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1 Introduction

The cerebrated theorem by Savage (1954) states that if the decision-maker’s behavior complies

with some set of reasonable axioms, then her behavior can be described as if she tries to maximize

the expected utility with respect to some subjective probability. While the proof of Savage’s

theorem is quite lengthy (for example, see Fishburn (1970)), Anscombe and Aumann (1963)

largely simplified the story by introducing a randornizing devise which generates $arl$ objective

probability. However, their proof assumes that the state space is finite. (See also Kreps (1988).)

This note extends their result to a general state space which is not necessarily finite by the use

of Liesz representation theorem. The proof is simple and quite easy to follow.

2 Preliminaries

2.1 Probability Charge

We call a family of subsets $\Sigma$ of a set $S$ an algebra if it satisfies the three conditions: (1) $\phi\in\Sigma,$

(2)1 $A\in\Sigma\Rightarrow A^{c}\in\Sigma$ arld (3) $A,$ $B\in\Sigma\Rightarrow A\cup B\in\Sigma$ , and call a pair of a set arld an algebra

defined on that set, $(S, \Sigma)$ , a measurable space. Given a measurable space $(S, \Sigma)$ , a set function

$p$ : $\Sigmaarrow[0, +\infty]$ which satisfies the following two conditions is called a finitely-additive measure

or a charge:

$p(\phi)=0$ (1)

$(\forall A, B\in\Sigma) A\cap B=\phi\Rightarrow p(A\cup B)=p(A)+p(B)$ (2)

Condition (2) is called a finite additivity. A charge $p$ which also satisfies $p(S)=1$ is called a

probability charge.

2.2 Preference Order

Let $X$ be a set of alternatives. We call any subset $\succ ofX\cross X$ a binary relation on $X$ and write

as $p\succ q$ when $(p, q)\in\succ$ . A binary relation $\succ is$ said to be asymmetric if

$(\forall p, q\in X) p\succ q\Rightarrow q\neq p,$

1Here, $A^{c}$ denotes the complement of $A$ in $S.$
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where $q\# p$ means that $(q,p)\not\in\succ$ , and it is said to be negatively transitive if

$(\forall p, q, r\in X)$ $p\neq q$ and $q\neq r\Rightarrow p\not\in r.$

A binary relation $\succ$ is called a preference order or a preference relation when it is asymmetric

and negatively transitive. Given a preference order $\succ$ , the binary relation $\succeq is$ defined by

$(\forall p, q\in X) p\succeq q\Leftrightarrow q\neq p$

and the binary relation $\sim$ is defined by

$(\forall p, q\in X)$ $p\sim q\Leftrightarrow pi^{\angle}q$ and $q\neq p.$

A function $u:Xarrow \mathbb{R}$ is said to represent a preference order $\succ if$ it holds that

$(\forall p, q\in X) p\succ q\Leftrightarrow u(p)>u(q)$ .

3 Herstein and Milnor’s Mixture Space Theorem

A set $\Phi$ is called a mixture space if there exists a function $h$ : $[0$ , 1$]$ $\cross\Phi\cross\Phiarrow\Phi$ which satisfies

the following three conditions:

Ml. $h_{1}(\phi, p)=\phi$

$M$2. $h_{a}(\phi, \rho)=h_{1-a}(\rho, \phi)$

$M$3. $h_{a}(h_{b}(\phi, \rho), \rho)=h_{ab}(\phi_{)}\rho)$

Here, the first argument is denoted by a subscript. For instance, the set of probability charges

on a measurable space $(S, \Sigma)$ considered in the previous section is a rniXture space by defining

$h_{a}(p, q):=ap+(1-a)q$ . Consider the following three axioms with respect to a binary relation

$\succ$ defined on a mixture space:

Al (Ordering) $\succ is$ a preference order

A2 (Independence) $\phi\succ\rho\Rightarrow(\forall a\in(O, 1])(\forall\mu)h_{a}(\phi, \mu)\succ h_{a}(\rho, \mu)$

A3 (Continuity) $\phi\succ\rho$ and $\rho\succ\mu$

$\Rightarrow(\exists a, b\in(O, 1))h_{a}(\phi, \mu)\succ\rho$ and $\rho\succ h_{b}(\phi, \mu)$

Then, the following theorem holds. For its proof, see, for instance, Kreps (1988).

