Operator Algebraic Shannon's Interpretation for Entropy-preserving Stochastic Averages

Marie Choda

Abstract

We study various relations of ρ and Φ from the view point of the von Neumann entropy. Here ρ and Φ are a state and a unital positive Tr-preserving linear map on the algebra $M_n(\mathbb{C})$ of $n \times n$ complex matrices respectively. For the state ρ and the new state $\rho \circ \Phi$ arising as the composition, we show among the others that these two states have the same value of the von Neumann entropy if and only if Φ behaves for ρ as some automorphism of $M_n(\mathbb{C})$.

1 Introduction

Shannon([8, p.395 4.]) denotes as the followings: If we perform any "averaging" operation on the $\{p_i\}_{i=1,\dots,n}$ of the form

$$p_i' = \sum_j a_{ij} p_j$$

(where $p_i \ge 0$, $\sum_i p_i = 1$ and $a_{ij} \ge 0$, $\sum_i a_{ij} = \sum_j a_{ij} = 1$), the entropy H increases (except in the special case where this transformation amounts to no more than a permutation of the p_i with H of course remaining the same).

This means the followings: The entropy $H(\lambda)$ of a probability vector $\lambda = (\lambda_1, \dots, \lambda_n)$ and the entropy $H(\lambda b)$ of the probability vector λb for a bistachastic matrix $b = [b_{ij}]$ are always in the relation that $H(\lambda) \leq H(\lambda b)$ and the two values are equal if and only if the bistochastic matrix b behaves just as a permutation σ , i.e. $\lambda b = (\lambda_{\sigma(1)}, \dots, \lambda_{\sigma(n)})$.

Replacing a probability vector $\lambda \in \mathbb{R}^n$ (resp. a bistachastic matrix b) to a state ρ of $M_n(\mathbb{C})$ (resp. a unital positive Tr-preserving linear map Φ on $M_n(\mathbb{C})$, we show, among the others, that the von Neumann entropy $S(\cdot)$ increases by performing any Φ on ρ (except in the special case where this transformation amounts to no more than an automorphism α of state ρ with $S(\cdot)$ of course remaining the same).

2 Notations, terminologies and basic facts

The main tool is the entropy function η defined on the interval [0, 1] by

 $\eta(t) = -t \log t \quad (0 < t \le 1) \quad \text{and} \quad \eta(0) = 0.$

The η is strictly concave, i.e. for two k-tuples of real numbers $\{s_i\}, \{t_i\}$ such that $s_i \geq 0, t_i > 0, \sum_{i=1}^k t_i = 1$, it holds that

$$\sum_{i=1}^k t_i \eta(s_i) \le \eta(\sum_{i=1}^k t_i s_i),$$

and the equality holds if and only if $s_i = s_j$ for all i, j.

Moreover, η is strictly operator-concave, i.e. the similar relations hold by replacing $\{s_i\}_i$ to any bounded self-adjoint operators $\{x_i\}_i$ with spectra in [0,1], i.e.

$$\sum_{i=1}^{k} t_i \eta(x_i) \le \eta(\sum_{i=1}^{k} t_i x_i)$$

and the equality implies that $x_i = x_j$ for all i, j. (see for example [4, B], [5, 6]).

Let $\lambda = (\lambda_1, \dots, \lambda_n)$ be a probability vector in \mathbb{R}^n , i.e. $\lambda_i \ge 0$ for all i and $\sum_i \lambda_i = 1$. The Shannon entropy $H(\lambda)$ for λ is given as

$$H(\lambda) = \eta(\lambda_1) + \cdots + \eta(\lambda_n).$$

It holds always that $H(\lambda) \leq \log n$ and $H(\lambda) = \log n$ if and only if $\lambda_i = 1/n$ for all $i = 1, \dots, n$.

Throughout this note, let H be an n-dimensional Hilbert space. We denote by M the algebra B(H) of linear operators on H so that M is isomorphic to $M_n(\mathbb{C})$, i.e. the C^* -algebra of $n \times n$ matrices over the complex field \mathbb{C} . By Tr we mean the standard trace of M such that $\operatorname{Tr}(e) = 1$ for every minimal projection e in M.

