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1 Introduction

Throughout this note, the term “Banach space” always means a real Banach space. Let
X and Y be Banach spaces. Then the classical Mazur-Ulam theorem states that if T :
X —'Y is a surjective isometry then T is affine. In 1972, Mankiewicz [12] extended this
result by showing that if U C X and V C Y are open and connected and Ty : U — V is
a surjective isometry then there exists a surjective affine isometry 7' : X — Y such that
To = T|y. From this, in particular, it turns out that every isometry from the unit ball
of X onto that of Y can be extended to an isometric isomorphism between X and Y.
Motivated by this observation, Tingley [17] proposed in 1987 the following problem. Let
X and Y be Banach spaces, let Sx and Sy denote the unit spheres of X and Y, and let
UcCX and V CY. Suppose that T : U — V is a surjective isometry.

U=XandV =Y T: affine Mazur-Ulam

U,V: open and connected | T" has an affine extension Mankiewicz

U=SxandV =Sy T: Tingley’s problem

To be precise, Tingley’s problem is as follows.

Tingley’s problem. Let X and Y be Banach spaces. Suppose that Ty : Sx — Sy is a
surjective isometry. Then, does Ty have a linear isometric extension T : X — Y ?

Many papers, especially in the last decade, have been devoted to the problem, and is
solved positively for some classical Banach spaces; see, for example, [2, 4, 9, 11, 18, 19].
The survey of Ding [5] is a good starting point to understanding the history of the problem.

Recently some mathematicians began to attack the problem on more general spaces,
and developed various methods and notions.

(i) Somewhere-flat spaces (Cheng and Dong [3]).
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(ii) Finite-dimensional polyhedral Banach spaces (Kadets and Martin {10)).
(iii) Sharp corner points (Ding and Li [6]).
(iv) The Tingley property (Tan and Liu [15]).

However, surprisingly, Tingley’s problem remains open even if X = Y and X is two-
dimensional.

This note is a survey of recent work [16] which provides new geometric methods for
the two-dimensional Tingley problem and some results on symmetric absolute normalized
norms on R2.

2 New methods for Tingley’s problem

A usual way to attack Tingley’s problem is to show that the natural extension T of Ty is
linear, where T is given by

ro = [ el (i) @20,
0 (z =0).

In this section, we construct new methods for Tingley’s problem on two-dimensional
spaces. We first recall the following result of Tingley.

Lemma 2.1 (Tingley {17]). Let X and Y be finite dimensional normed spaces. Suppose
that Ty : Sx — Sy is a surjective isometry. Then Ty(—xz) = —Tox for all x € Sx.

It is known that if there exists a surjective isometry between the unit spheres of two
finite dimensional normed spaces then the dimensions of the spaces coincide.

Lemma 2.2. Let X be a two-dimensional normed space, and let Y be a normed space. If
there exists a surjective isometry Ty : Sx — Sy, then dimY = 2.

The following two lemmas are key for our approach.

Lemma 2.3 ([16]). Let X be a two-dimensional normed space. Suppose that z,y € Sx,
and that x4y # 0. Then there exists an element z € A(x,y) such that ||z—z|| = ||z—y| <
|z — y||. Furthermore, such an element is unique in A(z,y).

Lemma 2.4 ([16]). Let X be a two-dimensional normed space, and let Y be a normed
space. Suppose that Ty : Sx — Sy is a surjective isometry. Then To(A(z,y)) =
A(Tyz, Toy) whenever z,y € Sx and z £y # 0.

We now present a new method for Tingley’s problem on two-dimensional spaces.

Theorem 2.5 ([16]). Let X be a two-dimensional normed space, and let Y be a normed
space. Suppose that Ty : Sx — Sy is a surjective isometry. If there exists an isometric
isomorphism T : X — Y such that Tox = Tz and Toy = Ty for some z,y € Sx with
zty#0, then Ty =T|s, -



Suppose that T is a map from a set C into itself. Then an element = € C is said to
be a fixed point of T if Tz = z. The set of all fixed points of T is denoted by F(T).
Applying the preceding theorem, we immediately have the following result.

Corollary 2.6 ([16]). Let X be a two-dimensional normed space. Suppose that Ty : Sx —
Sx is a surjective isometry. If there exist z,y € Sx N F(Ty) such that x £y # 0, then
To = I|s,, where I is the identity map on X.

3 Tingley’s problem on symmetric absolute normal-
ized norms on R?

In this section, we present some new sufficient conditions for Tingley’s problem on sym-
metric absolute normalized norms on R2. We first note the following property.