Theorem 1 (Herstein and Milnor, 1953). A binary relation $\succ$ defined on a mixture space $\Phi$

satisfies Axioms $Al,$ $A2$ and $A3$ if and only if there exists a function $F:\Phiarrow \mathbb{R}$ which satisfies
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Representation $\phi\succ\rho\Rightarrow F(\phi)>F(p)$ and

Affinity $(\forall a, \phi, \rho)$ $F(h_{a}(\phi, \rho))=aF(\phi)+(1-a)F(\rho)$ .

Furthermore, $F$ is unique up to a positive affine transformation.

4 Riesz Representation Theorem

In what follows, we fix a measurable space $(S, \Sigma)$ consisting of a set $S$ and an algebra $\Sigma$ defined

on it. We denote by $B(S, \Sigma)$ or rnore simply by $B$ the set of all $\Sigma$-measurable and bounded

real-valued functions defined on the measurable space $(S, \Sigma)$ . Also, we denote the subset of
$B(S, \Sigma)$ consisting of all the simple functions by $B_{0}(S, \Sigma)$ or $B_{0}$ , where a function is simple if

its rarige is a finite set.

For a functional $I$ : $Barrow \mathbb{R}$ on a measurable space $B(S, \Sigma)$ , it is said to be norm-
continuous if it holds that, for any sequence $\langle a_{n}\rangle_{n=1}^{\infty}\subseteq B$ and for any element $a\in B,$

$\Vert a-a_{n}\Vertarrow 0 \Rightarrow |I(a)-I(a_{n})|arrow 0,$

where $\Vert\cdot\Vert$ is the $\sup$ norm.

Theorem 2 (Riesz Representation Theorem). For a linear functional $I$ : $Barrow \mathbb{R}$ which is

norm-continuous and satisfies that $I(\chi_{S})=1$ , it holds that

$( \forall a\in B) I(a)=\int_{S}a(s)dp(s)$ . (3)

Here, $p$ is a probability charge on $(S, \Sigma)$ defined by $(\forall A\in\Sigma)p(A)=I(\chi_{A})^{2}$

The integral with respect to a probability charge was developed by Dunford and Schwartz

(1988), and then, Rao and Rao (1983). For a proof of Riesz Representation Theorem, see Rao

and Rao (1983, p.135, Theorem 4.7.4).

For a functional $I$ : $Barrow \mathbb{R}$ on a measurable space $B(S, \Sigma)$ , it is said to be additive if it

holds that

$(\forall a, b\in B) I(a+b)=I(a)+I(b)$

and it is said to be monotonic if it holds that

$(\forall a, b\in B) a\geq b\Rightarrow I(a)\geq I(b)$ .

Note that the additivity implies that $I(O)=I(\chi_{\phi})=0$ . (Let $a=b=\chi_{\phi}$ in the definition of the

additivity.)

$2_{x}$ denotes the indicator function.

97



Lemma 1. If a functional $I$ : $Barrow \mathbb{R}$ is additive, I satisfies the homogeneity for rational

numbers:

$(\forall a\in B)(\forall r\in \mathbb{Q}) I(ra)=rI(a)$ .

Proof Let $a\in B$ . First, let $r\in \mathbb{Q}+be$ a positive rational number such that $r=m/n(m, n\in N)$ .

The additivity of $I$ implies that $nI((m/n)a)=I(n(m/n)a)=I(ma)=mI(a)$ , and hence,

$I(ra)=rI(a)$ . Second, let $r$ be a negative rational number. Note that $I(a)=-I(-a)$ holds

because $0=I(a-a)=I(a)+I(-a)$ by the additivity. Therefore, $I(ra)=I(-|r|a)=|r|I(-a)=$

$-|r|I(a)=rI(a)$ , which completes the proof. $\square$

Lemma 2. If a functional $I$ : $Barrow \mathbb{R}$ is additive and monotonic and satisfies that $I(\chi s)=1,$

then I is norm-continuous.