Every positive linear functional ϕ on M is of the form $\phi(x) = \text{Tr}(D_{\phi}x)$, $(x \in M)$ for a unique positive element $D_{\phi} \in M$ which is called the *density* operator or *density matrix* of ϕ . If ρ is a state of M, then the density matrix D_{ρ} is a positive operator in M such that $\text{Tr}(D_{\rho}) = 1$.

By using the eigenvalue list $\{\lambda_1, \dots, \lambda_n\}$ of D_{ρ} , the von Neumann entropy $S(\rho)$ and $S(D_{\rho})$ for ρ and D_{ρ} are defined by

$$S(\rho) = S(D_{\rho}) = \sum_{i=1}^{n} \eta(\lambda_i).$$

3 The von Neumann entropy and stochastic averages

Our purpose of this note is to give a generalized version of Shannon's interpretation for entropy-preserving stochastic averages of probability vectors to the framework of von Neumann entropy for states on $M_n(\mathbb{C})$.

In this section, we discuss the Shannon's interpretation in the framwork of the von Neumann entropy as follows:

Replace a probability vectors λ to a state ρ of $M_n(\mathbb{C})$, a bistachastic matrix b to a unital positive trace preserving map Φ on $M_n(\mathbb{C})$, and the Shannon entropy $H(\cdot)$ to the von Neumann $S(\cdot)$, then a permutation changes into an automorphism α of $M_n(\mathbb{C})$, i.e., $S(\rho \circ \Phi) = S(\rho)$ if and only if $\rho \circ \Phi = \rho \circ \alpha$ for some automorphism α .

3.1 The pair $\{\rho, \Phi\}$ of state ρ and positive map Φ .

Let ρ be a state of $M_n(\mathbb{C})$. We denote by D_{ρ} the density matrix of ρ , i.e., D_{ρ} is a positive operator in $M_n(\mathbb{C})$ which satisfies that

$$\operatorname{Tr}(D_{\rho}) = 1$$
 and $\rho(x) = \operatorname{Tr}(D_{\rho}x)$ for all $x \in M_n(\mathbb{C})$.

Let $\Phi: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ be a positive unital Tr preserving map. Then $\Phi(D_{\rho})$ is a operator in $M_n(\mathbb{C})$ and $\operatorname{Tr}(\Phi(D_{\rho})) = 1$.

In order to see the state whose density matrix is $\Phi(D_{\rho})$, we need the system of the Hilbert-Schmidt inner product of $M_n(\mathbb{C})$: The inner product

and the norm are given by

$$\langle x, y \rangle = \operatorname{Tr}(y^*x) \quad ext{and} \quad \|x\|_2 = (\operatorname{Tr}(x^*x))^{1/2} \quad ext{for} \quad x, y \in M_n(\mathbb{C}).$$

The *-preserving map Φ induces the adjoint map $\Phi^* : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ with respect to this $\langle \cdot, \cdot \rangle$ by

$$\operatorname{Tr}(y\Phi^*(x)) = \operatorname{Tr}(\Phi(y)x) \quad x, y \in M_n(\mathbb{C}).$$
(3.1)

Since Φ is positive, it follows that Φ^* is positive, and $\rho \circ \Phi^*$ is a state by the property that Tr $\Phi = \text{Tr.}$

The $\Phi(D_{\rho})$ is the density matrix of this state $\rho \circ \Phi^*$ because

$$\rho \circ \Phi^*(x) = \operatorname{Tr}(D_{\rho}\Phi^*(x)) = \operatorname{Tr}(\Phi(D_{\rho})x), \quad (x \in M_n(\mathbb{C})).$$

We let the set of eigenvalues of D_{ρ} and $\Phi(D_{\rho})$ be

$$\lambda = (\lambda_1, \cdots, \lambda_n) \text{ and } \mu = (\mu_1, \cdots, \mu_n),$$
 (3.2)

respectively. Here we arrange them always in a decereasing order, i.e.,

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \quad \text{and} \quad \mu_1 \ge \mu_2 \ge \cdots \ge \mu_n.$$
 (3.3)

We let $\{e_1, \dots, e_n\}$ (resp. $\{p_1, \dots, p_n\}$) be mutually orthogonal minimal projections, which gives the spectral decomposition of D_{ρ} (resp. $\Phi(D_{\rho})$):

$$D_{\rho} = \sum_{i=1}^{n} \lambda_i e_i$$
 (resp. $\Phi(D_{\rho}) = \sum_{j=1}^{n} \mu_j p_j$). (3.4)

We denote by A (resp. B) the maximal abelian subalgebra of $M_n(\mathbb{C})$ which is generated by the projections $\{e_1, \dots, e_n\}$ (resp. $\{p_1, \dots, p_n\}$).

