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1 Introduction

Throughout this note, the term “Banach space”’ always means a real Banach space. Let
$X$ and $Y$ be Banach spaces. Then the classical Mazur-Ulam theorem states that if $T$ :
$Xarrow Y$ is a surjective isometry then $T$ is affine. In 1972, Mankiewicz [12] extended this
result by showing that if $U\subset X$ and $V\subset Y$ are open and connected and $T_{0}$ : $Uarrow V$ is
a surjective isometry then there exists a surjective affine isometry $T:Xarrow Y$ such that
$T_{0}=T|_{U}$ . From this, in particular, it turns out that every isometry from the unit ball
of $X$ onto that of $Y$ can be extended to an isometric isomorphism between $X$ and $Y.$

Motivated by this observation, Tingley [17] proposed in 1987 the following problem. Let
$X$ and $Y$ be Banach spaces, let $S_{X}$ and $S_{Y}$ denote the unit spheres of $X$ and $Y$ , and let
$U\subset X$ and $V\subset Y$ . Suppose that $T:Uarrow V$ is a surjective isometry.

To be precise, Tingley’s problem is as follows.

Tingley’s problem. Let $X$ and $Y$ be Banach $space\mathcal{S}$ . Suppose that $T_{0}$ : $S_{X}arrow S_{Y}$ is a
$su7\dot{y}$ective isometry. Then, does $T_{0}$ have a linear isometric $ex\iota_{en\mathcal{S}}ionT:xarrow Y$ ?

Many papers, especially in the last decade, have been devoted to the problem, and is
solved positively for some classical Banach spaces; see, for example, [2, 4, 9, 11, 18, 19].
The survey of Ding [5] is a good starting point to understanding the history of the problem.

Recently some mathematicians began to attack the problem on more general spaces,
and developed various methods and notions.

(i) Somewhere-flat spaces (Cheng and Dong [3]).
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(ii) Finite-dimensional polyhedral Banach spaces (Kadets and Mart\’in [10]).

(iii) Sharp corner points (Ding and Li [6]).

(iv) The Tingley property (Tan and Liu [15]).

However, surprisingly, Tingley’s problem remains open even if $X=Y$ and $X$ is two-
dimensional.

This note is a survey of recent work [16] which provides new geometric methods for
the two-dimensional Tingley problem and some results on symmetric absolute normalized
norms on $\mathbb{R}^{2}.$

2 New methods for Tingley’s problem

A usual way to attack Tingley’s problem is to show that the natural extension $T$ of $T_{0}$ is
linear, where $T$ is given by

$Tx=\{\begin{array}{ll}\Vert x\Vert T_{0}(\frac{x}{\Vert x\Vert}) (x\neq 0) ,0 (x=0) .\end{array}$

In this section, we construct new methods for Tingley’s problem on twGdimensional
spaces. We first recall the following result of Tingley.

Lemma 2.1 (Tingley [17]). Let $X$ and $Y$ be finite dimensional normed spaces. Suppose

that $T_{0}$ : $S_{X}arrow 6_{Y}$ is a surjective isometry. Then $T_{0}(-x)=-T_{0}x$ for all $x\in S_{X}.$

It is known that if there exists a surjective isometry between the unit spheres of two
finite dimensional normed spaces then the dimensions of the spaces coirlcide.

Lemma 2.2. Let $X$ be a two-dimensional normed space, and let $Y$ be a normed space. If
there exists a surjective isometry $T_{0}:S_{X}arrow S_{Y}$ , then $\dim Y=2.$

The following two lemmas are key for our approach.

Lemma 2.3 ([16]). Let $X$ be a two-dimensional normed space. $Suppo\mathcal{S}e$ that $x,$ $y\in S_{X},$

and that $x\pm y\neq 0$ . Then there exists an element $z\in A(x, y)$ such that $\Vert z-x\Vert=\Vert z-y\Vert\leq$

$\Vert x-y$ Furthermore, such an element is unique in $A(x, y)$ .

Lemma 2.4 ([16]). Let $X$ be a two-dimensional normed space, and let $Y$ be a normed
space. Suppose that $T_{0}$ : $S_{X}arrow S_{Y}$ is a surjective isometry. Then $T_{0}(A(x, y))=$

$A(T_{0}x, T_{0}y)$ whenever $x,$ $y\in S_{X}$ and $x\pm y\neq 0.$

We now present a new method for Tingley’s problem on two-dimensional spaces.

