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Abstract

In analyzing complicated data, we are often unwilling or not confident to impose

a parametric model for the data-generating structure. One important example is data
analysis for proportional or count data with overdispersion. The obvious advantage

of assuming full parametric models is that one can resort to likelihood analyses, for
instance, to use AIC or BIC to choose the most appropriate regression models. For

overdispersed proportional data, possible parametric models include the Beta-binomial
models, the double exponential models, etc. In this paper, we extend the generalized

linear models by replacing the full parametric models with a finite number of moment

restrictions on both the data and the structural parameters. For such semiparamet-

ric statistical models, we propose a method for selecting the best possible regression

model in the semiparametric model class. We will apply the proposed model selection
technique to overdispersed data. We will demonstrate the use of the proposed semipara-

metric information criterion using the well-known data on germination of 0robanche.
Key Words: Akaike information criterion, Generalized linear models, Kullback-

Leibler information, Overdispersion, Quasi-likelihood

1 Introduction

Let $y_{i}(i=1, \ldots, n)$ be independent response variables which may be proportions or counts
with mean $\mu_{i}$ and variance $\phi V(\mu_{i})$ . As in the usual generalized hnear models (GLM; McCul-
lagh and Nelder, 1989), we assume in addition that $E[y_{i}]=\mu_{i}=t^{-1}(\eta_{i})$ , where $\eta_{i}=x_{i}’\beta,$

$t^{-1}(\cdot)$ is the inverse link function, $x_{i}$ is a $q$ vector of covariates, $\beta$ is a $q$ vector of the un-
known parameters $\beta’=(\beta_{1}, \ldots, \beta_{q})$ and $\phi$ does not depend on $\beta$ . Let $X$ be the $n\cross q$

matrix of covariates with the ith row being $X_{(i)},$ $\theta=(\beta’, \phi)’\in\Theta\subset \mathbb{R}^{q+1}$ and $q<$ n.In

many situations, it is difficult to impose a specific distributional assumption on $y_{\iota’}$ as in the

classical GLM. In such cases we may use the quasi-likelihood method (Wedderburn, 1974)

to estimate the regression parameters $\beta$ . Under weak regularity conditions, it can be shown
that the quasi-likelihood estimator $\hat{\theta}$ is consistent and asymptotically normally distributed
(Moore, 1986).
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However, works on model selection based on quasi-likelihoods are rather limited. There
are mainly two approaches for existing works in this area. The first approach is to restrict
the choice of the variance function $V$ so that one can integrate the quasi-score function to
obtain the scalar quasi-likelihood function and formally use AIC with the likelihood func-
tion being replaced by the quasi-likelihood function (e.g., Lebreton, et al. (1992), Anderson,
Burnham and White (1994), Qian, Gabor and Gupta (1996), Pan (2001)). The second ap-
proach makes no restriction on the choice of the variance functions, instead the quasi-score
vector is projected on a subspace of estimating functions so that the projection becomes
integrable (e.g., McLeish and Small (1992), Li (1993), Hanfelt and Liang (1995)), conse-
quently one may use the first approach to formally construct the information criterion (e.g.,
Lin (2011)). In this paper we shall propose a different approach by projecting the true dis-
tribution function onto the subspace of probability distribution functions satisfying the first
and the second moment assumptions. This projection will be used as the semiparametric
predictive distribution for the underlying statistical model. Using the obtained semipara-
metric predictive distribution, we then formally extend the idea underlying the derivation
of the information criterion AIC to construct a new semiparametric information criterion
SIC. We shall demonstrate the use of the proposed semiparametric information criterion SIC
using the well-known data on germination of 0robanche.

2 Semiparametric Model Selection Criteria

Akaike (1973) proposed a model selection criterion called AIC which has been widely used
in many areas of applications. Derivation of AIC is based upon minimizing the Kullback-
Leibler information between the predictive distribution and the true distribution generating
the data. In this section we will extend this idea to the semiparametric setting with the
full distributional assumption replaced by the assumptions on the mean and variance of the
response variables.

