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Abstract: This paper describes investigations on a representation of piecewise linear functions, called
the linear complementarity representation (the LCR for short). Especially, the paper focuses on the P-
representation and the ULT-representation, which are special types of the LCR, and explains their proper-

ties. Moreover, the paper discusses the minimization problem of the LCR, and explains investigations on
this issue.

1 Introduction

Piecewise linear function plays an $imp_{ortar1}t$ role as an approxirnation function in many fields

such as nonlinear circuit [3, 6], nonlinear controll [5], mathematical programming [1], and many

other engineering applications, for the reason of possessing an ability of uniformly approximating

a continuous function defined on a compact domain arld a property of linearity on a neighborhood

of almost every point in the domain. However, it also presents some problems in practical use: im-

proving an approximation in accuracy causes the exponential increase of the number of parameters;

it is not so easy to treat the expression of piecewise linear function based on its definition (e.g., [3]).

Therefore, much research has been done in an effort to develop new efficient representation [6].

This paper report our prese1lt research findings on the linear comple1nentarity representation.

In Section 2, we explain the definition of piecewise linear furiction. In Section 3, we introduce

the linear complementarity representation and its special types, called the $P$-representation and

the ULT-representation, and describe their properties as well as the construction method of a

ULT-representation for a given piecewise linear function. In Sections 4 and 5, we formulate the

minimization problem on the linear complementarity representation, and explain our research

findings on this issue [8].

Throughout this paper, $m$ and $n$ indicate positive integers. For a positive integer $l$ , the set

of integers from 1 to $l$ is denoted by $[l]$ , i.e., $[l]=\{1, 2, . . . , l\}$ . The inner product of two vectors

$x,$ $y\in \mathbb{R}^{n}$ is denoted by $\langle x,$ $y\rangle$ . “Linear should be read as $\mathfrak{N}ne$ linear”’ in $tI_{1}is$ paper. A convex
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set $R\subset \mathbb{R}^{n}$ is called a polyhedron if it can be represented as the intersection of finitely many

closed half-spaces in $\mathbb{R}^{n}$ . By definition, $\emptyset$ and $\mathbb{R}^{n}$ are polyhedra.

2 Piecewise linear function

Definition 2.1. [9] A finite farmly $\mathcal{R}$ of polyhedra in $\mathbb{R}^{n}$ is called a polyhderal partition of $\mathbb{R}^{n}$ if

it satisfies the following conditions:

$(i)\cup \mathcal{R}=\mathbb{R}^{n}$ ;

(ii) int $P\neq\emptyset$ for all $P\in \mathcal{R}$ ;

(iii) For each $P,$ $Q\in \mathcal{R},$ $P\neq Q$ implies int $P\cap intQ=\emptyset,$

where “int” denotes the topological interior of a set.

Definition 2.2. [7, 9] A function $f$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m}$ is said to be piecewise linear if it is continuous on

$\mathbb{R}^{n}$ and there exists a polyhedral partition $\mathcal{R}$ of $\mathbb{R}^{n}$ such that $f$ is linear on each region $R\in \mathcal{R}.$

A linear function $g$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m}$ which coincides with $f$ on some $R\in \mathcal{R}$ is said to be a hnear

component of $f$ . We denote by PWL the family of all piecewise linear functions.

3 The linear complementarity representation

3.1 Definition

Definition 3.1. [6] A correspondence $f$ from $x\in \mathbb{R}^{n}$ to $y\in \mathbb{R}^{m}$ is called a linear complementarity

correspondence, an LCC for short, if there exist a nonnegative integer $k$ , matrices $A\in \mathbb{R}^{m\cross n},$

$B\in \mathbb{R}^{m\cross k},$ $C\in \mathbb{R}^{k\cross n}$ , and $D\in \mathbb{R}^{k\cross k}$ , and vectors $g\in \mathbb{R}^{m}$ and $h\in \mathbb{R}^{k}$ such that

$y=Ax+Bu+g$, (1)

$j=Cx+Du+h$, (2)

$u,j\geq 0, \langle u,j\rangle=0$ . (3)

The vectors $u$ and $j$ satisfying the equation (3) are called complementarity vectors, and the equa-

tions (1)$-(3)$ are collectively called a linear complementarity representation. By convention, we

abbreviate the representation (1)$-(3)$ as $(A, B, g;C, D, h)$ .