Proof. Let $\epsilon>0$ and let $\langle a_{n}\rangle_{n=1}^{\infty}$ be convergent to $a$ in the norm topology. Also, let $\delta$ be a positive

rational number such that $0<\delta<\epsilon$ and let $N\in N$ be such that $(\forall n\geq N)\Vert a-a_{n}\Vert<\delta$ . Then,

for any $n\geq N$ , it holds that

$I(a)-I(a_{n}) = I(a)+I(-a_{n})$

$= I(a-a_{n})$

$\leq I(\Vert a-a_{n}\Vert\chi_{S})$

$\leq I(\delta\chi_{S})$

$\leq \delta I(\chi_{S})=\delta<\epsilon,$

where the first equality holds since $0=I(a_{n}-a_{n})=I(a_{n})+I(-a_{n})$ by the additivity; the

second equality holds by $tI_{1}e$ additivity; the first inequality holds by the definition of the norm

and the monotonicity; the second inequality holds by the assumption and the monotonicity; and

the third inequality holds by Lemma 1. Similarly, we can show that $I(a_{n})-I(a)<\epsilon$ . The

lemma then follows. $\square$

Lemma 3. If a functional $I$ : $Barrow \mathbb{R}$ is additive and monotonic and satisfies that $I(\chi s)=1,$

then I is homogeneous.

Proof. Let $\lambda\in \mathbb{R}$ and let $\langle r_{n}\rangle_{n}$ be a sequence of rational numbers which converges to $\lambda$ . Then,

for any $a\in B,$ $r_{n}a$ converges to $\lambda a$ in the norm topology. Therefore, it holds that $I(\lambda a)=$

$\lim_{narrow\infty}I(r_{n}a)=\lim_{narrow\infty}r_{n}I(a)=\lambda I(a)$ , where the first equahty holds by the norm-continuity

(Lemma 2), the second equality holds by Lemma 1 and the last equatiOn holds by the assumption.
$\square$
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Let $K$ be a convex set which satisfies that $[$-1, $1]\subseteq K\subseteq \mathbb{R}$ and denote the subset of
$B$ (or $B_{0}$ ) consisting of $K$-valued functions by $B(K)$ $($or $B_{0}(K))$ . Then, the next proposition

holds.

Proposition 1. For a functional $I:B(K)arrow \mathbb{R}$ which is additive and monotonic and satisfies
that $I(\chi_{S})=1$ , (3) holds.

Proof. By the additivity, the monotonicity and the assumption that $I(\chi_{S})=1,$ $I$ is norm-
continuous (Lemma 2) and homogeneous (Lemma 3). By the homogeneity, $I$ can be extended

to $B$ . Since $I$ thus extended is a norm-continuous hnear functional on $B$ , the result follows from
Theorem 2. $\square$

5 Anscombe and Aumann’s Theorem

5.1 Lottery Act

In this section, we assume that the state space is given by a measurable space $(S, \Sigma)$ arld that

an outcome space is given by a mixture space $Y$ . For example, let $X$ be a space of prizes and
let $Y$ be the space of all simple probability charges on $X$ . Here, a probability charge $p$ is said

to be simple if its support is a finite set, $i.e.$ : if there exists a subset $\{x_{1}, x_{2}, . . . , x_{n}\}\subseteq X$ such

that $\sum_{x\in\{x1\cdots,x_{n}\}}p(\{x\})=1$ holds. Then, $Y$ is a mixture space.

A function from $S$ into $Y$ is called Anscombe-Aumann (A-A) act or lottery act. A lottery
act which is $\Sigma$-rneasurable and whose range is a finite set is called simple lottery act. The set

of all simple lottery acts is denoted by $L_{0}$ . Also, the set of simple lottery acts whose range is

a singleton is denoted by $L_{c}$ . Suppose that a binary relation $\succ$ is defined on the set $L_{0}$ . We

induce the binary relation on $Y$ from a binary relation $\succ onL_{0}$ as follows and denote it by the
same symbol $\succ,$ $i.e.:(\forall y, y’\in Y)y\succ y’\Leftrightarrow f\succ g$ where $(\forall s)f(s)=y$ and $9(s)=y’$

We can now construct a mixture of two simple lottery acts. Let $f,$ $g\in L_{0}$ and let $h$ be

a function which makes $Y$ a mixture space. Then, use $h$ to define the mixture of $f$ and $g$ by
$s\mapsto h_{a}(f(s),g(s))$ . Then, it can be easily seen that the set $L_{0}$ becomes a mixture space by the

operation thus defined. We write the mixture of $f$ and 9 by $af+(1-a)g.$

5.2 Axioms and Representation Theorem

We consider some axioms on a binary relation $\succ$ defined on $L_{0}$ . Here, $f,$ $g,$
$h$ are any element of

