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1 Dynamical Relativity in Family of Dynamics

In this report, we discuss the roles and meaning of “dynamical relativity”’ in

the descriptions of physical processes, which is a new concept proposed re-
cently by the author [1]. While the standard sorts of relativity like Einstein’s
resolves successfully the kinematical ambiguities due to the non-uniqueness

of reference frames unavoidable in theoretical descriptions of physical pro-
cesses, any systematic approaches to the problem of indeterminacy in
dynamics caused by the presence of constraints or a family of dynamics

do not seem to have so far been attempted in contrast. In our discussion
here, the duality relation between the kinematical and dynamical relativi-
ties plays essential roles, whose essence in an abstract categorical context
can naturally be understood by the following duality [2] between inductive

$Limarrow$ & projective $Limarrow$ limits:

[Kinematics of $Limarrowarrow^{\backslash \prime}$ ]
$dualityarrow_{arrow}$

[ $arrow Lim:\swarrowarrow\backslash$ Dynamics in projective limit]

due to the adjunction involving the diagonal functor $\Delta$ [s.t. $\Delta(c)(j)\equiv c$ for
$c\in C\forall j\in J]$ :

$C$

left adjoint $Limarrow\uparrow\Delta\downarrow$ $\uparrow Limarrow$ right adjoint
$C^{J}$

The essence of the above contents can be explained on the basis of the
following points:

1. Usual relativity principle as kinematical unification of many reference
frames on sector classifying space: 1) Galileian relativity in non-
relativistic physics; 2) special relativity arising from electromagnetism
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due to Poincar\’e and Einstein; 3) Einstein’s general relativity control-
ling gravity.

2. Dynamical relativity unifies dynamically a family of dynamics.

3. Duality between kinematical & dynamical relativities:
While “coordinate-free” nature of modern geometry is subsumed in
Einstein’s kinematical relativity, the plurality of indeterminate $dy-$

namics as the essence of dynamical relativity is dual to it, without
being absorbed in the former one.

1.1 Sector Classifying Space in Micro-Macro Duality

To explain a sector-classifying space in the above, we consider its roles in
terms of the following basic concepts:

1) sectors as Micro-Macro boundary, which constitutes
2) Micro-Macro duality, whose Macro side is formed through
3) emergence processes via “forcing” $[$Macro $\Leftarrow Micro].$

1.2 Sectors and Micro-Macro Duality

1) Sectors$=pure$ phases parametrized by order parameters.
Here order parameters are the spectral values of central observables

belonging to the centre $\mathfrak{Z}_{\pi}(\mathcal{X})=\pi(\mathcal{X})"\cap\pi(\mathcal{X})’$ of represented algebra $\pi(\mathcal{X})"$

of physical variables commuting with all other physical variables in a generic
representation $\pi$ of $\mathcal{X}$ . Mathematically, a sector is defined by a quasi-
equivalence class of factor state (& representation $\pi_{\gamma}$ ) of the algebra $\mathcal{X}$

of physical variables, characterized by trivial centre $\pi_{\gamma}(\mathcal{X})"\cap\pi_{\gamma}(\mathcal{X})’=$ :
$\mathfrak{Z}_{\pi_{\gamma}}(\mathcal{X})=\mathbb{C}1$ as a minimal unit of representations classified by quasi-
equivalence relation which is the unitary equivalence up to multiplicity.

2) The roles of sectors as Micro-Macro boundary can be seen in
Micro-Macro duality [3, 4] as a mathematical version of “quantum-
classical comepsondence” between the inside of microscopic sectors and
the macroscopic inter-sectorial level described by geometrical structures
on the central spectrum $Sp(\mathfrak{Z})$ $:=Spec(\mathfrak{Z}_{\pi}(\mathcal{X}))$ :

1.3 Micro-Macro Duality and Emergence of Macro-level

This corresponds mathematically to a Hilbert bimodule $\pi(\mathcal{X})^{J/\tilde{\mathcal{X}}}L^{\infty}(E_{\mathcal{X}})$ $:=$