We propose semiparametric model selection criteria SIC and $SIC_{T}$ . They apply generally
to data no matter whether they are discrete or continuous. For convenience, we suppose that
the data in the subsequent paragraphs are continuous. If they are discrete then integration
is replaced by summation.

2.1 Semiparametric models

We assume that the true probability density function of $Y$ is $h(y)$ and the true distribution
function is $H(y)$ . We will relax the assumption of a complete specification of the probability
model, only using some general form of the variance function about the mean as used in
GLM. Now suppose that the statistician makes the assumption that the random variables
$y_{i}(i=1, \ldots, n)$ have distribution $G$ density function $g$ mean $\mu_{i}(\beta)$ and variance
$\phi V(\mu_{i}(\beta))$ . The first and the second moments can be combined in the following way:

$m(y_{i}, \theta)=m(y_{i}, \beta, \phi)=((y_{i}-\mu_{i}(\beta))^{2}-\phi V(\mu_{i}(\beta))y_{i}-\mu_{i}(\beta))=(\begin{array}{l}m_{1i}m_{2i}\end{array})$
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By assumption, we have that

$E_{G}[m(y_{i}, \theta)]=\int m(y_{i}, \theta)dG(y)=0.$

Let $M$ denote the set of all possible distribution functions, let

$\mathcal{G}(\theta)=\{G\in M:\int m(y, \theta)dG(y)=0\}.$

Define $\mathcal{G}=\bigcup_{(\theta\in\Theta)}\mathcal{G}(\theta)$ as the set of all possible distribution functions that are restricted

by the moments conditions. The class $\mathcal{G}$ is the statistical model we shall consider in this

paper.

2.2 Kullback-Leibler information

Extending the idea of AIC, we shall generalize the data-based model selection approach

based also on the Kullback-Leibler information. We use the Kullback-Leibler information

to measure the closeness between $H(y)$ and the assumed semiparametric model $G$ Let $g$

vary in the statistical model class $\mathcal{G}$ . We consider the constrained minimization problem

$v( \beta, \phi)= \inf_{g\in \mathcal{G}}\int\log(\frac{h(y)}{g(y)})h(y)dy$ (2.1)

subject to $\int m(y, \beta, \phi)g(y)dy=0$ and $\int g(y)dy=1.$

Using the results in convex analysis (e.g., Kitamura, 2006), the solution to infinite dimen-

sional optimization problem $v(\beta, \phi)$ can be equivalently written as the solution to the finite

dimensional optimization problem $v^{*}(\beta, \phi)$ as follows:

$v^{*}( \beta, \phi)=\sup_{\lambda\in R,r\in R^{2}}[1+\lambda+\int\log(-\lambda-r’m(y,\beta, \phi))h(y)dy]$ . (2.2)

Since we are only interested in the maximization of $v^{*}(\beta, \phi)$ with respect to $\beta$ and $\phi$ , we can
ignore other terms and proceed to define the semiparametric information of the statistical
model $\mathcal{G}$ as follows:

DEFINITION 2.1 The semiparametric Kullback-Leibler information for quasi-likelihood func-
tion is defined as follows:

$SKL(\theta)=\sup_{r\in R^{2}}E_{H}[\rho(y, \theta, r)]=\sup_{r\in R^{2}}\int\rho(y, \theta, r)h(y)dy$ , (2.3)

where $\rho(y, \theta, r)=\log(1+r’m(y,$ $\beta,$ $\phi$

Since the true distribution function $H$ is unknown, we use the empirical distribution of

the data to estimate the true distribution function $H$
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2.3 Regularity conditions

In this paper, we shall use $SKL(\theta)$ to select an appropriate semiparametric model. We will
consider both the correctly specified case and the misspecified case. A semiparametric model
is called correctly specified if the moments assumed evaluated at a particular value of the
parameter are equal to the moments of the underlying true distribution. First, we state the
regularity conditions which will be used in the sequel to prove the asymptotic unbiasedness
of the proposed information criteria.
Cl Define $\theta_{*}=(\beta_{*}’, \phi_{*})’$ as the pseudo-true value, such that the semiparametric Kullback-
Leibler information $SKL(\theta)$ is minimized at $\theta_{*}.$

