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Operator Algebraic Shannon’s Interpretation
for Entropy-preserving Stochastic Averages

Marie Choda |

Abstract

We study various relations of p and ® from the view point of the
von Neumann entropy. Here p and ® are a state and a unital positive
Tr-preserving linear map on the algebra M,(C) of n x n complex
matrices respectively. For the state p and the new state p o ® arising
as the composition, we show among the others that these two states
have the same value of the von Neumann entropy if and only if @
behaves for p as some automorphism of M, (C).

1 Introduction

Shannon([8, p.395 4.]) denotes as the followings: If we perform any ” averag-
ing ” operation on the {p;}i=1,.. » of the form

pi=_ aip;
j

(where p; >0, 3, p;i =1 and a;; >0, > a;; = ), a;; = 1), the entropy H
increases (except in the special case where this transformation amounts to
no more than a permutation of the p; with H of course remaining the same).

This means the followings: The entropy H(\) of a probability vector
A = (A1,--+,As) and the entropy H(Ab) of the probability vector Ab for a
bistachastic matrix b = [b;;] are always in the relation that H(X) < H(Ab)
and the two values are equal if and only if the bistochastic matrix b behaves
just as a permutation o, i.e. Ab = (Ao(1), ", Ao(n))-

Replacing a probability vector A € R™ (resp. a bistachastic matrix b) to
a state p of M,(C) (resp. a unital positive Tr-preserving linear map ® on



M,(C)), we show, among the others, that the von Neumann entropy S(:)
increases by performing any ® on p (except in the special case where this
transformation amounts to no more than an automorphism « of state p with
S(-) of course remaining the same).

2 Notations, terminologies and basic facts

The main tool is the entropy function n defined on the interval [0, 1] by
n(t) = —tlogt (0<t<1) and 5(0)=0.

The 7 is strictly concave, i.e. for two k-tuples of real numbers {s;}, {t;} such
that s; > 0,; > 0,3% . ¢, = 1, it holds that

k k
> t(si) <n(D_tiss),

and the equality holds if and only if s; = s; for all ¢, j.

Moreover, 7 is strictly operator-concave, i.e. the similar relations hold by
replacing {s;}; to any bounded self-adjoint operators {z;}; with spectra in
[0,1], i.e.

k k
Z tan(z:) < H(Z ti;)

and the equality implies that x; = z; for all ¢,j. (see for example [4, B],
[5, 6]).

Let A = (Aq,---,\,;) be a probability vector in R”, i.e. \; > 0 for all 4
and ). A; = 1. The Shannon entropy H()) for X is given as

HQ) =n(A) +---+n(A).

It holds always that H(\) < logn and H(A) = logn if and only if A\; = 1/n
foralli=1,---,n.

Throughout this note, let H be an n-dimensional Hilbert space. We de-
note by M the algebra B(H) of linear operators on H so that M is isomorphic
to M, (C), i.e. the C*-algebra of n x n matrices over the complex field C. By
Tr we mean the standard trace of M such that Tr(e) = 1 for every minimal
projection e in M.
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Every positive linear functional ¢ on M is of the form ¢(z) = Tr(Dyz),
(x € M) for a unique positive element Dy € M which is called the density
operator or density matriz of ¢. If p is a state of M, then the density matrix
D, is a positive operator in M such that Tr(D,) = 1.

By using the eigenvalue list {\, - - - , Ap} of D,, the von Neumann entropy
S(p) and S(D,) for p and D, are defined by

S(p) = S(Dp) = 3_ N,

3 The von Neumann entropy and stochastic
averages

Our purpose of this note is to give a generalized version of Shannon’s inter-
pretation for entropy-preserving stochastic averages of probability vectors to
the framework of von Neumann entropy for states on M, (C).

In this section, we discuss the Shannon’s interpretation in the framwork
of the von Neumann entropy as follows:

Replace a probability vectors A to a state p of M,(C), a bistachastic
matrix b to a unital positive trace preserving map ® on M,(C), and the
Shannon entropy H(-) to the von Neumann S(-), then a permutation changes
into an automorphism a of M,(C), i.e.,, S(po ®) = S(p) if and only if
po ® = po a for some automorphism a.

3.1 The pair {p, ®} of state p and positive map Q.

Let p be a state of M,(C). We denote by D, the density matrix of p, i.e.,
D, is a positive operator in M, (C) which satisfies that

Tr(D,) =1 and p(z) = Tr(D,z) for all x € M,(C).

Let ® : M,(C) — M,(C) be a positive unital Tr preserving map. Then
®(D,) is a operator in M,(C) and Tr(®(D,)) = 1.

In order to see the state whose density matrix is ®(D,), we need the
system of the Hilbert-Schmidt inner product of M,(C): The inner product



and the norm are given by
<z,y>= Tr(y*z) and |[z(2 = (Tr(z*z))? for =,y € M,(C).

The *-preserving map ® induces the adjoint map ®* : M, (C) — M, (C)
with respect to this < -,- > by

Tr(y@*(z)) = Te(2(y)r) x,y € Ma(C). (3-1)

Since ® is positive, it follows that ®* is positive, and p o ®* is a state by
the property that Tr & = Tr.
The ®(D,) is the density matrix of this state p o ®* because

po®*(z) = TH(D,"(z)) = Tr(&(D,)2), (¢ € My(C)).

