-\kappa T_{i})>0,$
$\sup\tilde{u}_{i}<0,$ $i=1$ , . . . , $k$ . (2.2c)

$x\in\pi_{+}$

The key of the proof of the existence theorem is reduction of the system (2.1) to a
scalar equation for $\tilde{\phi}$ . Assuming the existence of the monotone solution satisfying

$(\tilde{\rho}_{1},\tilde{u}_{1}, \ldots,\tilde{\rho}_{k},\tilde{u}_{k})\in C^{1}(\mathbb{R}_{+}) , \tilde{\phi}\in C(\overline{\mathbb{R}_{+}})\cap C^{2}(\mathbb{R}_{+})$ (2.3)

to the stationary problem (2.1) and (2.2), we drive the scalar equation which $\tilde{\phi}$ satisfies.

Integrating (2.1a) over $(x, \infty)$ gives

$\tilde{u}_{i}(x)=\frac{\rho_{i+}u_{i+}}{\tilde{\rho}_{i}(x)}$ for $i=1$ , . . . , $k$ . (2.4)

Substitute (2.4) in (2.1b), divide the result by $\tilde{\rho}$ and then integrate over $(x, \infty)$ to obtain

$e_{i}\tilde{\phi}(x)=f_{i}(\tilde{\rho}_{i}(x))$ for $i=1$ , . . . , $k$ , (2.5)

where $f_{i}$ is defined by

$f_{i}( \tilde{\rho}_{i}):=\kappa T_{i}\log\tilde{\rho}_{i}+m_{i}\frac{\rho_{i+}^{2}u_{i+}^{2}}{2\tilde{\rho}_{i}^{2}}-\kappa T_{i}\log\rho_{i+}-m_{i}\frac{u_{i+}^{2}}{2}.$

By restricting the domain $D(f_{i})$ into $(0, \rho_{i+}M_{i+}$ ], where $M_{i+}^{2}=m_{i}u_{i+}^{2}/\kappa T_{i}$ , we see that $f_{i}$

is invertible. Then it holds that

$\tilde{\rho}_{i}(x)=f_{i}^{-1}(e_{i}\tilde{\phi}(x))$ for $i=1$ , . . . , $k$ . (2.6)

Substitute (2.6) in (2.1c), multiply the resultant equation by $\tilde{\phi}_{x}$ , integrate the result over
$(x, \infty)$ and then use the condition (2.2a) and $\lim_{xarrow\infty}\tilde{\phi}_{x}(x)=0$ to obtain the scalar

equation for $\phi$ :

$\frac{\epsilon_{0}}{2}(\tilde{\phi}_{x})^{2}=V(\tilde{\phi}) , V(\tilde{\phi}):=\int_{0}^{\tilde{\phi}}\sum_{i=1}^{k}e_{i}f_{i}^{-1}(e_{i}\eta)-e_{0}\rho_{0+}\exp(-\frac{e_{0}\eta}{\kappa T_{0}})d\eta$ , (2.7)

where $V$ is called as the Sagdeev potential in plasma physics. This equation requires the

necessary condition $V(\phi_{b})\geq 0.$

On the other hand, if the problem (2.7) and (2.2b) has a monotone solution $\tilde{\phi}\in$

$C()\cap C^{2}(\mathbb{R}_{+})$ , then we can easily check that

$(\tilde{\rho}_{1},\tilde{u}_{1}, \ldots,\tilde{\rho}_{k},\tilde{u}_{k},\tilde{\phi}):=(f_{1}^{-1}(e_{1}\tilde{\phi}),$
$\frac{\rho_{1+}u_{1+}}{f_{1}^{-1}(e_{1}\tilde{\phi})},$ . . . , $f_{k}^{-1}(e_{k}\tilde{\phi}),$ $\frac{\rho_{k+}u_{k+}}{f_{k}^{-1}(e_{k}\tilde{\phi})},\tilde{\phi})$
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is a monotone stationary solution to (2.1) and (2.2). The uniqueness of the monotone

stationary solution to (2.1) and (2.2) also follows from the uniqueness of the solution to

(2.7) and (2.2b).

Hence, it is sufficient to show the unique solvability of the problem (2.7) and (2.2b).

We can solve this problem by virtue of the standard ODE theory. The unique existence

theorem is as follows.

Theorem 2.1. Let the asymptotic state $(\rho_{1+}, u_{1+}, \ldots, \rho_{k+}, u_{k+})$ satisfy (1.4) and (1.8).

(i) Suppose $B+>$ O. Then there exists a certain positive constant $\delta$ such that if
$|\phi_{b}|\leq\delta$ , the stationary problem (2.1) and (2.2) has a unique monotone stationary solution
$(\tilde{\rho}_{1},\tilde{u}_{1}, . . . , \tilde{\rho}_{k},\tilde{u}_{k},\tilde{\phi})$ verifying (2.3).