Remark 3.1. Every linear function $Ax+g$ has a representation $(A, O, g;0,1,0)$ , where $A\in \mathbb{R}^{m\cross n}$

and $g\in \mathbb{R}^{m}$ . By convention for the discussion of this paper, we assume that each linear function

has a zero-dimensional representation $(A;g)$ instead of the above one-dimensional representation

$(A, O, g;0,1,0)$ . See Definition 4.1 in Subsection 4.2, for the definition of the dirnension of a

representation.
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Remark 3.2. Calculation of a correspondence value $y$ for each $x$ is reduced to solving the hnear

complementarity problem (LCP for short) of the form $(D, q(x))$ , where $q(x)=Cx+h$. This

problem is called the derived LCP from the triplet $(C, D, h)$ . See Definition A.l in Appendix $A,$

for the definition of the LCP.

3.2 $P$-representation and ULT-representation

Definition 3.2. [2, 6] (a) $P$-representation is a linear complementarity representation whose coeffi-

cient $D$ in (2) is a $P$-matrix (see Definition $A.2.(i)$ ). The farnily of LCCs having a $P$-representation

is called Class $P$, and denoted by P.

(b) $ULT$-representation is a linear complementarity representation whose coefficient $D$ in (2) is a

ULT-matrix (see Definition A.2.(ii)). The family of LCCs having a ULT-representation is called

Class $ULT$, and denoted by ULT.

Remark 3.3. By the definitions of $P$-matrix and ULT-matrix that $P\supset$ ULT holds. Though an

LCC is, in general, a multi-valued function, Proposition A. 1 in Appendix A states that every LCC

in $P$ becomes a single-valued function. As mentioned in Remark 3.1 that every linear function

has a representation $(A, O, g;O, 1,0)$ . This is, in fact, a ULT-representation. Thus, every linear

function belongs to both $P$ and ULT.

The next theorem, Theorem 3.1, indicates that ULT is closed under the operations of $\max$ and

$\min$ compositions, and direct sum. In addition to this, the closedness is also true for the operations

of composition and hnear combination [9]. This theorem yields an operation formulae between two

representations, and moreover, plays an important role in the construction of a ULT-representation

for a given piecewise linear function. This theorem is also true for P.

Theorem 3.1. [9] (i) If a function $f$ : $\mathbb{R}^{n}arrow \mathbb{R}$ has a ULT-representation, say $(A, B,g;C, D, h)$ ,

and a function $f’$ : $\mathbb{R}^{n}arrow \mathbb{R}$ has a ULT-representation, say $(A’,$ $B’,$ $g’;C’,$ $D’,$ $h$ then their $\max$

$f\vee f’$ and $\min f\wedge f’$ have the ULT-representations:

$f\vee f’$ : $(A’, (O B’ 1)$ , $g’;(\begin{array}{l}CC’A’-A\end{array}),$ $(\begin{array}{lll}D O OO D’ O-B B 1\end{array}),$ $(\begin{array}{l}hh’g’-g\end{array}))$ ,

$f\wedge f’$ : $(A, (B 0 -1),$ $g;(\begin{array}{l}CC’A’-A\end{array}),$ $(\begin{array}{lll}D O OO D’ 0-B B 1\end{array}),$ $(\begin{array}{l}hh’g’-g\end{array}))$ .

(ii) If a function $f$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m}$ has a ULT-representation, say $(A, B,g;C, D, h)$ , and a function

$f’$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m’}$ has a ULT-representation, say $(A’,$ $B’,$ $g’;C’,$ $D’,$ $h$ then their direct sum $f”=$

$f\oplus f’$ : $\mathbb{R}^{n}arrow \mathbb{R}^{m+m’}$ has the ULT-representation:

$((\begin{array}{l}AA\end{array}), (\begin{array}{ll}B OO B\end{array}), (\begin{array}{l}9g\end{array});(\begin{array}{l}CC\end{array}), (\begin{array}{ll}D OO D\end{array}), (\begin{array}{l}hh\end{array}))$ .
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The next theorem states that $P$-representation and ULT-representation, individually, charac-

terize all piecewise linear functions.

Theorem 3.2. [9] The family of all piecewise hnear functions coinsides with Classes $P$ and ULT,

that is, ULT $=P=PWL.$

3.3 Construction of a ULT-representation

By the following procedure, a ULT-representation of each scalar-valued piecewise linear function

can be obtained by means of Theorem 3.1 and the below mentioned Theorem 3.3:

(i) Construct a max-min polynomial for a given piecewise linear function;

(ii) Transform each $\max$ and $\min$ operators to a ULT-representation by means of Theorem 3.1.(i),

in recursively.

