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On the computation of Siegel modular forms
of degree 2 with Sage

Sho Takemori

Abstract

In this paper, we introduce a package of Sage [9] for the calculation
of Siegel modular forms of degree 2.

1 Introduction

Sage [9] is a free and open software for various areas of mathematics. With
Sage, we can compute many number theoretical objects including modular
forms of one variable i.e. elliptic modular forms. But we cannot compute
modular forms of several variables such as Siegel modular forms with built-in
functions of Sage. The author wrote a package [10] for Siegel modular forms
of degree two. In this paper, we introduce the package by computing Hecke

eigenforms. This paper does not contain any new mathematical results.

2 Definitions

In this section, we recall the definition and related topics of Siegel modular

forms.

2.1 Definition of Siegel modular forms of degree n

Let n be a positive integer and define the Siegel modular group of degree n

by
T, := {g € GLo,(Z) ‘ fqwng = wn} .
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On —1n

Here w,, = (1n 0,

space 9, by

). Note that I'y = SLy(Z). Define Siegel upper half

N, = {Z =X+1iY } X, Y € Sym,,(R), Y is positive deﬁnite}.

For a non-negative integer k, let My (T',)) the the set of holomorphic functions
F on $,, satisfying the following condition:

F((AZ + B)(CZ + D)™") = det(CZ + D)*F(Z), ¥ (é g) €T,.

If n = 1, we add the cusp condition. We call an element of My (I',) a Siegel
modular form of degree n and weight k (and level 1). If n = 1, My(I,) is
equal to the space of elliptic modular forms of weight k. It is known that
My (T;,) is a finite dimensional vector space over C.

2.2 Fourier expansion of Siegel modular forms of de-
gree two

Let F € M (I'3) be a Siegel modular form of degree 2. We put Z = (: :)) €
$)2. Then F has the following Fourier expansion:
F ((T z)) = > a((n,r,m), Fe(nt + rz + mw),

z w n,r, mMEZ
n, m, dnm—r2>0

where e(z) = e(2wiz) for z € C. With the notation above, we define the
Siegel operator ® : My (I's) = My () by
®(F) := > a((n,0,0), F)e(nz).
n=0

We define the space of cusp forms Si(I'y) of degree 2 by

Sk(r2) = ker ® g Mm(Fg)
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2.3 Hecke polynomials

Let n =1 or 2. For m € Zx, let T(m) € Endc (M (T,)) the mth Hecke
operator. We omit the definition of 7(m). See [2] for the definition. For a
prime p and F' € My(T',), define a polynomial Q‘,S,”)(F; X) as follows.

1. If n =1, then we define
QW(F; X)=1-Ap)X +p' X2

2. If n = 2, then we define

QP(F; X)=1-ApX
+ (A0)* = A7) — P71 X2 = M@K 4 o

Remark 1. Q" (F;p~)~! is the Euler factor of spinor L-function of F.

3 Structure theorem for the ring of Siegel
modular forms of degree 2

In this section, we recall the structure theorem for the ring of Siegel modular
forms of degree 2 proved by Igusa [4]. The structure theorem and the explicit
formula for Siegel Eisenstein series of degree 2 enable us to compute Siegel

modular forms of degree 2 explicitly.
Let '
M(Ty) = € Mi(T2)

k‘GZZO
be the ring of Siegel modular forms of degree 2. Put
z10 = B4k — E,
T1y = 3% - T°E} 4+ 2-53E2 — 691F),,
where Ej is the Siegel-Eisenstein series of degree 2 and weight k. Then x4

and x are Siegel cusp forms of weight 10 and 12 respectively. For k = 10, 12,
we put

1
Xe = LD, 20

The following theorem was proved by Igusa [4].
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Theorem 1. 1. There exists a weight 35 cusp form Xss (we normalize
X35 so that a((2,-1,3), X35) = 1).

2. E4, Eg, X10, X12 and X35 generate M (I'y) as a C-algebra.
3. B4, Eg, X10 and X2 are algebraically independent over C.

The Fourier coefficients of Siegel-Eisenstein series of degree 2 was known
by Kaufhold [5]. Aoki and Ibukiyama [3] proved that cusp form X35 of weight
35 can be written by a polynomial of Siegel-Eisenstein and its differentials.
Thus the generators of the ring M(I';) can be written by the polynomials
of Siegel-Eisenstein series of degree 2 and its differentials. Therefore we can
compute the Fourier coefficients of an element of M(I'y) explicitly.

4 Computation of elliptic modular forms

In this section, we compute Hecke polynomial of elliptic cusp forms by using
built-in functions of Sage.