We let the set of eigenvalues of D, and ®(D,) be

A= (/\13"' a/\n) and u= (:u’l,"' 7/‘l’n)a (32)
respectively. Here we arrange them always in a decereasing order, i.e.,
M2X> 22X and pg>ps > (3.3)

We let {e1,--- ,e,} (resp. {p1," - ,p.}) be mutually orthogonal minimal
projections, which gives the spectral decomposition of D, (resp. ®(D,)):

D, = Z Aie; (resp. ®(D,) = Zujpj). (3.4)
i=1 j=1

We denote by A (resp. B) the maximal abelian subalgebra of M, (C)
which is generated by the projections {e1,--- ,e,} (resp. {p1,- - ,pn})-

3.1.1 The unitary () arising from the pair {p, ®}.

In these setting, a unitary u, ) appears and satisfies the following relation:

U(p,®) €i = Di U(p,®), forall = 1, R (4 (3.5)
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3.1.2 Bistochastic matrix b,(®) for the pair {p, }
Definition 3.1. We define a matrix b,(®) by the formula,
bo(®)i; = Tr(®(ei)p;), (1<i<n,1<j<n) (3.6)

Lemma 3.2. Let p be a state of M,(C), and let ® be a unital positive Tr-
preserving map on M,(C). Let A and p be the probability vectors of the
eigenvalues of D, and ®(D,) respectively. Then the followings hold:

(1) The b,(®) is a bistochastic matriz.

(2) The probability vector A € R™ is transposed to the probability vector
w € R™ by the matriz b,(®):

Aby(®) = pu.

Definition 3.3. For each j, we set
Ij = {i:b,(®)y; # O}

Lemma 3.4. Let p be a state of M,(C), and let ® be a unital positive Tr-
preserving map on M,(C). Assume that S(®(D,)) = S(D,). Then, for each
7, we have that

X=X forall i,kelj.

Under the assumption that S(®(D,)) = S(D,), we denote the constant
M\ for i € I; in the above Lemma by A). Remark that each I; is a non
empty set because b,(®) is a bistochastic matrix, and

Zielj As
|1

AW = =) forall keI,

Theorem 3.5. Let p be a state of M,(C) and let @ : M,(C) —» M,(C) be a
unital positive Tr-preserving map. Then the followings are equivalent:

(i) S(po @) = S(p), i.e. S(B(D,)) = S(D,).

(i) A = pb,(®)T, ie. A= Ab,(®)b,(®)T

where {}T denotes the transpose.

(iii) \s = p; foralli=1,--- n.

(iv) The unitary u(,e) satisfies that ®(D,) = u(p,e) Dp uf, g)-



Remark 3.6. If a state p is the normalized trace Tr/n, then the density
matrix is I,/n so that the all statements in the above theorem are trivial.

Remark 3.7. In the case of n = 2, if AbbT = )\ for a bistochastic matrix b,
then b is the nontrivial permutation.

In fact, let A = (A, A2). Every 2 x 2 bistochastic matrix b = (b;;) is
written as by = byy = by for some 0 < b; <1 and by = by = by =1 — by.
If \obT = A, then A\ = /\1(()% + bg) + 2A9b1by and Ag = )\g(b% + bg) + 2101 bs.
This implies that A1b1(2b; — 2) + b, (1 — b;) = 0. Hence if A\; =0 then b, =0
or by = 1, which means that b is permutation matrix. Assume that \; # 0.
We may omit the case by = 1 and so we assume b; # 1, Then \; = 1/2 or
by = 0. As we omit that ) is the trivial case so that b; = 0, i.e. b is the
non-trivial permutation.

Corollary 3.8. Assume that S(®(D,)) = S(p) holds for the pair {p, ®} of a
state p of M,,(C) and a unital positive Tr-preserving map ® on M,(C). Then

< ®(D,), ®(ex) >=< D,, e, > for all k.

A linear map ® on M, (C)is said to be 2-positive if ® ® id (the tensor
product of ® and the identity map on M3(C)) on M ® M;(C) is positive. It
is well known that if ® is 2-positive, then ®* is 2-positive and the so-called
Kadison-Schwartz inequality holds [2], (cf. [4, 5, 6]):

¢*(2*)®*(z) < ®*(z*z), (z € M).

Corollary 3.9. Let p be a state of M,(C), and let ® be a unital positive
Tr-preserving map on M,(C).

If ® is 2-positive, then the following conditions are equivalent:

() S(@(D,)) = S(D,)

(iv) ®(D,) = uD,ux* for some unitary u.

(v) ®*®(D,) = D,

Related results are obtained in [7] and [3].

Example 3.10. The conditional expectation conditioned by Tr/n is a most
typical example of unital completely posive (so that 2-positive) Tr-preserving
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linear map of M,(C). Let E be such a conditional expectation of A = M to
a C*-subalgebra B with 14, = 15. Then

S(E(D,)) =S(D,) ifandonlyif D,e€ B.