C2 $\rho(y, \theta, r)$ is twice continuously differentiable in $\theta\in\Theta$ and $r\in \mathbb{R}^{2}.$

Note that C2 implies that

$\tilde{r}(\theta)=\arg\sup_{r\in R^{2}}\int\rho(y, \theta, r)h(y)dy$ (2.4)

is continuous with respect to $\theta$ . Furthermore, from Cl we know that there is a unique $\tilde{r}_{*}$

corresponding to $\theta_{*}$ :

$\tilde{r}_{*}=\arg\sup_{r\in R^{2}}\int\rho(y, \theta_{*}, r)h(y)dy$ . (2.5)

C3 The problem of $\inf_{\theta\in\Theta}SKL(\theta)$ has a unique saddle point solution $(\theta_{*}’,\tilde{r}_{*}’)$ , where $\tilde{r}_{*}$

is defined in (2.5). When the model $\mathcal{G}$ is correctly specified, there exists a unique $(\theta_{*}’,\tilde{r}_{*}’)$

satisfying $SKL(\theta_{*})=0.$

C4 The following law of large numbers holds:

$\theta\sup_{\in\Theta}\sup_{r\in R^{2}}|\frac{1}{n}\sum_{i=1}^{n}\rho(y_{i}, \theta, r)-E_{H}[\rho(y, \theta, r)]|=o_{p}(1)$ .

2.4 The expected information

When we consider $SKL(\theta)$ as defined in (2.3), the minimizer of $SKL(\theta)$ can be viewed as
the solution to the following saddle point problem:

$\theta_{*}=\arg\min\sup E_{H}[\rho(y, \theta, r)]$ , (2.6)
$\theta\ominus$

where $\Theta$ denotes the parameter space for $\theta,$ $L(\theta)=\{r : r’m(y, \theta)\in \mathcal{I}\}$ , and $\mathcal{I}$ is an open
interval containing zero.

Next we describe the process of solving the above saddle point problem. Firstly, the
expectation of $\rho(y, \theta, r)$ is maximized for given $\theta$ , so that the $\theta_{*}$ satisfies the following
condition:

$E_{H}[\rho_{1}(y, \theta, r)m(y, \theta)]=0,$

where $\rho_{1}(y, \theta, r)=1/(1+r’m(y, \theta))$ is the first derivative of $\rho$ with respect to $r’m(y, \theta)$ .
C5 Assume that $\int\rho(y, \theta, r)h(y)dy$ and $\int\rho_{1}(y, \theta, r)h(y)dy$ are differentiable under the in-
tegral sign.
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Secondly, Since $\theta_{*}$ is the minimizer of the quantity $E_{H}[\rho(y,$ $\theta,$ $r$ for a proper $r$ , implying
that

$E_{H}[\rho_{1}(y, \theta, r)M(y, \theta)’r(\theta)]=0,$

where $M(y, \theta)=\partial m(y, \theta)/\partial\theta’.$

Now denote the matrix of the first derivative of $\rho(y, \theta, r)$ with respect to $\theta$ and $r$ by

$\Upsilon(\theta,r)=(\begin{array}{l}\rho_{1}(y,\theta,r)M(y,\theta)’r\rho_{1}(y,\theta,r)m(y,\theta)\end{array}),$

The values $(\theta_{*},\tilde{r}(\theta_{*}))$ must satisfy the following first-order condition:

$E_{H}[T(\theta_{*},\tilde{r}(\theta_{*}))]=0$ . (2.7)

C6 Define
$Q=E_{H}[\frac{\partial\Upsilon(\theta_{*},\tilde{r}_{*})}{\partial(\theta’,r’)^{J}}], S=E_{H}[\Upsilon(\theta,\tilde{r}_{*})\Upsilon(\theta,\tilde{r}_{*}$