Lemma 3.1 ([16]). Let ¢ € U5. Suppose that Ty is an isometry from the unit sphere of
(R2, || - |ly) onto itself. Then Tp(1,0) # ¥(1/2)71(1/2,1/2) if || - ||y is not /4 rotation
invariant.

To present sufficient conditions for Tingley’s problem, the following two geometric
constants of a normed space X play important roles.

z+yl?+ |z —yl?
M(X)zsup{n U +lz :w,yesx},
y 2112 P 2
(’SVJ(X) =1nf{”£+y“ :H‘E y" I.’L‘,ye SX} .

These constants were introduced by Gao [7], and are naturally strongly related to the von
Neumann-Jordan constant Cy ;(X) given by

=+ yll* + ll= — yl?
2(lll1? + llwli®)

In particular, the constant C},(X) is called the modified von Neumann-Jordan constant,
and has been studied in [1, 8, 14].

Define a partial order < on ¥, by declaring that ¢ < 9 if ¢(t) < 9(¢) for all t €
[0,1]. Using Lemma 3.1 and the constants C},(X) and ¢y ;(X), we obtain the following
sufficient conditions for Tingley’s problem.

CNJ(X)=sup{ rz,y € X, (x,y);é(0,0)}.

Theorem 3.2 ([16]). Let 9 € V5. Then Tingley’s problem is affirmative if X =Y =
(R2,|| - |ly) and either of the following statements holds.

(i) ¥ < b, and the function /v on [0,1/2] takes the mazimum only at ty € (0,1/2].
(ii) ¥ > 1, and the function 1z/1 on [0,1/2] takes the minimum only at ty € (0,1/2].
For incomparable cases, we have the following result.

Theorem 3.3 ([16]). Let ¢ € U5. Then Tingley’s problem is affirmative if X =Y =
(R2,|| - |ly) and either of the following statements holds.
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(i) The function ¢/ on [0,1/2] takes the minimum at 1/2 and the mazimum only at
to € (0,1/2).

(i) The function v)s/v) on [0,1/2)] takes the mazimum at 1/2 and the minimum only at
to € (0,1/2].
These theorems provide many examples by easy arguments.

Example 3.4. Let 1 < p < 2 < ¢ < o0, and let 21/¢71/? < X\ < 1. Then the function
Y2/ 4. is increasing on [0,t,], and decreasing on [ty, 1/2]. Hence it takes the maximum
only at ty. We remark that 9., < v if and only if 2Y/9°1/P < X < 21/2-Vp  If
21/2-1/p < )\ < 1, it turns out that t)3/9,,, takes the minimum at 1/2. Thus, in both
cases, Tingley’s problem is affirmative if X =Y = (R?, || - ||y, .,)-

Example 3.5. Let 0 < w < 1 and 1 < ¢ < 0. The two-dimensional Lorentz sequence
space d®(w, q) is defined as the space R? endowed with the norm

(2, 9)llwg = (max{|z|%, |y|*} + wmin{|z|*, |y|*})"/*.

Remark that || ||, is 8 symmetric absolute normalized norm on R?, and that the function
w,q associated with this norm is given by

oo { (=t +wt)e if0<t<1/2,
V() = 4+ w(l—t)n)Y1 if1/2<t <1

We now consider the function 2/, on [0,1/2]. Then the first derivative is given by
(@_)’ (t) = (1 — )7+ wtn)Va 1 (¢(1 — )97 — wie~1(1 — t))
'l)bw,q 1/)2 (t)"pw,q(t)2

for all t € (0,1/2). From this, one can easily check that the function 1, , satisfies the
assumption of Theorems 3.2 or 3.3. Thus, we have an affirmative answer for Tingley’s
problem in the case of X =Y = d®(w, q).

Example 3.6. Let 0 < w < 1 and 1 < ¢ < co. In [13], it was shown that d® (w, ¢)* is
isometrically isomorphic to the space R? endowed with the norm || - ||, , defined by

(2P + W PlyP) 7 if |y| < wla],
Iz Wln, =14 QA+w) |+ |y]) if wz| < |y| < w™zl,
(W' PlzlP + [y|P)P if w | <y,

where 1/p+ 1/¢g = 1. The norm || - ||7, , is symmetric, absolute and normalize, and the
corresponding function v, , is given by

(1=t + PP if 0 <t<w/(l+w),
Yh () =14 (1+w)/P? if w/(1+w) <t<1/(1+w),
P+ P —t)P)/P if1/(1+w) <t <1,

We can conclude that Tingley’s problem is affirmative if X = Y = d®(w, q)* by an
argument similar to that in the preceding example.
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