$\pi(\mathcal{X})"\otimes L^{\infty}(E_{\mathcal{X}})$ with left $\pi(\mathcal{X})"$ and right $L^{\infty}(E_{\mathcal{X}}, \mu)$ actions (where $E_{\mathcal{X}}$

denotes the state space of $\mathcal{X}$ equipped with a central measure $\mu$), controlled
by Tomita decomposition theorem:
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Now, $Micrc\succ$Macro Duality is formulated as a categorical adjunction
consisting of an adjoint pair of functors $E,$ $F$ in combination with a unit
$\eta$ : $I_{\mathcal{X}}arrow T$ intertwining from $\mathcal{X}$ to the monad $T=EF$ and with a counit
$\epsilon$ : $Sarrow I_{\mathcal{A}}$ intertwining from the comonad $S=FE$ to $\mathcal{A}$ :

Here the left adjoint functor $F$ intertwines $FT=FEF=SF$ from $T$

to $S$ and the right one $E$ intertwines $ES=EFE=TE$ from $S$ to $T.$

$\epsilon_{a}F$

The adjunction as natural isomorphisms $\mathcal{A}(aarrow Fx)$ $arrowarrow$ $\mathcal{X}(Eaarrow x)$ is
$E(-)\eta_{x}$

characterized by the two sets of identities $(\begin{array}{lll} FEF \epsilon F\prime O F\eta F = \nwarrow F\end{array})$ and

$(\begin{array}{lll}E = EE\epsilon\backslash \fcircle \nearrow\eta E EFE \end{array})$ , as a homotopical extension of Fierz duality $E=$

$F^{-1}arrowarrow F=E^{-1}$ between the orthgonality $FE=I_{\mathcal{A}}$ and the completeness
$EF=I_{\mathcal{X}}$ of Fourier & inverse-Fourier transforms.

2 Galois-like Functors in $*$-categories

If the microscopic dynamics and the internal symmetry of the system are
known from the outset, the principle of kinematical relativity tells us that
observable quantities observed in reality are essentially the invariants under
the transformations of dynamics and symmetry. Since we do not live in the
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microscopic world, however, all what we can do is just to guess the $invi_{\mathcal{S}}i-$

$ble$ microscoipic dynamics and the internal symmetry on the basis of visible
macroscopic data, essentially consisting of invariants under the transforma-
tions.

Therefore, the most essential tools in our scientific activities should be
found in the methods to determine unknown quantities by solving such equa-
tions that the known coefficients are given in terms of observable invariants
and that unobservable non-invariants are the unknown variables to be solved.
For this reason, we need the basic concepts pertaining to the Galois theory
of equations, among which the most important one is the Galois group. In
the usual definition, a Galois group $G=Gal(\mathcal{X}/\mathcal{A})=:G(\mathcal{X}, \mathcal{A})$ is defined
by a pair of an algebra $\mathcal{X}$ containing knowns and unknowns, the former of
which constitutes a subalgebra $\mathcal{A}$ of $\mathcal{X}$ providing coefficients of the equa-
tions, while the “quotient” $\mathcal{X}/\mathcal{A}$ has no actual meaning. If we interpret
the symbol/A as $\mathcal{A}$ to be reduced to scalars, however, we can regard $\mathcal{X}/\mathcal{A}$

as a $G$-module whose inverse Fourier transform becomes $Gal(\mathcal{X}/\mathcal{A})$ . With
the aid of natural transformations, this re-interpretation can be extended
categorically, according to which we obtain functors to extract groups or
algebras from *-categories of modules as follows:

a) $G:=End_{\otimes}(V : \mathcal{T}_{DR}\mapsto FHilb)$ : in Doplicher-Roberts sector the-
ory [5], the group $G$ of unbroken internal symmetry is recovered from the
Doplicher-Roberts category $\mathcal{T}_{DR}(\subset End(\mathcal{A}))$ consisting of modules describ-
ing local excitations via the formula $G:=End_{\otimes}(V : \mathcal{T}_{DR}\mapsto FHilb)$ as the
group of unitary $\otimes$-natural transformations $u$ from the embedding functor
$V$ of $\mathcal{T}_{DR}$ into the category FHilb of finite-dimensional Hilbert spaces