Theorem 2.5 ([16]). Let $X$ be a two-dimensional normed space, and let $Y$ be a normed
space. Suppose that $T_{0}$ : $S_{X}arrow S_{Y}$ is a surjective isometry. If there $exist_{\mathcal{S}}$ an isometric
isomory)$hismT$ : $Xarrow Y$ such that $T_{0}x=Tx$ and $T_{0}y=Ty$ for some $x,$ $y\in S_{X}$ with
$x\pm y\neq 0$ , then $T_{0}=T|_{S_{X}}.$
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Suppose that $T$ is a map from a set $C$ into itself. Then an element $x\in C$ is said to
be a fixed point of $T$ if $Tx=x$ . The set of all fixed poir ts of $T$ is denoted by $F(T)$ .
Applying the preceding theorem, we immediately have the following result.

Corollary 2.6 ([16]). Let $X$ be a two-dimensional $no\gamma med$ space. Suppose that $T_{0}:S_{X}arrow$

$S_{X}$ is a surjective isometry. If there exist $x,$ $y\in S_{X}\cap F(T_{0})$ such that $x\pm y\neq 0$ , then
$T_{0}=I|_{S_{X}}$ , where I is the identity map on $X.$

3 Tingley’s problem on symmetric absolute normal-

ized norms on $\mathbb{R}^{2}$

In this section, we present some new sufficient conditions for Tingley’s problem on syrn-
metric absolute normalized norms on $\mathbb{R}^{2}$ . We first note the following property.

Lemma 3.1 ([16]). Let $\psi\in\Psi_{2}^{S}$ . Suppose that $T_{0}$ is an isometry from the unit sphere of
$(\mathbb{R}^{2}, \Vert\cdot\Vert_{\psi})$ onto itself. Then $T_{0}(1,0)\neq\psi(1/2)^{-1}(1/2,1/2)$ if $\Vert\cdot\Vert_{\psi}$ is not $\pi/4$ rotation
invariant.

To present sufficient conditions for Tingley’s problem, the following two geornetric
constants of a normed space $X$ play important roles.

$C_{NJ}’(X)= \sup\{\frac{\Vert x+y\Vert^{2}+\Vert x-y\Vert^{2}}{4}:x, y\in S_{X}\},$

$c_{NJ}’(X)= \inf\{\frac{\Vert x+y\Vert^{2}+\Vert x-y\Vert^{2}}{4}$ : $x,$ $y\in S_{X}\}.$

These constants were introduced by Gao [7], and are naturally strongly related to the von
Neumann-Jordan constant $C_{NJ}(X)$ given by

$C_{NJ}(X)= \sup\{\frac{\Vert x+y\Vert^{2}+\Vert x-y\Vert^{2}}{2(||x||^{2}+||y\Vert^{2})}:x, y\in X, (x, y)\neq(0,0)\}.$

In particular, the constant $C_{NJ}’(X)$ is called the modified von Neumann-Jordan constant,

and has been studied in [1, 8, 14].
Define a partial order $\leq$ on $\Psi_{2}$ by declaring that $\varphi\leq\psi$ if $\varphi(t)\leq\psi(t)$ for all $t\in$

$[0$ , 1$]$ . Using Lemma 3.1 and the constants $C_{NJ}’(X)$ and $c_{NJ}^{J}(X)$ , we obtain the following
sufficient conditions for Tingley’s problem.

Theorem 3.2 ([16]). Let $\psi\in\Psi_{2}^{S}$ . Then Tingley’s problem is affirmative if $X=Y=$
$(\mathbb{R}^{2}, \Vert\cdot\Vert_{\psi})$ and either of the following statements holds.

(i) $\psi\leq\psi_{2}$ and the function $\psi_{2}/\psi$ on $[0$ , 1/2$]$ takes the maximum only at $t_{0}\in(0,1/2$].

(ii) $\psi\geq\psi_{2}$ and the function $\psi_{2}/\psi$ on $[0$ , 1/2$]$ takes the minimum only at $t_{0}\in(0,1/2$].

For incomparable cases, we have the following result.

Theorem 3.3 ([16]). Let $\psi\in\Psi_{2}^{s}$ . Then Tingley’s problem is affirmative if $X=Y=$
$(\mathbb{R}^{2}, \Vert\cdot\Vert_{\psi})$ and either of the following statements holds.
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(i) The function $\psi_{2}/\psi$ on $[0$ , 1/2$]$ takes the minimum at 1/2 and the maximum only at
$t_{0}\in(0,1/2].$

(ii) The function $\psi_{2}/\psi$ on $[0$ , 1/2$]$ takes the manmum at 1/2 and the minimum only at
$t_{0}\in(0,1/2].$

These theorems provide many examples by easy arguments.