3.1.1 The unitary $u_{(\rho,\Phi)}$ arising from the pair $\{\rho,\Phi\}$.

In these setting, a unitary $u_{(\rho,\Phi)}$ appears and satisfies the following relation:

$$u_{(\rho,\Phi)} e_i = p_i u_{(\rho,\Phi)}, \text{ for all } i = 1, \cdots, n$$
 (3.5)

3.1.2 Bistochastic matrix $b_{\rho}(\Phi)$ for the pair $\{\rho, \Phi\}$

Definition 3.1. We define a matrix $b_{\rho}(\Phi)$ by the formula

$$b_{\rho}(\Phi)_{ij} = \operatorname{Tr}(\Phi(e_i)p_j), \quad (1 \le i \le n, 1 \le j \le n).$$
(3.6)

Lemma 3.2. Let ρ be a state of $M_n(\mathbb{C})$, and let Φ be a unital positive Trpreserving map on $M_n(\mathbb{C})$. Let λ and μ be the probability vectors of the eigenvalues of D_{ρ} and $\Phi(D_{\rho})$ respectively. Then the followings hold:

(1) The $b_{\rho}(\Phi)$ is a bistochastic matrix.

(2) The probability vector $\lambda \in \mathbb{R}^n$ is transposed to the probability vector $\mu \in \mathbb{R}^n$ by the matrix $b_{\rho}(\Phi)$:

$$\lambda b_{\rho}(\Phi) = \mu.$$

Definition 3.3. For each j, we set

$$I_j = \{i : b_\rho(\Phi)_{ij} \neq 0\}.$$

Lemma 3.4. Let ρ be a state of $M_n(\mathbb{C})$, and let Φ be a unital positive Trpreserving map on $M_n(\mathbb{C})$. Assume that $S(\Phi(D_{\rho})) = S(D_{\rho})$. Then, for each j, we have that

$$\lambda_i = \lambda_k \quad for \ all \quad i, k \in I_j.$$

Under the assumption that $S(\Phi(D_{\rho})) = S(D_{\rho})$, we denote the constant λ_i for $i \in I_j$ in the above Lemma by $\lambda^{(j)}$. Remark that each I_j is a non empty set because $b_{\rho}(\Phi)$ is a bistochastic matrix, and

$$\lambda^{(j)} = rac{\sum_{i \in I_j} \lambda_i}{|I_j|} = \lambda_k \quad ext{for all} \quad k \in I_j.$$

Theorem 3.5. Let ρ be a state of $M_n(\mathbb{C})$ and let $\Phi : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ be a unital positive Tr-preserving map. Then the followings are equivalent:

(i) $S(\rho \circ \Phi^*) = S(\rho)$, *i.e.* $S(\Phi(D_{\rho})) = S(D_{\rho})$. (ii) $\lambda = \mu b_{\rho}(\Phi)^T$, *i.e.* $\lambda = \lambda b_{\rho}(\Phi) b_{\rho}(\Phi)^T$ where $\{\}^T$ denotes the transpose.

(iii) $\lambda_i = \mu_i$ for all $i = 1, \dots, n$.

(iv) The unitary $u_{(\rho,\Phi)}$ satisfies that $\Phi(D_{\rho}) = u_{(\rho,\Phi)} D_{\rho} u^*_{(\rho,\Phi)}$.

Remark 3.6. If a state ρ is the normalized trace Tr/n, then the density matrix is I_n/n so that the all statements in the above theorem are trivial.

Remark 3.7. In the case of n = 2, if $\lambda b b^T = \lambda$ for a bistochastic matrix b, then b is the nontrivial permutation.