$V_{\gamma_{1}} V_{\gamma_{1}}$
$u(\gamma_{1})=\gamma_{1}(u)arrow$

to $V$ : $T\downarrow$ $O$ $\downarrow Tfor\gamma_{i}\in \mathcal{T}_{DR}$ and $T\in \mathcal{T}_{DR}(\gamma_{2}arrow\gamma_{1})and$

$V_{\gamma_{2}} V_{\gamma_{2}}$
$u(\gamma_{2})=\gamma_{2}(u)arrow$

$\gamma_{1}(u)\otimes\gamma_{2}(u)=u(\gamma_{1})\otimes u(\gamma_{2})=u(\gamma_{1}\otimes\gamma_{2})=(\gamma_{1}\otimes\gamma_{2})(u)$ .

b) $Nat(I : Mod_{B}\mapsto Hilb)=B$ Rieffel’s device to extract the universal
enveloping von Neumann algebra $B”$ from the category $Mod_{B}$ of $B$-modules,
in terms of natrual transformations from the embedding functor $I$ to itself.

$b’)$ Takesaki-Bichteler’s admissible family of operator fields on Rep$(Barrow$

$\mathfrak{H})$ in a sufficiently big Hilbert space $\mathfrak{H}$ to reproduce a von Neumann al-
gebra $B$ (: the example focused up in Dr. Okamura’s $PhD$ thesis as a
non-commutative extension of Gel’fand-Naimark theorem).

With the aid of this machinery, such a perspective (which has long been
advocated by Dr.Saigo and also emphasized recently by Dr.Okamura) can
now be envisaged that all the contents of Quantum Field Theory can be uni-
fied into a $C^{*}$-tensor category of physical quantities (joint work in progress).
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3 Symmetry Breaking and Emergence of Sector-
classifying Space

To understand the third item, 3) emergence processes via “forcing” [Macro

Micro], at the beginning, it is important to realize the sector classifying

space typically emerging from spontaneous breakdown of symmetry of a

dynamical system $\mathcal{X}\wedge G$ with action of a group $G$ (without changing

dynamics of the system$=$ “spontaneous”). For this purpose, we need

Criterion for Symmetry Breaking given by non-triviality of central

dynamical system $3_{\pi}(\mathcal{X})\cap G$ arising from the original one $\mathcal{X}\wedge G.$

Namely, symmetry $G$ is broken in sectors $\in Sp(\mathfrak{Z})$ shifted non-
trivially by central action of $G$ . In the infinitesimal version, the Lie

algebra $\mathfrak{g}$ of the group $G$ is decomposed into unbroken $\mathfrak{h}$ and broken $\mathfrak{m}$ $:=$

$\mathfrak{g}/\mathfrak{h}$ , the former of which is vertical to $Sp(\mathfrak{Z})$ and the latter parallel.

The $G$-transitivity assumption with unbroken subgroup $H$ in broken $G$

leads to such a specific form of sector classifying space as $Sp(\mathfrak{Z})=G/H=$ :
$M$ . Then, classical geometric structure on $G/H$ can be seen to arise

physically from an emergence process via condensation of a family of

degenerate vacua, each of which is mutually distinguished by condensed

values $\in Sp(\mathfrak{Z})$ . In this way, infinite number of low-energy quanta are
condensed into geometry of classical Macro objects $\in Sp(\mathfrak{Z})=G/H.$

In combination with sector structure $\hat{H}$ of unbroken symmetry $H$ , the

total sector structure due to this symmetry breaking is described by a “sector

bundle”’ $G_{H}\cross\hat{H}$ with $\hat{H}$ as a standard fiber over a base space $G/H$ consisting

of “degenerate vacua”’ [3, 6].