(ii) Suppose $B_{+}=$ O. Then there exists a certain positive constant $\delta$ such that if
$|\phi_{b}|\leq\delta$ and $V(\phi_{b})\geq 0$ , the stationary problem (2.1) and (2.2) has a unique monotone
stationary solution $(\tilde{\rho}_{1},\tilde{u}_{1}, \ldots,\tilde{\rho}_{k},\tilde{u}_{k},\tilde{\phi})$ verifying (2.3).

(iii) Suppose $B+<$ O. If $\phi_{b}\neq 0$ , no stationary solution verifying (2.3) exists. If
$\phi_{b}=0$ , a constant sate $(\tilde{\rho}_{1},\tilde{u}_{1}, \ldots,\tilde{\rho}_{k},\tilde{u}_{k},\tilde{\phi})=(\rho_{1+}, u_{1+}, \ldots, \rho_{k+}, u_{k+}, 0)$ is the unique

stationary solution.

The author in [9] constructed non-monotone stationary solutions for the case $k=1$ . Thus

the monotonicity is necessary to show the uniqueness.

3 Asymptotic stability of the stationary solution

Before stating our stability theorem, let us mention difficulties of our stability analysis.

For notational convenience, we introduce the perturbation from the asymptotic state
$(\rho_{1+}, u_{1+}, \ldots, \rho_{k+}, u_{k+}, 0)$ as

$\psi_{i}:=\rho_{i}-\rho_{i+},$ $\eta_{i}:=u_{i}-u_{i+},$ $i=1$ , . . . , $k,$

$\sigma:=\phi-\tilde{\phi}.$

Linearizing the system (1.1) around the asymptotic state gives

$\psi_{it}+u_{i+}\psi_{ix}+\rho_{i}+\eta_{ix}=0$ , (3.1a)

$\eta_{it}+u_{i+}\eta_{ix}+\frac{\kappa T_{0}}{m_{i}\rho_{i+}}\psi_{ix}=\frac{e_{i}}{m_{i}}\sigma_{x},$ $i=1$ , . . . , $k$ , (3.1b)

$\epsilon_{0}\sigma_{xx}-\frac{e_{0}^{2}\rho_{0+}}{\kappa T_{0}}\sigma=\sum_{i=1}^{k}e_{i}\psi_{i}$ . (3.1c)

Notice that the real part of all spectra of this system is zero under the assumption

$u_{+}=u_{1+}=\cdots=u_{k+}$ . (3.2)
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This causes our problem to be difficult since standard methods are not applicable. For

overcoming this issue, we employ the weighted Sobolve space with a weight function

$(1+\beta x)^{\lambda}$ or $e^{\beta x}.$

We briefly discuss about effectiveness of the weighted Sobolve space in our analysis

under the criterion (1.10). Multiply (3.1) by $e^{\beta x/2}$ and introduce new unknown function
$P_{i}$ $:=e^{\beta x/2}\psi_{i},$ $Q_{i}:=e^{\beta x/2}\eta_{i}$ and $R:=e^{\beta x/2}\sigma$ . Moreover, rewriting the system (3.1) for $P_{i},$

$Q_{i}$ and $R$ gives

$P_{it}+u_{i+}P_{ix}+ \rho_{i+}Q_{ix}-\frac{\beta}{2}(u_{i+}P_{i}+\rho_{i+}Q_{i})=0$ , (3.3a)

$Q_{it}+u_{i+}Q_{ix}+ \frac{\kappa T_{0}}{m_{i}\rho_{i+}}P_{ix}-\frac{\beta}{2}(u_{i+}Q_{i}+\frac{\kappa T_{0}}{m_{i}\rho_{i+}}P_{i})=\frac{e_{i}}{m_{i}}R_{x}-\frac{\beta e_{i}}{2m_{i}}R,$ $i=1$ , . . . , $h,$

(3.3b)

$\epsilon_{0}(Q_{xx}-\beta Q_{x}+\frac{\beta^{2}}{4}Q)-\frac{e_{0}^{2}\rho_{0+}}{\kappa T_{0}}Q=\sum_{i=1}^{k}e_{i}P_{i}. (33c)$

By applying spectral analysis to the system (3.3), we have

Proposition 3.1. Let the asymptotic state $(\rho_{1+}, u_{1+}, \ldots, \rho_{k+}, u_{k+})$ satisfy (1.8) and (3.2).

Then the following two conditions are equivalent:

(i) The real part of all spectra of (3.3) in the whole space $\mathbb{R}$ is negative for suficiently

small $\beta>$ O.