In fact, let $\lambda = (\lambda_1, \lambda_2)$. Every 2×2 bistochastic matrix $b = (b_{ij})$ is written as $b_{11} = b_{22} = b_1$ for some $0 \leq b_1 \leq 1$ and $b_{12} = b_{21} = b_2 = 1 - b_1$. If $\lambda bb^T = \lambda$, then $\lambda_1 = \lambda_1(b_1^2 + b_2^2) + 2\lambda_2b_1b_2$ and $\lambda_2 = \lambda_2(b_1^2 + b_2^2) + 2\lambda_1b_1b_2$. This implies that $\lambda_1b_1(2b_1 - 2) + b_1(1 - b_1) = 0$. Hence if $\lambda_1 = 0$ then $b_1 = 0$ or $b_1 = 1$, which means that b is permutation matrix. Assume that $\lambda_1 \neq 0$. We may omit the case $b_1 = 1$ and so we assume $b_1 \neq 1$, Then $\lambda_1 = 1/2$ or $b_1 = 0$. As we omit that λ is the trivial case so that $b_1 = 0$, i.e. b is the non-trivial permutation.

Corollary 3.8. Assume that $S(\Phi(D_{\rho})) = S(\rho)$ holds for the pair $\{\rho, \Phi\}$ of a state ρ of $M_n(\mathbb{C})$ and a unital positive Tr-preserving map Φ on $M_n(\mathbb{C})$. Then

 $<\Phi(D_{\rho}), \Phi(e_k) > = < D_{\rho}, e_k > \text{ for all } k.$

A linear map Φ on $M_n(\mathbb{C})$ is said to be 2-positive if $\Phi \otimes id$ (the tensor product of Φ and the identity map on $M_2(\mathbb{C})$) on $M \otimes M_2(\mathbb{C})$ is positive. It is well known that if Φ is 2-positive, then Φ^* is 2-positive and the so-called Kadison-Schwartz inequality holds [2], (cf. [4, 5, 6]):

$$\Phi^*(x^*)\Phi^*(x) \le \Phi^*(x^*x), \quad (x \in M).$$

Corollary 3.9. Let ρ be a state of $M_n(\mathbb{C})$, and let Φ be a unital positive Tr-preserving map on $M_n(\mathbb{C})$.

If Φ is 2-positive, then the following conditions are equivalent: (i') $S(\Phi(D_{\rho})) = S(D_{\rho})$ (iv) $\Phi(D_{\rho}) = uD_{\rho}u*$ for some unitary u. (v) $\Phi^*\Phi(D_{\rho}) = D_{\rho}$

Related results are obtained in [7] and [3].

Example 3.10. The conditional expectation conditioned by Tr/n is a most typical example of unital completely posive (so that 2-positive) Tr-preserving

linear map of $M_n(\mathbb{C})$. Let E be such a conditional expectation of A = M to a C^* -subalgebra B with $1_A = 1_B$. Then

$$S(E(D_{\rho})) = S(D_{\rho})$$
 if and only if $D_{\rho} \in B$.

In fact, the conditional expectation E satisfies that $E^*E = E$. By combining this fact with Corollary 3.7, we have that $S(E(D_{\rho})) = S(\rho)$ if and only if $D_{\rho} = E^*E(D_{\rho}) = E(D_{\rho})$ which means that $D_{\rho} \in B$.

3.2 Relations among various entropies

The weighted entropy $H^{\lambda}(b)$ and $H_{\lambda}(b)$ for a bistochastic matrix $b = [b_{ij}]$ with respect to a probability vector $\lambda = (\lambda_1, \dots, \lambda_n)$ are defined in [10] by the following forms:

$$H^{\lambda}(b) = \sum_{j=1}^{n} \lambda_j \sum_{k=1}^{n} \eta(b_{jk}) \text{ and } H_{\lambda}(b) = \sum_{k=1}^{n} \lambda_k \sum_{j=1}^{n} \eta(b_{jk}).$$

In the case where $\lambda_i = 1/n$ for all *i*, these are denoted by H(b) simply :

$$H(b) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \eta(b_{ij}).$$

Definition 3.11. We let

$$J_{\lambda} = \{k; \lambda_k \neq 0\}.$$

Since Φ is positive and Tr-preserving, each $\Phi(e_i)$ is a density matrix which induces the state ρ_i given by $\rho_i(x) = \text{Tr}(\Phi(e_i)x)$ for all $x \in M_n(\mathbb{C})$.