When this geometric structure is established, all the physical quantities

are parametrized by condensed values $\in G/H$ . Then, by means of

“logical extension” of constants into sector-dependent variables, we

find the origin of local gauge structures. On these bases, the duality emerges

between kinematical & dynamical sorts of “relativity principles” owing

to the duality between converging & diverging families of functors between

Macro & Micro: [Kinematics in $Limarrowarrow$ ]$arrow\backslash \swarrowarrow$

duality
[$arrow Lim:\swarrow,arrow\backslash$ Dyn in projective

limit].

3.1 Symmetric Space Structure of $G/H$

We see here that this homogeneous space $G/H$ is a symmetric space

equipped with Cartan involution as follows (IO, in preparation). Assuming

Lie structures on $G,$ $H,$ $G/H=M$ we denote by $\mathfrak{g},$

$\mathfrak{h},$ $\mathfrak{m}$ the corresponding

Lie algebraic quantities satisfying $[\mathfrak{h}, \mathfrak{h}]=\mathfrak{h},$ $[\mathfrak{h}, \mathfrak{m}]=\mathfrak{m}$ . Then the validity

of $[\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h}$ provides the homogeneous space $M$ (at least, locally) with
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a Cartan involution $\mathcal{I}$ to characterize a symmetric space whose eigenval-
ues are $\mathcal{I}=+1$ on $\mathfrak{h}$ and $\mathcal{I}=-1$ on $\mathfrak{m}$ , respectively. Note that $[\mathfrak{m}, m]$ is
the holonomy term corresponding to an infinitesimal loop along the bro-
ken direction $G/H=M=Sp(\mathfrak{Z})$ as inter-sectorial space. Namely,
$[\mathfrak{m}, \mathfrak{m}]$ describes the effect of broken $G$ transformation along an infinitesi-
mal loop on $M$ starting from a point in $M$ and going back to the same point.
According to the above Criterion for Symmetry Breaking in terms of non-
trivial shifl under central action of $G$ , the absence of $\mathfrak{m}$-components in
$[\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h}$ , follows from the identity of initial and final points of the loop.
Thus, $M=G/H=Sp(\mathfrak{Z})$ is a symmetric space.

3.2 Example 1: Relativity controlled by Lorentz group

Typical example of the above sort can be found in the case of Lorentz group
$\mathcal{L}_{+}^{\uparrow}=:G$ with an unbroken subgroup of the rotation group $SO(3)=:H$:
here, $G/H=M\cong \mathbb{R}^{3}$ is a symmetric space of Lorentz frames mutually
connected by Lorentz boosts.

With $\mathfrak{h}$ $:=\{M_{ij};i,j=1, 2, 3, i<j\},$ $\mathfrak{m}$ $:=\{M_{0i};i=1, 2, 3\}$ , the validity
of $[\mathfrak{h}, \mathfrak{h}]=\mathfrak{h},$ $[\mathfrak{h}, \mathfrak{m}]=\mathfrak{m},$ $[\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h}$ is evident from the basic Lie algebra
structure:

$[iM_{\mu\nu}, iM_{\rho_{\sigma}}]=-(\eta_{\nu\rho}iM_{\mu\sigma}-\eta_{\nu\sigma}iM_{\mu\rho}-\eta_{\mu\rho}iM_{\nu\sigma}+\eta_{\mu\sigma}iM_{\nu\rho})$ .

While both $\mathfrak{h}$ and $\mathfrak{m}$ are taken as unbroken in the standard physics, such
results as Borcher-Arveson theorem (: affiliation of Poincar\’e generators to
the algebra of global observables in vacuum situation) and the spontaneous
breakdown of Lorentz boosts at $T\neq OK[7]$ indicate the speciality of the
vacuum situation with $\mathfrak{m}$ unbroken. In this sense, the symmetric space
of Lorentz frames $M\cong \mathbb{R}^{3}$ with [boosts, boosts] $=$ rotations, gives a typical
example of symmetric space structure emerging from symmetry breaking
(inevitable in non-vacuum situations).