R.<x> = PolynomialRing(QQ, 1, order=’neglex’)
def euler_factor_of_1(f, p):
wt = f.weight()
return 1 - f[p]l/f[1]1*x + p~(wt-1)*x"2
wts_of _one_dim = \
[k for k in range(12, 30)
if CuspForms(1, k).dimension() == 1]

In the code above, we compute le)( f;X) for p = 2 and f € Si(T';) with
dim Sk(I;) = 1. The function euler__factor__of__1 takes an eigenform and
a prime p and returns le)( f;X). wts_of_one_dim is the list of the
positive integers k such that 12 < k < 30 and dim Si(T';) = 1.

euler_factor_at_2 = {}

for k in wts_of_one_dim:
f = CuspForms(1, k).basis()[0]
euler_factor_at_2[k] = euler_factor_of_1(f, 2)

The python’s dictionary euler__factor__at__2 is a dictionary such that k —
gl)( fx; X), which value is as follows:
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sage: euler_factor_at_2

{12: 1 + 24xx + 2048%x72,

16: 1 - 216*x + 32768%x72,
18: 1 + 528%x + 131072%x"2,
20: 1 - 456%x + 524288%x72,
22: 1 + 288%x + 2097152*x72,
26: 1 + 48*x + 33554432*x~2}

For example the le) (A; X) = 1424X 42048 X2, where A is the Ramanujan’s
delta.

5 Computation of Siegel modular forms in
Sage
In this section, we compute Siegel modular forms of degree 2 by using the

package [10]. The following code has been tested under Sage 6.11 and “de-
gree2” (revision 706bfe).

5.1 Computation of generators of M (I'y)

The generator X;o can be obtained by the function x10__with__prec(prec).
Here the argument prec is a positive integer and this function computes the

Fourier coefficients of X, for
{(N,T,m) i 0 < n,m < prec, 4nm —r? > 0},

X2 and X35 can be obtained by the function x12_ with__prec(prec) and
x35__with__prec(prec). Siegel-Eisenstein series Ej can be obtained by the
function eisenstein__series__degree2(k, prec). Here are examples.

from degree2.all import *

prec = 4

# The cusp forms of weight 10 and 12.
X10 = x10_with_prec(prec)

X12 = x12 _with_prec(prec)
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# Fourier coefficient of X10 at (1, 1, 1).
X10[(1, 1, D] #=>1

# Fourier coefficient of X10 at (3, 5, 4).
X10[(3, 5, 4)] # => 2736

5.2 Computation of Hecke polynomials

We calculate Q) (F; X) for p = 2, F € Si(T'2) and a small weight k. For
F = X9 and p = 2, we can compute Qéz)(F; X) as follows:

sage: X10 = x10_with_prec(4)
sage: X10.euler_factor_of_spinor_1(2).factor()
(-1 + 256*x) * (-1 + 512*x) * (1 + 528xx + 131072%x"2)

The last factor is equal to le) (fi8,x), where fig € S1(I'y) is an eigenform.
Thus we have

QP (X10; X) = (1 = 2X)(1 - 2X)Q (s, X).

Here is an another example.

sage: Q12 = X12.euler_factor_of_spinor_1(2)
sage: Q12.factor()
(-1 + 1024#*x) * (-1 + 2048*x) * (1 + 288xx + 2097152%x72)

Thus we also have
QP (X1 X) = (1 - 2°X)(1 = 2" X) Q5" (faz, X).

But not every eigenform of Si(I'2) is related to an eigenform of Si(I';). We
compute cuspidal eigenform Xa5 € Spo(I'2) whose Hecke eigenvalue of T'(2)
is equal to —840960. The cusp form X, is not related to elliptic modular
forms.

# S20 is the space of cusp forms of degree 2 and weight 20.
sage: S20 = CuspFormsDegree2(20, prec = 4)

sage: S20.hecke_charpoly(2).factor()

# X20 is an eigenform of weight 20 whose eigenvalue of

# T(2) is -840960.

sage: X20 = S20.eigenform_with_eigenvalue_t2(-840960)
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sage: X20.euler_factor_of_spinor_1(2).factor()
1 + 840960*x + 390238044160*x~2 + 115580662311813120*x~3
+ 18889465931478580854784*x"4

5.3 Maass relation and Saito-Kurokawa lift

In this subsection, we explain our examples above by the theorem proved by

Maass, Andrianov and Zagier.
Before we state the theorem, we introduce the Maass relation and Maass
subspace.

Definition 1 (Maass relation). For a cusp form F' € Si(I';), we consider the
following condition.

a(n,r,m) = > d*a(1,r/d,mn/d?), (6.1

d>0,d|gcd(n,r,m)
for all n, m, 4nm — r? > 0. Here we put
a(n,r,m) = a((n,r,m), F).

We denote by Si(I's) the set of Siegel cusp forms F' € Si(I'y) satisfying the
condition above. We call S;(I's) the Maass subspace.

For F € My(I';) and (n,r,m), we can check the equation (5.1) by the
method satisfies__maass__relation_ for.

sage: X10.satisfies_maass_relation_for(2, 1, 2)
True

sage: X12.satisfies_maass_relation_for(2, 1, 2)
True

sage: X20.satisfies_maass_relation_for(2, 1, 2)
False ’

The following theorem was proved by Maass [6] [7] [8], Andrianov [1] and
Zagier [11]. And this theorem explains the relation between X, (resp. X2)
and fig (resp. faz).

Theorem 2. Let k be an even number . The Maass subspace S;(I's) is stable
under the action of Hecke operators. There erists a one-to-one correspon-
dence between an eigenform F € Si(I's) and an eigenform f € Sop_o(T'1)

given by
QY(F;X) = (1-p"2X)(1 - p* 1 X)QP(£; X).
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Remark 2. The existence of the lift f — F was conjectured by H. Saito
and Kurokawa independently.
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