Theorem 3.3. [7] Every piecewise linear function $f$ : $\mathbb{R}^{n}arrow \mathbb{R}$ has a formula $f= \fbox{Error::0x0000}\bigwedge_{i\in S_{j}}g_{i},$

where $\{g_{i}\}_{i\in I}$ is the finite family of all linear components of $f,$ $S_{j}$ is a subset of $I$ , and $J$ is a finite

index set. This formular is called a max-min polynomial in the variables $g_{i}.$

Remark 3.4. Theorem 3.3 is also valid for the vector-valued piecewise linear function [7]. There-

fore, by using also Theorem 3.1.(ii), we can construct a ULT-representation for every vector-valued

piecewise linear function.

Example 3.1. Consider the function $f:\mathbb{R}^{2}arrow \mathbb{R}$ as defined in Figure 1.

Figure 1: Two-variable piecewise linear function $f$

(i) The first step is the construction of a $\max$-r1lin polynomial of $f$ . The procedure consists of

the identifications of $J$ and $\{S_{j}\}_{j\in J}$ in Theorem 3.3. The identification of $J$ corresponds to the

polyhedral partition of the domain. Partitioning of the domain is carried out at the place where $f$
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becomes concave (see Figure 1). In this case, $P_{1}\cup P_{4}$ corresponds to $j=1$ , and $P_{2}\cup P_{3}$ corresponds

to $j=2$ . Next, we determine $S_{j}.$ $S_{j}$ is the index set of linear component whose value is greater

than or equal to $f$ on a corresponding region. On $P_{1}\cup P_{4},$ $g_{1}$ and $g_{4}$ are satisfied, and on $P_{2}\cup P_{3},$

$g_{2}$ and $g_{3}$ are satisfied. Thus, we have $S_{1}=\{1$ , 4 $\},$ $S_{2}=\{2$ , 3 $\}$ , and hence, we obtain the formula

$f=(g_{1}\wedge g_{4})\vee(g_{2}\wedge g_{3})$ .

(ii) The second step is the transformation to a ULT-representation. We begin with zero-

dimensional ULT-representations of linear components of $f$ , and transform each $\max$ and $\min$

operations to ULT-representations. Since $g_{1}$ and $g_{4}$ have ULT-representations $((1 -1);0)$ and

((1 O); O), respectively (see Remark 3.1), a ULT-representation of $g_{1}\wedge g_{4}$ is obtained as follows:

$((1 -1), -1,0;(0 1), 1,0)$ .

Similarly, we have a ULT-representation of $g_{2}\wedge g_{3}$ as:

$((-1 -1), -1,0;(0 2), 1,0)$ .

Therefore, we obtain a ULT-representation $S=(A, B,g;C, D, h)$ of $f=(g_{1}\wedge g_{4})\vee(g_{2}\wedge g_{3})$ as

follows:

$A= (-1 -1) , B=(0 -1 1) , g=0,$

$C=(\begin{array}{ll}0 10 2-2 0\end{array}), D=(\begin{array}{lll}1 0 00 1 01 -1 1\end{array}), h=(\begin{array}{l}000\end{array})$

4 Minimization of the linear complementarity representation

4.1 Problem institution

Consider again the ULT-representation $S$ obtained in Example 3.1. Then, we can easily verify

the existence of the relation $u_{2}(x, y)=2u_{1}(x, y)(\forall(x, y)\in \mathbb{R}^{2})$ between $u_{1}$ and $u_{2}$ with a simple

calculation. Thus, by eliminating the component $u_{2}$ , the representation $S$ results in the following

representation $(A,$ $B’,$ $g;C’,$ $D’,$ $h$

$A= (-1 -1) , B’=(-2 1) , 9=0,$

$C’=(\begin{array}{ll}0 1-2 0\end{array}), D’=(\begin{array}{ll}1 0-1 1\end{array}), h’=(\begin{array}{l}00\end{array}).$

As in this case, the resulting representation, in generally, involves some redundancies. In practi-

cally, it is desirable that the obtained representation does not contain any redundancies. Then,

how can we verify a given representation to be a minimum representation? In Subsection 4.2, we

formulate the minimization of the representation in rigorously, and in Section 5, we will discuss it.
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4.2 Problem formulation

Let $m$ and $n$ be arbitrary positive integers. For a positive integer $k$ , we define the families of

triplets $A^{k}$ and $\mathbb{C}^{k}$ as follows:

$\mathbb{A}^{k}=\{(A, B,g)|A\in \mathbb{R}^{m\cross n}, B\in \mathbb{R}^{m\crossk}, g\in \mathbb{R}^{m}\},$

$\mathbb{C}^{k}=\{(C, D, h)|C\in \mathbb{R}^{k\cross n}, D\in \mathbb{R}^{k\cross k}, h\in \mathbb{R}^{k}\}.$

The family of all linear complementarity representations with $k$-dimensional complementarity vec-

tors is denoted by $\mathbb{S}^{k}=\Delta \mathbb{A}^{k}\cross \mathbb{C}^{k}$ . By convention, we denote by $\mathbb{S}^{0}=\{(A, g)|A\in \mathbb{R}^{m\cross n}, g\in \mathbb{R}^{rn}\}$

the family of all representations of linear functions. Then, $\mathbb{S}=\Delta\bigcup_{k\geq 0}\mathbb{S}^{k}$ expresses the family of all

linear complementarity representations. Similarly, when we denote by $\mathbb{S}_{ULT}^{k}$ the family of all ULT-

representations with the $k$-dimensional complementarity vectors, $\mathbb{S}_{ULT}=\bigcup_{k\geq 0}\mathbb{S}_{ULT}^{k}$ expresses the

family of all ULT-representations. Note that $\mathbb{S}_{ULT}^{0}=\mathbb{S}^{0}$ . The “dimension” of a representation is

defined as follows.

Definition 4.1. Let $S\in \mathbb{S}$ be given, and let $k$ be a nonnegative integer. We say $S$ is $k$-dimensional

if $\mathcal{S}\in \mathbb{S}^{k}$ , denoted by $\dim(\mathcal{S})$ .

Let $f$ be an LCC. Then we denote by $\mathbb{S}(f)$ the family of all representations that characterize

$f$ . Similarly, we denote by $\mathbb{S}_{ULT}(f)$ the family of all ULT-representations of $f$ . The minimization

problem is formulated in the following.

Definition 4.2. Let $S\in \mathbb{S}(f)$ . Then $S$ is called a minimum dimensional representation (a mini-

mum representation for short) of $f$ if $\dim(S)\leq\dim(\mathcal{T})$ for all $\mathcal{T}\in \mathbb{S}(f)$ .

Problem 4.1. The minimization problem with respect to $f$ consists of the following two require-

ments: For a given representation $S\in \mathbb{S}(f)$ ,

(a) verify whether or not $S$ is a minimum representation of $f$ ;

(b) find a minimum representation of $f$ , when $S$ is not minimum.

In the same manner, we can define the concept of minimum dimensional ULT-representation,

and formulate the ULT-minimization problem: similarly, we can also formulate the $P$-minimization

problem.

Definition 4.3. Let $S\in \mathbb{S}_{ULT}(f)$ . Then $\mathcal{S}$ is called a minimum dimensional $ULT$-representation

(a minimum ULT-representation for short) of $f$ if $\dim(S)\leq\dim(\mathcal{T})$ for all $\mathcal{T}\in \mathbb{S}_{ULT}(f)$ .

Problem 4.2. The $ULT$-minimization problem with respect to $f$ consists of the following two

requirements: For a given representation $S\in \mathbb{S}_{ULT}(f)$ ,
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(a) verify whether or not $S$ is a minimum ULT-representation of $f$ ;

(b) find a minimum ULT-representation of $f$ , when $S$ is not minimum.

5 Considerations on the minimum dimensionality

In this section, we will discuss how we verify the minimal dimensionality for a given representation.

The key to our approach is that finding a minimum representation will be achieved by eliminating

all redundancies of a given representation. In our present research, we have considered the ULT-

representation only.

5.1 Redundancies of the complementatity vectors

We begin with the following three examples to discuss the reducibility. Each examples demonstrate

different type of redundancies from one another.

Example 5.1. Let $S_{1}=(A_{1}, B_{1}, g_{1};C_{1}, D_{1}, h_{1})$ be the ULT-representation given by the following:

$A_{1}=(1$ 1 $)$ , $B_{1}=$ (0101), $g_{1}=0,$ $C_{1}=(\begin{array}{l}-3-6-4-848612\end{array}),$ $D_{1}=(\begin{array}{llll}1 0 0 01 1 0 00 0 1 00 0 1 1\end{array}),$ $h_{1}=(\begin{array}{l}0000\end{array}).$

Then, we can easily verify that there exist the following relations among the components of the

complementarity vectors $u_{i}(x)(i=1,2,3,4)$ :

$u_{1}(x)=3u_{2}(x) , u_{3}(x)=2u_{4}(x) , u_{4}(x)=-2x_{1}-4x_{2}+2u_{2}(x)$ .