Along this line, typical examples are provided by the chiral symmetry
with the current algebra structure $[V, V]=V,$ $[V, A]=A,$ $[A, A]=V$ with
vector currents $V$ and axial vector ones $A$ , and also by the conformal symme-
try. In the latter case consisting of translations $P_{\mu}$ , Lorentz transformations
$M_{\mu\nu}$ , scale transformation $S$ and of special conformal transformations $K_{\mu}$

the unbroken $\mathfrak{h}$ part corresponds to $M_{\mu\nu}$ and $S$ , and the broken $\mathfrak{m}$ to $P_{\mu}$ and
$K_{\mu}$ , where $\mathfrak{m}$ is the infinitesimal non-compact form of the self-dual Grass-
mannian manifold acted by the conformal group.

3.3 Example 2: Second law of thermodynamics

Physically most interesting example can be found in thermodynamics: cor-
responding to $\mathfrak{h}\mapsto \mathfrak{g}arrow \mathfrak{m}=\mathfrak{g}/\mathfrak{h}$ , we find here an exact sequence $\Delta’Q\mapsto$

$\Delta E=\Delta’Q+\Delta’Warrow\triangle’W$ due to the first law of thermodynamics, whose
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precise form can be found in Caratheodory’s formulation. With respect to

Cartan involution with $+$ assigned to the heat production $\Delta’Qand-to$ the
macroscopic work $\Delta’W$ , the holonomy $[\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h}$ corresponding to a loop

in the space $M$ of thermodynamic variables becomes just

Kelvin’s version of second law of thermodynamics,

namely, holonomy $[\mathfrak{m}, \mathfrak{m}]$ in the cyclic process with $\Delta E=\Delta’Q+\Delta’W=0,$

describes the heat production $\Delta’Q\geq 0:-\Delta’W=-[\mathfrak{m}, \mathfrak{m}]=\Delta’Q>0$ (from

the system to the outside).
Thus, the essence of the second law of thermodynamics is closely related

with the geometry of the symmetric space structure of thermodynamic space
$M$ consisting of paths of thermodynamic state-changes caused by works
$\Delta’W$ . Actually, this symmetric space structure can be seen to correspond

to its causal structure due to state changes via adiabatic processes, which
can be interpreted as the mathematical basis of Lieb-Yngvason axiomatics
of thermodynamic entropy.

4 Convergent Kinematics at Macro End

In terms of symmetric space structure with Cartan involution, we find, in

the basic structures of both relativity and thermodynamcs, essential com-

mon features of convergence [Kinematics in $Limarrowarrow$ ]$\swarrow\backslash$

’ which seem to be

characteristic to Macro side. Because of this convergence, phenomenologi-

cal diversity due to the presence of many reference frcnmes is successfully

controlled by the relativity principle with the aid of Lorentz-type transfor-
mations. What plays crucial roles here is, however, the $impliciu_{y}$ postu-

lated unicity of the “true physical system” entitled by the unicity of
microscopic law of dynamics, in sharp contrast to its phenomenological

diversity. But who guarantees this assumption?

4.1 One-sidedness inherent in Relativity

From the duality viewpoint between Micro and Macro: $[$Macro: $Limarrowarrow]arrow[\backslash \swarrowarrow$

duality
$arrow^{\backslash \swarrow}$

$Lim:arrow$ Micro], mentioned at the beginning, we should notice the one-sidedness

inherent in the standard picture of relativity: [Kinematics in $Limarrowarrow$ ]$\backslash \prime$ , in

contrast to the situations on the Micro side: $[arrow^{\prime\backslash }Limarrow$ : Dyn in projec-

tive limit]. This shows the one-sidedness inherent in the idea of relativity,
in sharp contrast to the universal validity of thermodynamic consequences
applicable to variety of different systems independently of minor details.
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4.2 To relativize dynamics of a system