Example 3.4. Let $1\leq p<2<q\leq\infty$ , and let $2^{1/q-1/p}<\lambda<1$ . Then the function
$\psi_{2}/\psi_{p,q,\lambda}$ is increasing on $[0, t_{\lambda}]$ , and decreasing on $[t_{\lambda}$ , 1/2$]$ . Hence it takes the maximum
only at $t_{\lambda}$ . We remark that $\psi_{p,q,\lambda}\leq\psi_{2}$ if and only if $2^{1/q-1/p}<\lambda\leq 2^{1/2-1/p}$ . If
$2^{1/2-1/p}<\lambda<1$ , it turns out that $\psi_{2}/\psi_{p,q,\lambda}$ takes the minimum at 1/2. Thus, in both
cases, Tingley’s problem is affirmative if $X=Y=(\mathbb{R}^{2}, \Vert\cdot\Vert_{\psi_{p,q,\lambda}})$ .

Example 3.5. Let $0<\omega<1$ and $1<q<\infty$ . The two-dimensional Lorentz sequence
space $d^{(2)}(\omega, q)$ is defined as the space $\mathbb{R}^{2}$ endowed with the norm

$\Vert(x, y)\Vert_{\omega,q}=(\max\{|x|^{q}, |y|^{q}\}+\omega\min\{|x|^{q}, |y|^{q}\})^{1/q}.$

Remark that $\Vert\cdot\Vert_{\omega,q}$ is a symmetric absolute normalized norm on $\mathbb{R}^{2}$ , and that the function
$\psi_{\omega,q}$ associated with this norm is given by

$\psi_{\omega,q}(t)=\{\begin{array}{l}((1-t)^{q}+\omega t^{q})^{1/q} if 0\leq t\leq 1/2,(t^{q}+\omega(1-t)^{q})^{1/q} if 1/2\leq t\leq 1.\end{array}$

We now consider the function $\psi_{2}/\psi_{\omega,q}$ on $[0$ , 1/2$]$ . Then the first derivative is given by

$( \frac{\psi_{2}}{\psi_{\omega,q}})’(t)=\frac{((1-t)^{q}+\omega t^{q})^{1/q-1}(t(1-t)^{q-1}-\omega t^{q-1}(1-t))}{\psi_{2}(t)\psi_{\omega,q}(t)^{2}}$

for all $t\in(0,1/2)$ . From this, one can easily check that the function $\psi_{\omega,q}$ satisfies the
assumption of Theorems 3.2 or 3.3. Thus, we have an affirmative axlswer for Tingley’s
problem in the case of $X=Y=d^{(2)}(\omega, q)$ .

Example 3.6. Let $0<\omega<1$ and $1<q<\infty$ . In [13], it was shown that $d^{(2)}(\omega, q)^{*}$ is
isometrically isomorphic to the space $\mathbb{R}^{2}$ endowed with the norm $\Vert\cdot\Vert_{\omega,q}^{*}$ defined by

$\Vert(x, y)\Vert_{\omega,q}^{*}=\{\begin{array}{ll}(|x|^{p}+\omega^{1-p}|y|^{p})^{1/p} if |y|\leq\omega|x|,(1+\omega)^{1/p-1}(|x|+|y|) if \omega|x|\leq|y|\leq\omega^{-1}|x|,(\omega^{1-p}|x|^{p}+|y|^{p})^{1/p} if \omega^{-1}|x|\leq|y|,\end{array}$

where $1/p+1/q=1$ . The norm $\Vert\cdot\Vert_{\omega,q}^{*}$ is symmetric, absolute and normalize, and the
corresponding function $\psi_{\omega,q}^{*}$ is given by

$\psi_{\omega,q}^{*}(t)=\{\begin{array}{ll}((1-t)^{p}+\omega^{1-p}t^{p})^{1/p} if 0\leq t\leq\omega/(1+\omega) ,(1+\omega)^{1/p-1} if \omega/(1+\omega)\leq t\leq 1/(1+\omega) ,(t^{p}+\omega^{1-p}(1-t)^{p})^{1/p} if 1/(1+\omega)\leq t\leq 1.\end{array}$

We carl conclude that Tingley’s probleni is aflirmative if $X=Y=d^{(2)}(\omega, q)^{*}$ by an
argument similar to that in the preceding example.
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