$L_{0}$ and $\lambda$ is any real number such that $\lambda\in(0,1$].
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Bl (Ordering) $\succ is$ a preference order on $L_{0}$

B2 (Independence) $f\succ g\Rightarrow\lambda f+(1-\lambda)h\succ\lambda g+(1-\lambda)h$

B3 (Continuity) $f\succ g$ and $g\succ h$

$\Rightarrow(\exists\alpha, \beta\in(0,1))\alpha f+(1-\alpha)h\succ g$ and $g\succ\beta f+(1-\beta)h$

B4 (Monotonicity) $(\forall f, g\in L_{0})[(\forall s\in S)f(s)\succeq g(s)]\Rightarrow f\succeq g$

B5 (Nondegeneracy) $(\exists f, g\in L_{0})f\succ g$

Note the similarity of Axioms BI-B3 to Axioms AI-A3. The next theorem is an extension of

Anscombe and Aurrmlan (1963) to $a$ (not necessarily finite) general state space.

Theorem 3. A binary relation $\succ$ defined on the set $L_{0}$ satisfies $Bl,$ $B2,$ $B3,$ $B4$ and $B5$ if and

only if there uist a unique probability charge $p$ on $(S, \Sigma)$ and an affine function $u$ on $Y$ which

is unique up to a positive affine transformation such that

$f \succ g\Leftrightarrow\int_{S}u(f(s))dp(s)>\int_{S}u(g(s))dp(s)$ .

5.3 Proof of Theorem 3

We show that Axioms BI-B5 implies the representation. Other claims are easy to verify and their

proofs are omitted. Since the set $L_{0}$ is a mixture space and a binary relation $\succ$ satisfies AI-A3

by BI-B3, Theorem 1 implies that there exists an affine function on $L_{0}$ which represents $\succ$ . We

denote this function by $J$ . We further define the afline function $u$ on $Y$ by $(\forall y\in Y)u(y)=J(y)$ ,

where $y$ in the right-hand side is understood to be a constant lottery act which always takes on

$y$ . B4 and B5 imply the existence of $y^{*},$ $y_{*}\in Y$ such that $y^{*}\succ y_{*}$ . To see this, suppose that

$(\forall y, y’\in Y)y\sim y’$ . Then, by B4, for any pair of simple lottery acts $f,$ $g$ , it holds that $f\sim g,$

which contradicts B5. Hence, by applying $\ovalbox{\tt\small REJECT}$ appropriate affine tra1lsformation to $J$ , we can

normalize $u$ so that $u(y^{*})=1$ and $u(y_{*})=-1.$

Let $K$ $:=u(Y)$ . Then $K$ is convex by the affinity of $u$ arld satisfies $[$-1, $1]\subseteq K$ by the

previous paragraph. Define a function $U$ : $L_{0}arrow B_{0}(K)$ by

$(\forall f)(\forall s) U(f)(s)=u(f(s))$ .

Then, $U$ is surjective since $K=u(Y)$ and $U$ satisfies that $U(f)=U(g)\Rightarrow f\sim g$ by B4 and the

fact that $u$ is a representation on $Y$ . Therefore, $U$ is bijective. Ehrthermore, the affinity of $u$

implies $(\forall\alpha\in[0,1])U(\alpha f+(1-\alpha)g)=\alpha U(f)+(1-\alpha)U(g)$ . Now, define a fmctional $I$ on

$B_{0}(K)$ by
$(\forall a\in B_{0}(K)) I(a)=J(U^{-1}(a))$ .
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Clearly, it holds that $(\forall f\in L_{0})$ $I(U(f))=J(f)$ . Also, note that $I(O)(=I(\chi_{\phi}))=$ O.