Generalizing the excellent idea of relativity, we can naturally and legiti-
mately relativize and pluralize dynamics of a physical system whose
mutual relations are controlled, deformed and compared; the foee-
dom attained by this extension is expected to liberate us from the stereo-
typed spell of “a physical system with a fixed law of dynamics”’ Then, it
will enable us to develop a theoretical framework for describing a physical
systems with a family of dynamical laws exhibited in an array, where
their mutual relations are systematically examined from the viewpoints of
deformation and evolutionary theories: in [8], the essence of this line of
thought has been proposed under the name of “‘ Theory Bundle bundles
of theories patched together by the “method of variation of natural
constants”

5 Fkamework for Multiple Laws of Dynamics

For the purpose of materializing the essential ideas explained above, a math-
ematical framework has been proposed by the present author in [1] by con-
necting the essence of multiple laws of dynamics based on the “‘groupoid $dy-$

namical systems” with the concepts of “sectors and of “sector space”
in the framework of quadrality scheme”’ based on “Micro-Macro dual-
ity” [3, 4]. In a word, a groupoid $\Gamma$ is a family of invertible transformations
from an initial point to a final one, which can be thought of as a family of
groups scattered over spacetime. Here, the space $\Gamma^{(0)}Qf$ units carries many
interesting physical contexts, in a similar to the concept of base spaces of
fiber bundles. In this sense, it provides not only a generalization of the no-
tion of groups in close relation with the basic ideas of local gauge invariance
and of general relativity, but also an algebraic and generalized formulation
of “equivalence relations”’ ubiquitously found at the basis of any kind of
mathematical descriptions.

5.1 Definition of a groupoid

A groupoid $\Gamma$ is defined on a set $\Gamma^{(0)}$ (called unit space) in combination
with two maps $s,$

$t$ : $\Gammaarrow\Gamma^{(0)}$ characterized by the following three properites
Rl), R2), R3). When $t(\gamma)=x\in\Gamma^{(0)},$ $s(\gamma)=y\in\Gamma^{(0)}$ , we write $xarrow\gamma y$ or
$\gamma$ : $xarrow y$ , calling $x$ and $y$ , respectively, the target and source of an arrow
$\gamma\in\Gamma$ from $y$ to $x$ :

Rl) For any $x\in\Gamma^{(0)}$ , there is an arrow $xarrow X1_{x}$ from $x$ to $x$ called a unit
arrow :

R2) when $xarrow\gamma_{1}y$ and $yarrow\gamma_{2}z$ , there exists a composition $x\gamma_{1}\gamma_{2}arrow z$ of
arrows $\gamma_{1}$ and $\gamma_{2}$ from $z$ to $x.$
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R3) when $\gamma$ is an arrow $xarrow\gamma y$ from $y$ to $x$ , there exists the inverse $\gamma^{-1}\in$

$\Gamma$ from $x$ to $y$ in the sense of $\gamma\gamma^{-1}=1_{x}$ : $xarrow x$ and of $\gamma^{-1}\gamma=1_{y}$ : $yarrow y.$

the sense of $\gamma\gamma^{-1}=1_{x}$ : $xarrow x$ and of $\gamma^{-1}\gamma=1_{y}:yarrow y.$

If we define a relation $R$ on $\Gamma^{(0)}$ by $R(x, y)=(\exists\gamma\in\Gamma$ such that $xarrow\gamma y)$ ,

then Rl), R2), R3) are equivalent to the laws of symmetry, transitivity, and
reflexivity, respectively. In this way, a groupoid is an algebraic generaliza-
tion of an equivalence relation. While the equivalence relation $R(x, y)$ is

symmetric in $x,$ $y$ owing to R3), we retain the direction of arrows $xarrow\gamma y$ for
the purpose of unified treatment of such relations with preferred directions
as order relations or arrows of time. The totality of the arrows $\gamma$ is called
a groupoid $\Gamma$ and the set $\Gamma^{(0)}$ of $x,$ $y$ , etc., connected by the arrows $\gamma\in\Gamma$

in such a way as $xarrow\gamma y$ is called the “unit space”’ of the groupoid $\Gamma$ . The

element $y\in\Gamma^{(0)}$ in $xarrow\gamma y$ is called the source of $\gamma$ and denoted by $s(\gamma)=y,$

and, in this situation, $x\in\Gamma^{(0)}$ is called the target of $\gamma$ and denoted by
$t(\gamma)=y.$