Definition 3.12. Now we pick up the following constant $S_{\rho}(\Phi)$ which is a convex combination of the entropies $\{S(\Phi(e_i)); i = 1, \dots, n\}$ with respect to the eigenvalues of the density matrix D_{ρ} :

$$S_{\rho}(\Phi) = \sum_{i=1}^{n} \lambda_i S(\Phi(e_i)) = \sum_{i=1}^{n} \lambda_i S(\rho_i).$$

The algebra B is a typical von Neumann subalgebra of the I_n -factor $M_n(\mathbb{C})$ and there exists always a positive linear map E_B from $M_n(\mathbb{C})$ onto N such that aE(x)b = E(axb) for all $x \in M$ and $a, b \in B$ which is called conditional expectation of $M_n(\mathbb{C})$ onto B.

Lemma 3.13. Let E_B be the conditional expectation of $M_n(\mathbb{C})$ onto B. Then

$$E_B(\Phi(e_i)) = \sum_{j=1}^n b_\rho(\Phi)_{ij} p_j \quad for \ each \quad i.$$

so that

$$H^{\lambda}(b_{\rho}(\Phi)) = \sum_{i=1}^{n} \lambda_i S(E_B(\Phi(e_i))).$$

Theorem 3.14. Let ρ be a state of $M_n(\mathbb{C})$, and let Φ be a unital positive Tr-preserving map on $M_n(\mathbb{C})$.

Then the following relations hold for the weighted entropies of the bistochastic matrix $b_{\rho}(\Phi)$ with respect to the eigenvalue list $\lambda = (\lambda_1, \dots, \lambda_n)$ of D_{ρ} , $S_{\rho}(\Phi)$ and the eigenvalue list $\mu = (\mu_1, \dots, \mu_n)$ of $\Phi(D_{\rho})$: (1)

$$S_{\rho}(\Phi) \leq H^{\lambda}(b_{\rho}(\Phi)) \leq S(\rho \circ \Phi^*) \leq S(\rho) + S_{\rho}(\Phi).$$

Remark 3.15. The above statement (3) says that $H^{\lambda}(b_{\rho}(\Phi)) = S(\Phi(D_{\rho}))$ if and only if $b_{\rho}(\Phi)$ has the following form:

$$b_{\rho}(\Phi) = \begin{bmatrix} \mu_{1} & \mu_{2} & \cdots & \mu_{n} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{1} & \mu_{2} & \cdots & \vdots \\ \mu_{1} & \mu_{2} & \cdots & \ddots & \vdots \\ b_{\rho}(\Phi)_{k1} & b_{\rho}(\Phi)_{k2} & \cdots & b_{\rho}(\Phi)_{kn} \\ \vdots & \vdots & \vdots & \vdots \\ b_{\rho}(\Phi)_{n1} & b_{\rho}(\Phi)_{n2} & \cdots & b_{\rho}(\Phi)_{nn} \end{bmatrix}$$

Here $k = |J_{\lambda}| + 1$ for the cardinality $|J_{\lambda}|$ of J_{λ} .

Corollary 3.16. If $\lambda_i \neq 0$ for all $i = 1, \dots, n$ and if Φ satisfies that $H^{\lambda}(b_{\rho}(\Phi)) = S(\rho \circ \Phi^*)$, then

$$\mu_j = b_
ho(\Phi)_{ij} = rac{1}{n} \quad for \ all \quad i,j = 1, \cdots, n,$$

so that $\rho \circ \Phi^*$ is the normalized trace Tr/n and $S(\rho \circ \Phi^*) = \log n$.

Remark 3.17. (A connection with Hadamard matrix). A bistochastic matrix b is said to be *unistochastic* if it is induced from some unitary matrix u by that $b_{i,j} = |u_{i,j}|^2$ for all $i, j = 1, \dots, n$. A $n \times n$ unitary matrix u is called a *Hadamard matrix* if $|u_{i,j}| = 1/\sqrt{n}$ for all $i, j = 1, \dots, n$.