(ii) The generalized Bohm criterion (1.10) holds.

Although our problem is the boundary value problem, Proposition 3.1 implies that

the weighted Sobolve space is useful in our stability analysis. The stability theorem is

summarized in Theorem 3.2. The proof is based on the combination of the weighted

energy method and Fourier analysis.

Theorem 3.2. Let the asymptotic state $(\rho_{1+}, u_{1+}, \ldots, \rho_{k+}, u_{k+})$ satisfy the conditions

(1.4), (1.8), (1.10) and $u_{1+}=\cdots=u_{k+}.$

(i) Suppose that $e^{\alpha x/2}(\rho_{i0}-\tilde{\rho}_{i})$ and $e^{\alpha x/2}(u_{i0}-\tilde{u}_{i})$ belong to the Sobolve space $H^{2}(\mathbb{R}_{+})$

for $i=1$ , . . . , $k$ , where $\alpha$ is some positive constant. Then there exist positive constants
$\beta(\leq\alpha)$ and $\delta$ such that if

$| \phi_{b}|+\sum_{i=1}^{k}\Vert(e^{\beta x/2}(\rho_{i0}-\tilde{\rho}_{i}), e^{\beta x/2}(u_{i0}-\tilde{u}_{i}))\Vert_{H^{2}}\leq\delta,$
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the initial-boundary value problem (1.1) $-(1.3)$ has a unique solution $(\rho_{1}, u_{1}, \ldots, \rho_{k}, u_{k}, \phi)$

satisfying

$(e^{\beta x/2}( \rho_{i}-\tilde{\rho}_{i}), e^{\beta x/2}(u_{i}-\tilde{u}_{i}))\in\bigcap_{j=0}^{2}C^{j}([0, \infty);H^{2-j})$ for $i=1$ , . . . , $k,$

$e^{\beta x/2}( \phi-\tilde{\phi})\in\bigcap_{j=0}^{2}C^{j}([0, \infty);H^{4-j})$ .

Moreover it verifies the decay estimate

$\sup_{x\in \mathbb{R}+}|(\rho_{1}-\tilde{\rho}_{1}, u_{1}-\tilde{u}_{1}, \ldots, \rho_{k}-\tilde{\rho}_{k}, u_{k}-\tilde{u}_{k}, \phi-\tilde{\phi})(t)|\leq Ce^{-\gamma t},$

where positive constants $C$ and $\gamma$ are independent of the time variable $t.$

(ii) Let $\lambda$ and $\nu$ satisfy $\lambda\geq 2$ and $\nu\in(0, \lambda].$ Suppose $that (1+\alpha x)^{\lambda/2}(\rho_{i0}-\tilde{\rho}_{i})$ and
$(1+\alpha x)^{\lambda/2}(u_{i0}-\tilde{u}_{i})$ belong to the Sobolve space $H^{2}(\mathbb{R}_{+})$ for $i=1$ , . . . , $k$ , where $\alpha$ is some
positive constant. Then there exist positive constants $\beta(\leq\alpha)$ and $\delta$ such that if

$| \phi_{b}|+\sum_{i=1}^{k}\Vert((1+\alpha x)^{\lambda/2}(\rho_{i0}-\tilde{\rho}_{i}), (1+\alpha x)^{\lambda/2}(u_{i0}-\tilde{u}_{i}))\Vert_{H^{2}}\leq\delta,$

the initial-boundary value problem (1.1) $-(1.3)$ has a unique solution $(\rho_{1}, u_{1}, \ldots, \rho_{k}, u_{k}, \phi)$

satisfying

$((1+ \alpha x)^{\lambda/2}(\rho_{i}-\tilde{\rho}_{i}), (1+\alpha x)^{\lambda/2}(u_{i}-\tilde{u}_{i}))\in\bigcap_{j=0}^{2}C^{j}([0, \infty);H^{2-j})$ for $i=1$ , .. . , $k,$

$(1+ \alpha x)^{\lambda/2}(\phi-\tilde{\phi})\in\bigcap_{j=0}^{2}C^{j}([0, \infty);H^{4-j})$ .

Moreover it verifies the decay estimate

$\sup_{x\in \mathbb{R}+}|(\rho_{1}-\tilde{\rho}_{1}, u_{1}-\tilde{u}_{1}, \ldots, \rho_{k}-\tilde{\rho}_{k}, u_{k}-\tilde{u}_{k}, \phi-\tilde{\phi})(t)|\leq C(1+\beta t)^{-\lambda+\zeta}$

for an arbitrary $\zeta\in[v, \lambda]$ , where the positive constant $C$ is independent of the time variable
$t.$
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