In fact, the conditional expectation F satisfies that E*F = E. By com-
bining this fact with Corollary 3.7, we have that S(E(D,)) = S(p) if and
only if D, = E*E(D,) = E(D,) which means that D, € B.

3.2 Relations among various entropies

The weighted entropy H*(b) and Hy(b) for a bistochastic matrix b = [b;;]
with respect to a probability vector A = (Ay,---, \,) are defined in [10] by
the following forms:

H(b) = Z)\ Zn(bjk and  Ha(b) =) M) n(bji)-
j=1 k=1 k=1  j=1

In the case where \; = 1/n for all 7, these are denoted by H(b) simply :

H(b) = ZZn(bu

1,—1 j=1

Definition 3.11. We let
I = {k; Ax # 0}.
Since ® is positive and Tr-preserving, each ®(e;) is a density matrix which
induces the state p; given by p;(z) = Tr(®(e;)z) for all z € M,(C).

Definition 3.12. Now we pick up the following constant S,(®) which is a
convex combination of the entropies {S(®(e;));i = 1,--- ,n} with respect to
the eigenvalues of the density matrix D,

_ Z XS (®(e;)) = Z XiS(ps).

The algebra B is a typical von Neumann subalgebra of the I,-factor
M, (C) and there exists always a positive linear map Ep from M,(C) onto
N such that aE(z)b = E(azb) for all £ € M and a,b € B which is called
conditional expectation of M, (C) onto B.



Lemma 3.13. Let Eg be the conditional expectation of M,,(C) onto B. Then
Eg(®(e;)) = Z bo(®)ijp; for each .
=1

so that

H*(5,(®)) = Y _ }S(En(2(e:))).

i=1

Theorem 3.14. Let p be a state of M,(C), and let ® be a unital positive
Tr-preserving map on M,(C).

Then the following relations hold for the weighted entropies of the bis-
tochastic matriz b,(®) with respect to the eigenvalue list A = (A, -+, An) of
D,, S,(®) and the eigenvalue list = (1, - , n) of ®(D,):

1)
SH(®) < H b,(®)) < S(po@*) < S(p) +5,(®).

(2) S,(®) = H*(b,(®)) if and only if ®(e;) € B for all i € Jy.
(3) HX(b,(®)) = S(p o ®*) if and only if
(,ula T a/"'n) = (bp(q))il, e abp(q))z'n) forall i€ Jy.
(4) S,(®) = S(po @*) if and only if ®(D,) = P(e;) for every i € Jy.
(5) S(po®*) =S(p)+ S,(P) if and only if the p is a pure state.

Remark 3.15. The above statement (3) says that H*(b,(®)) = S(®(D,))
if and only if b,(®) has the following form:

( 251 H2 ot Hn
t P2 ¢t P
b,(®) = I P o
bp(@)k1 bp(Prz - - - bp(P)in
| bp((p)nl bp(q))n2 o bp(q))nn A

Here k = |Jy| + 1 for the cardinality |J,| of Jj.
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Corollary 3.16. If \; # 0 for all i = 1,--- ,n and if ® satisfies that
HA(b,y(®)) = S(p o D*), then

1
Hi = bp(q))z] = —7‘; _f01" all ’L,] = ]., e ,n,

so that p o ®* is the normalized trace Tr/n and S(p o *) = logn.

Remark 3.17. (A connection with Hadamard matrix). A bistochastic
matrix b is said to be unistochastic if it is induced from some unitary matrix
u by that b;; = |u;;|* for all 4,5 = 1,--- ,n. A n X n unitary matrix u is
called a Hadamard matrizif |u; ;| =1/y/nfor all 4,5 =1,--- ,n.

The above corollary means that if D, has only non-zero eigenvalues, (i.e.,
A; # 0 for all ) and if H*(b,(®)) = S(®(D,)) then b,(®) is a unistochastic
matrix induced from a Hadamard matrix.

Example 3.18. Here, we give some examples.
(1) If p is a pure state, then the four kinds constants satisfy that

S(p) =0 and S,(®) = Hb,(®)) = S(po @)
for all positive unital Tr-preserving map .
(2) If ® is a *-isomorphism, then for all state p the followings hold:
S,() =0 and S(po8*) = S(&(D,)) = S(D,) = S(¢).

In fact, if ® ia a *-isomorphism, then ®(e) is a minimal projection for a
minimal projection e, so that S,(®) = >.©  A;S(®(e;)) = 0 and of course
S(Q(Dp)) = S(DP)'

(3) If ® is a unital positive Tr-preserving map to the center Cly, of
M, (C), then

S,(®) = H*(b,(®)) = S(po ®*) =logn for all state p.

In fact, for each i, put ®(e;) = o;1p for o; € C, then 1 = Tr(g;) =
Tr(®(e;)) = o4Tr(P(1m)) = ayn so that ®(e;) = 1p/n. This implies that
Sp(®) = >, MiS(1a/n) = Tr(n(1p/n)) = logn. Remember that in general
S,(®) < H*(b,(®)) < S(po ®*) < logn for all state p. Hence we have the
equality.
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