This would imply that the valiables $u_{1}(x)$ , $u_{3}(x)$ , and $u_{4}(x)$ are omitted from $S_{1}$ . Indeed, we

can omit them from $\mathcal{S}_{1}$ , and hence we find that $S_{1}$ reduces to the following ULT-representation

S\’i $=$ $(A_{1}’, B_{1}’,g_{1}’; C\’{i}, D_{1}’, h_{1}’)$ :

$A_{1}’= (-1 -3) , B_{1}’=3, g_{1}’=0, C_{1}’=(1 2 ) , Di=1, h_{1}’=0.$

Example 5.2. Let $S_{2}=(A_{2}, B_{2}, g_{2};C_{2}, D_{2}, h_{2})$ be the ULT-representation given by the following:

$A_{2}=(1 1 ) , B_{2}=(0 1 ) , 92=0, C_{2}=(\begin{array}{ll}1 22 1\end{array}) , D_{2}=(\begin{array}{ll}1 00 1\end{array}) , h_{2}=(\begin{array}{l}00\end{array}).$

Then, in this case, there is no relation between $u_{1}(x)$ and $u_{2}(x)$ as in Example 5.1. However, since

the variable $u_{2}(x)$ is independently obtained from $u_{1}(x)$ and the variable $u_{1}(x)$ is vanished from

the first formula of the original representation, we can onnt $u_{1}(x)$ from $S_{2}$ . Thus $S_{2}$ reduces to

the following one-dimensional ULT-representation $S_{2}’=$ $(A_{2}’, B_{2}’,g_{2}’; C_{2}’, D_{2}’, h_{2}’)$ :

$A_{2}’=(1 1 ) , B_{2}’=1, g_{2}’=0, C_{2}’=(2 1 ) , D_{2}’=1, h_{2}’=0.$
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Example 5.3. Let $\mathcal{S}_{3}=(\mathcal{A}_{3},C_{3})\in \mathbb{S}_{ULT}^{k}$ be given. Suppose there exist a positive integer $k’<k,$

a triplet $C_{3}’\in \mathbb{C}_{ULT}^{k’}$ , and a matrix $E\in \mathbb{R}^{k\cross k’}$ such that the solution $u(x)$ to the derived LCP from

$C_{3}$ can be expressed as $u(x)=Eu’(x)$ , where $u’(x)$ is the solution to the derived LCP from $C$‘.

Then $S_{3}$ reduces to the ULT-representation $S_{3}’=(\mathcal{A}_{3}’,C_{3}’)\in \mathbb{S}_{ULT}^{k’}$ , where $\mathcal{A}_{3}’=(A_{3}, B_{3}E, g_{3})$ for

$\mathcal{A}_{3}=(A_{3}, B_{3},g_{3})$ .

As demonstrated above, there exist at least three types of redundancies of the complementarity

vectors: (i) dependency among the components of the complementarity vectors (Ex.5.1), (ii) the

erasability of the components of the complementarity vectors from the first formula caused by some

columns of $B$ being zero (Ex.5.2), (iii) representability of the original complementarity vectors by

means of some lower-dimensional representation (Ex.5.3). Clearly, the minimum dimensionality

requires the absence of redundancies of the complementarity vectors. We therefore conclude that

the problem of finding a minimum dimensional representation results in the problem of eliminating

redundant components of the complementarity vectors. We conjecture that the redundancies would

be covered by the above mentioned three types. However, it has not been proven yet. This is a

future work. So far, we have investigated the redundancies of (i) and (iii), and found that the

redundancy of (i) is equivalent to the generalization of (iii), called the ULT-reducibility. In the

next subsection, we will explain about this investigation.

5.2 ULT-reducibility

Firstly, we define the ULT-reducibility that is a generalization of the redundancy (iii).

Definition 5.1. Two representations $S,$ $\mathcal{T}\in \mathbb{S}$ are said to be equivalent to each other, denoted by

$S\cong \mathcal{T}$, if there exists an LCC $f$ such that $S,$ $\mathcal{T}\in \mathbb{S}(f)$ .