In this context, a groupoid $\Gamma$ can be viewed as a special sort of categories,
all of the arrows of which are invertible. Then, the unit space $\Gamma^{(0)}$ is nothing
but the set of objects of the category $\Gamma$ , where

Rl) means the assignment of the identity arrow $1_{x}$ corresponding to an
object $x\in\Gamma^{(0)},$

R2) explains the relation among the source, target and the composition
of arrows in the category $\Gamma,$

R3) means the invertibility of all the arrows in $\Gamma.$

It can be easily understood that a groupoid is a generalization of the
concept of a group and that a group is a special case of a groupoid: for this
purpose, we equip a group $G$ with $a$ (virtual) object $*$ which is regarded as
connected by any group element $g\in G$ to itself: $*arrow g*$ . In this way, a group
$G$ can be viewed as a groupoid $G$ whose unit space is given by $\{*\}.$

The important difference between a general groupoid and a group can be
found in that any pair $(g_{1},g_{2})\in G\cross G$ of group elements can be composable:
$(g_{1},g_{2})\mapsto g_{1}g_{2}\in G$ , whereas the product $\gamma_{1}\gamma_{2}$ of a pair $(\gamma_{1}, \gamma_{2})\in\Gamma\cross\Gamma$

can be defined only when the condition $\mathcal{S}(\gamma_{1})=t(\gamma_{2})$ is satisfied: $\gamma_{1}\gamma_{2}=$

$[t(\gamma_{1})arrow s(\gamma_{1})=t(\gamma_{2})arrow \mathcal{S}(\gamma_{2})]=[t(\gamma_{1})arrow s(\gamma_{2})].$

The set of all the composable pairs $(\gamma_{1},\gamma_{2})$ is denoted by $\Gamma^{(2)}$ , which
can be identified with the fiber product : $\Gamma^{(2)}$

$:=\{(\gamma_{1},\gamma_{2})\in\Gamma\cross\Gamma;s(\gamma_{1})=$

$\Gamma pr_{1}arrow \Gamma\cross\Gamma$

$\Gamma(0)$

$t(\gamma_{2})\}=\Gamma_{\Gamma(0)}\cross\Gamma$ characterized by a commutative diagram: $s\downarrow$

$\Gamma^{(0)} \Gamma$
$arrow t$

For $x,$
$y\in\Gamma^{(0)}$ we denote $\Gamma_{y}^{x}$ $:=\{\gamma\in\Gamma;t(\gamma)=x, s(\gamma)=y\}=\Gamma(xarrow y)$ .

Since $\Gamma_{x}^{x}\subset\Gamma^{(2)}$ , any pair of elements in the subgroupoid $\Gamma_{x}^{x}$ are composable,
and hence it is a group $\Gamma_{x}^{x}\subset\Gamma$ for any $x\in\Gamma^{(0)}.$

Among many useful and important examples of groupoids, we should
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mention the concept of transformation groupoid $\Gamma=M\cross G$ based on an
action of $G$ on $M$, where the product in the groupoid $\Gamma$ is defined by $(x_{1}, g_{1})$ .
$(x_{2}, g_{2})$ $:=(x_{1}, g_{1}g_{2})$ under the condition of $s(x_{1}, g_{1})=g_{1}^{-1}x_{1}=x_{2}=$

$t(x_{2},g_{2})$ .