The above corollary means that if D_{ρ} has only non-zero eigenvalues, (i.e., $\lambda_i \neq 0$ for all *i*) and if $H^{\lambda}(b_{\rho}(\Phi)) = S(\Phi(D_{\rho}))$ then $b_{\rho}(\Phi)$ is a unistochastic matrix induced from a Hadamard matrix.

Example 3.18. Here, we give some examples.

(1) If ρ is a pure state, then the four kinds constants satisfy that

$$S(\rho) = 0$$
 and $S_{\rho}(\Phi) = H^{\lambda}(b_{\rho}(\Phi)) = S(\rho \circ \Phi^*)$

for all positive unital Tr-preserving map Φ .

(2) If Φ is a *-isomorphism, then for all state ρ the followings hold:

 $S_{\rho}(\Phi) = 0$ and $S(\rho \circ \Phi^*) = S(\Phi(D_{\rho})) = S(D_{\rho}) = S(\rho).$

In fact, if Φ is a *-isomorphism, then $\Phi(e)$ is a minimal projection for a minimal projection e, so that $S_{\rho}(\Phi) = \sum_{i=1}^{n} \lambda_i S(\Phi(e_i)) = 0$ and of course $S(\Phi(D_{\rho})) = S(D_{\rho})$.

(3) If Φ is a unital positive Tr-preserving map to the center $\mathbb{C}1_M$ of $M_n(\mathbb{C})$, then

$$S_
ho(\Phi) = H^\lambda(b_
ho(\Phi)) = S(
ho\circ\Phi^*) = \log n \quad ext{for all state }
ho.$$

In fact, for each *i*, put $\Phi(e_i) = \alpha_i \mathbb{1}_M$ for $\alpha_i \in \mathbb{C}$, then $\mathbb{1} = \text{Tr}(e_i) = \text{Tr}(\Phi(e_i)) = \alpha_i \text{Tr}(\Phi(\mathbb{1}_M)) = \alpha_i n$ so that $\Phi(e_i) = \mathbb{1}_M/n$. This implies that $S_{\rho}(\Phi) = \sum_i \lambda_i S(\mathbb{1}_M/n) = \text{Tr}(\eta(\mathbb{1}_M/n)) = \log n$. Remember that in general $S_{\rho}(\Phi) \leq H^{\lambda}(b_{\rho}(\Phi)) \leq S(\rho \circ \Phi^*) \leq \log n$ for all state ρ . Hence we have the equality.

References

- [1] M. Choda, Operator Algebraic Shannon's Interpretation for Entropypreserving Stochastic Averages, Preprint
- [2] M. D. Choi, A Schwartz inequality for positive linear maps on C^{*}algebras, Ill. J. Math., 18(1974), 565–574.
- [3] F. Hiai, M. Mosonyi, D. Petz and C. Beny, Quantum f-divergence and error correction, Rep. Math. Phys. 23(2011), 691-747.
- [4] S. Neshveyev and E. Størmer, *Dynamical entropy in operator algebras*, Springer-Verlag, Berlin (2006).
- [5] M. Ohya and D. Petz, *Quantum entropy and its use*, Texts and Monographs in Physics. Springer-Verlag, Berlin (1993).
- [6] D. Petz, Quantum Information Theory and Quantum Statistics, Theoretical and Mathematical Physics, Springer, Berlin Heidelberg (2008).
- [7] A. B. Poritz and J. A. Poritz, On entropy-preserving stochastic averages, Linear Algebra and its Applications **434** (2011), 1425–1442.
- [8] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech., 27(1948), 379-423.
- [9] E. Størmer, *Positive linear maps of operator algebras*, Springer SMM Berline Heidelberg (2013).
- [10] K. Zyczkowski, M. Kuś, W. Słomczyński and H.-J. Sommers, Random unistochastic matrices, J. Phys., A36 (2003), 3425–3450.

Osaka Kyoiku University Asahigaoka, Kashiwara 582-8582 JAPAN marie@cc.osaka-kyoiku.ac.jp