Definition 5.2. Let $\mathcal{C}\in \mathbb{C}_{ULT}^{k}$ . Then $C$ is said to be $ULT$-reducible if there exist a nonnegative

integer $k’<k$ , and a triplet $C’\in \mathbb{C}_{ULT}^{k’}$ such that every representation that contains $C$ is equivarlent

to a ULT-representation that contains $C’$ [i.e., for every $\mathcal{A}\in \mathbb{A}^{k}$ , there exists $\mathcal{A}’\in \mathbb{A}^{k’}$ such that

$(\mathcal{A},C)\cong(\mathcal{A}’, C’)]$ . If not, it is said to be $ULT$-irreducible.

$C_{3}$ in Example 5.3 is ULT-reducible. Moreover, by Theorem 5.1 below, $C_{1}$ in Example 5.1 is

also ULT-reducible. On the other hand, $C_{2}$ in Example 5.2 is ULT-irreducible.

Proposition 5.1 is an irnmediate concequence of Definition 4.3 and Definition 5.2. This implies

that ULT-irreducibility of $C$ is necessary for a given representation to be minimum dimensional.

Exarnple 5.2 is a counterexarnple for the sufficiency.

Proposition 5.1. If $S=(\mathcal{A}, C)\in \mathbb{S}_{ULT}(f)$ is a minimum dimensional representation of $f$ , then

$C$ is $ULT$-irreducible.
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The following Theorem 5.1 shows that the redundancy of (i) and ULT-reducibility of $C$ is

equivalent. The condition (S) in Theorem 5.1 expresses a dependency among the components of

the complementarity vectors.

Theorem 5.1. Let $k$ be a positive integer. Then $C\in \mathbb{C}_{ULT}^{k}$ is $ULT$-reducible if and only if the

solution $u(x)$ to the derived $LCP$ from $C$ satisfies the following condition:

(S) For some $p=1$ , 2, . . . , $k$ , there esist $\{\lambda_{i}\}_{i<p}\subset \mathbb{R}$ and a linear function $l_{r}:\mathbb{R}^{n}arrow \mathbb{R}$ such that

$u_{p}(x)= \sum_{i<p}\lambda_{i}u_{i}(x)+l_{p}(x) (\forall x\in \mathbb{R}^{n})$
.

6 Conclusion

In this paper, we introduced the linear complementarity representation of piecewise hnear function

and its special types, called the $P$-representation and the ULT-representation, and explained their

fundamental properties as well as the construction method of a ULT-representation for a given

piecewise linear function. Moreover, we formulated the minimization problem concerning to the

linear complementarity representation, and mentioned our investigation obtained so far on this

issue. It is a future work to clarify the relation between the minimum dimensionality and the

redundancies discussed in Subsection 5.1.

A The linear complementarity problem

Let $k$ be a positive integer, and let a matrix $D\in \mathbb{R}^{k\cross k}$ and a vector $q\in \mathbb{R}^{k}$ be given.

Definition A. 1. [4] The linear complementarity problem, LCP for short, is to find a pair of vectors

$u,j\in \mathbb{R}^{k}$ such that

$j=Du+q$, (4)

$u,j\geq 0, \langle u,j\rangle=0$ (5)

or to show that no such pair exists. We denote the above problem by the pair $(D, q)$ . A pair $(u,j)$

satisfying (5) is said to be complementary, and the one satisfying (4) and (5) is called a solution

to the LCP $(D, q)$ .

Definition A.2. (i) [4] $P$-matrix is a square matrix whose principal minors are all positive.

(ii) [6] Unit lower triangular matrix, ULT-matrix for short, is a lower triangular matrix whose

diagonal elements are all one’s.
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A principal minor is the determinant of a principal sub-matrix of $D$ . A principal sub-matrix

is defined as $(d_{ij})_{i,j\in I}$ , where $\emptyset\neq I\subset[k]$ , for the original matrix $D=(d_{ij})_{i,j\in[k]}$ . By definition,

every ULT-matrix is a $P$-matrix.

In general, the LCP does not necessarily have a solution. Even if it has a solution, generally it

is not necessarily unique. However, Proposition A.1 below claims that a $P$-matrix guarantees the

uniqueness of solution.

Proposition A.1. [4] A matrix $D\in \mathbb{R}^{k\cross k}$ is a $P$-matrix if and only if the LCP $(D, q)$ has a unique

solution for every $q\in \mathbb{R}^{k}.$
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