5.2 Symmetry breaking patterns classified by unit space $\Gamma^{(0)}$

Going back to the context of symmetry breaking in terms of a theory bundle
on the sector classifying space Spec$(\mathfrak{Z}_{\pi}(\mathcal{X}))\subset F_{\mathcal{X}}$ , we see that the action of
broken $G$-symmetry on it can be identified, under the assumption of tran-
sitivity, with a transformation groupoid $\Gamma=\Gamma^{(0)}\cross G$ with the $G$-transitive
unit space $\Gamma^{(0)}:=$ supp $\mu_{\omega}=G/H.$

Some remarks on transitivity
$\Gamma^{(0)}=G/H$ : transitivity $+$ symmetric space

$\subset$ ergodicity $=measure$-theoretical transitivity
$\Gamma^{(0)}=D(G/H_{i})$ : orbit decomposition, ergodic decomposition
Then, in terms of the unit space $\Gamma^{(0)}\subset F_{\mathcal{X}}$ , breaking patterns of the

symmetry described by $G\cap \mathcal{X}$ can be classified into unbroken, sponta-

neously broken, $explicitl^{\tau}y$ broken ones as follows:
(i) unbroken: $\Gamma_{unl_{J}roken}^{(0)}=one$-point set

(ii) spontanesously broken: $\Gamma_{SSB}^{(0)}=$ sector bundle $G\cross\hat{H}$ of a theory
$H$

with a fixed dynamics, whose base space $G/H$ consists of degenerate vacua
and whose fibers consist of sectors $\hat{H}$ of unbroken symmetry $H$

(iii) explicitly broken: $\Gamma_{explicitbr}^{(0)}.$ $=$ double-layer bundle of sectors,
whose base space consists of physical constants to parametrize different
dynamics, upon each point of which we have a sector bundle $\Gamma_{SSB}^{(0)}$ of SSB
corresponding to a fixed dynamics.

6 Applications to Local Gauge Invariance and Renor-
malization

In the systematic use of the machinery developed above, we can reformulate
theories of local gauge invariance and of renormalization from novel physical
viewpoints. Because of the limitation of the available space, however, we
refere the detailed account of the results to the following two proceeding
articles

1) local gauge invariance: see [1],
2) renormalization: in this case, duality between “cutoffs” (or, regular-

izations of ultra-violet divergences) will play improtant roles (see [9]).

153



References

[1] Ojima, I., Gauge Invariance, Gauge Fixing, and Gauge Independence,
pp.127-137 in Proc. of RIMS workshop (2012.11), Koukyuroku No.1859
“Mathematical Quantum Field Theory and Related Topics”, A. Arai (

ed

[2] Mac Lane, S., Categories for the working mathematician, Springer-
Verlag, 1971.

[3] Ojima, I., A unified scheme for generalized sectors based on selection
criteria -Order parameters of symmetries and of thermality and physical
meanings of adjunctions-, Open Systems and Information Dynamics, 10,

235-279 (2003) (math-ph/0303009).

[4] Ojima, I., Micro-macro duality in quantum physics, 143-161, Proc. In-
tern. Conf. “Stochastic Analysis: Classical and Quantum World Sci.,
2005, arXiv:math-ph/0502038

[5] Doplicher, S. and Roberts, J.E., Why there is a field algebra with a
compact gauge group describing the superselection structure in particle
physics, Comm. Math. Phys. 131, 51-107 (1990).

[6] Ojima, I., Temperature as order parameter of broken scale invariance,

Publ. RIMS (Kyoto Univ.) 40, 731-756 (2004) (math-ph0311025).

[7] Ojima, I., Lorentz invariance vs. temperature in QFT, Lett. Math. Phys.
11, 73-80 (1986).

[8] Ojima, I., L\’evy Process and Innovation Theory in the context of Micro-
Macro Duality, 15 December 2006 at The 5th L\’evy Seminar in Nagoya,
Japan.

[9] Ojima, I., Dynamical Relativity in Family of Dynamics, to appear in
Proc. of RIMS workshop (2013.10), “Mathematical Quantum Field The-
ory and Related Topics”

154