To see this, let $f$ $:=h_{1/2}(y^{*}, y_{*})$ be a constant lottery act. Then, $U(f)=u(h_{1/2}(y^{*}, y_{*}))=$

$(1/2)u(y^{*})+(1/2)u(y_{*})=0$ by the affinity of $u$ . Hence, $I(O)=J(f)=u(f)=0.$

This paragraph proves that it holds that

$(\forall a, b\in B_{0}(K))(\forall\alpha\in[O, 1]) I(\alpha a+(1-\alpha)b)=\alpha I(a)+(1-\alpha)I(b)$ . (4)

Let $a,$ $b\in B_{0}(K)$ and let $\alpha\in[0$ , 1$]$ . Also, let $f,$ $g\in L_{0}$ be such that $U(f)=a$ and $U(g)=b.$

Since $U$ is surjective, such $f$ and $g$ exist. Then, by the previous paragraph,

$I(\alpha a+(1-\alpha)b) = J(U^{-1}(\alpha a+(1-\alpha)b))$

$= J(U^{-1}(\alpha U(f)+(1-\alpha)U(g)))$

$= J(U^{-1}(U(\alpha f+(1-\alpha)g)))$

$= J(\alpha f+(1-\alpha)g)$

$= \alpha J(f)+(1-\alpha)J(g)$

$= \alpha I(a)+(1-\alpha)I(b)$ ,

where the fifth equality holds because $J$ is an affine function.

This paragraph proves that the functional $I$ satisfies all the assumptions of Proposition
1. (i) $I(\chi_{S})=1$ . Let $f\in L_{0}$ be a constant lottery act such that $(\forall s)f(s)=y^{*}$ . Then $U(f)=$

$u(y^{*})=xs$ by the definition of $U$ , and hence, $I(\chi_{S})=J(U^{-1}(\chi_{S}))=J(f)=J(y^{*})=u(y^{*})=1.$

(ii) Additivity. In Equation (4), letting $b=0$ shows

$(\forall a\in B_{0}(K))(\forall\alpha\in[0,1]) I(\alpha a)=\alpha I(a)$

since $I(O)=0$ . (See the end of the second paragraph.) The additivity then follows from this

and by setting $\alpha=1/2$ in Equation (4). (iii) Monotonicity. Let $a,$ $b\in B_{0}(K)$ and let $f,$ $g\in L_{0}$

be such that $U(f)=a$ and $U(g)=b$. Then, it follows that

$a\geq b\Rightarrow U(f)\geq U(g)\Rightarrow(\forall s)u(f(s))\geq u(g(s))$

$\Rightarrow (\forall s)f(s)\succeq g(s)\Rightarrow f\succeq g\Rightarrow J(f)\geq J(g)\Rightarrow I(a)\geq I(b)$ ,

where the third implication holds by the fact that $u$ is a representation on $Y$ ; the fourth holds

by B4; and the fifth holds by the fact that $J$ is a representation on $L_{0}$ . The monotonicity was
thus proved.

This paragraph applies Proposition 1 to $I$ and then completes the proof. As shown in

the previous paragraph, $I$ satisfies all the assumptions of Proposition 1, and hence, if we define

a probability charge $p$ on $(S, \Sigma)$ by $(\forall A\in\Sigma)p(A)$ $:=I(\chi_{A})$ , it holds that

$( \forall a\in B_{0}) I(a)=\int_{S}a(s)dp(s)$ .
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Then, for any $f,g\in L_{0}$ , it follows that

$f\succ g\Leftrightarrow J(f)>J(g)\Leftrightarrow I(U(f))>I(U(g))$

$\Leftrightarrow \int_{S}U(f)(s)dp(s)>\int_{S}U(g)(s)dp(s)\Leftrightarrow\int_{S}u(f(\mathcal{S}))dp(s)>\int_{S}u(g(s))dp(s)$ ,

which completes the proof of Theorem 3.

References

Anscombe, F. J. aIld R. J. Aumarm (1963): “A Definition of Subjective Probabihty

Annals of Mathematical Statistics 34, 199-205.

Dunford, N. and J. T. Schwartz (1988): Linear 0perator Part I: General Theory, Wiley

Classics Library.

Fishburn, P. C. (1970): Utility Thoery for Decision Making. Wiley, New York.

Herstein, I. N. and J. Milnor (1953): “An Axiomatic Approach to Measurable Utility

Econometrica 21, 291-297.

Kreps, D. (1988): Notes on the Theory of Choice. Boulder, Colorado: Westview Press.

Rm, K. P. S. B. and M. B. Rao (1983): Theory of Charges, Academic Press.

Savage, L. (1954): The Foundations of Statistics. John Wiley, New York.

102