Assume that $Q$ and $S$ are finite and $S$ is invertible.
However, $\theta_{*}$ is not computable because it involves the expectation with respect to the

true density function $h(y)$ . One way is to use the value to minimize the empirical version of
the expected semiparametric Kullback-Leibler information:

$\hat{\theta}_{*}=\arg_{\theta}\min_{\in\Theta}\{\frac{1}{n}\sum_{i=1}^{n}\rho(y_{i}, \theta,\tilde{r}(\theta))\}$ , (2.8)

where $\tilde{r}(\theta)$ is defined in (2.4). To approximate $\tilde{r}(\theta)$ , we use the empirical distribution
function in place of the true distribution function $H$ to obtain

$\hat{r}(\theta)=\arg_{r}\max_{\in R^{2}}\{\frac{1}{n}\sum_{i=1}^{n}\rho(y_{i},\theta, r)\}$ . (2.9)

We can show that $(\hat{\theta}_{*}, \hat{r}(\hat{\theta}_{*}))$ are consistent and asymptotically normally distributed along

similar lines of Chen et al. (2007), we omit the proof here. The calculation of $(\hat{\theta}_{*}, \hat{r}(\hat{\theta}_{*}))$

is instable and usually difficult to compute. We assume that $\hat{\theta}=(\sqrt{}’,$$\phi\wedge$ with $\sqrt{}\wedge$ being the

guasi-likelihood estimator and $\hat{\phi}$ the estimator from the usual Pearson residual. Since the
$\theta$ is also a consistent estimator, it is reasonable to use $(\hat{\theta},\hat{r}(\hat{\theta}))$ instead. It is easy to show

that $(\hat{\theta}, \hat{r}(\hat{\theta}))$ holds the properties of consistency and asymptotic normality too.

DEFINITION 2.2 In the statistical model $\mathcal{G}$ , the expected semiparametric information is de-

fined as follows:
$E_{H}[ SKL(\hat{\theta})]=E_{H}[\int\rho(y,\hat{\theta},\tilde{r}(\hat{\theta}))h(y)dy]$ . (2.10)
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For later use, we write explicitly the components of $\Upsilon(\theta, r)$ as follows:

$M(y, \theta)=\frac{\partial m(y_{)}\theta)}{\partial\theta}=(\begin{array}{ll}M_{1} M_{3}M_{2} M_{4}\end{array}),$

where

$M_{1}= \frac{\partial m_{1}}{\partial\sqrt{}’}=-\frac{\partial\mu_{i}(\sqrt{})}{\partial\sqrt{}},$ $M_{2}= \frac{\partial m_{2}}{\partial\beta’}=2(\mu_{i}(\beta)-y)\frac{\partial\mu_{i}}{\partial\beta}-\phi\frac{\partial V(\mu_{i}(\sqrt{}))}{\partial\mu_{i}}\frac{\partial\mu_{i}}{\partial\beta},$

$M_{3}= \frac{\partial m_{1}}{\partial\phi}=0,$ $M_{4}= \frac{\partial m_{2}}{\partial\phi}=-V(\mu_{i}(\beta))$ .

2.5 The proposed information criteria

DEFINITION 2.3 Let $k$ be the dimension of $\theta$ , then we define the following information
criterion:

SIC $= \sum_{i=1}^{n}\rho(y_{i}, \hat{\theta},\hat{r}(\hat{\theta}))+k$ . (2.11)

We shall call this information criterion the semiparametric information criterion, $or$ SIC

for short.

The proposed criterion SIC has the following properties.

PROPOSITION 2.1 Suppose that the model is correctly specified. Further suppose that $(C1)-$

(C6) hold. Then SIC is an asymptotically unbiased estimator of the expected information.

For possibly misspecified model, we propose the following criterion for model selection.

DEFINITION 2.4 Consider a possibly misspecified semiparametric model $\mathcal{G}$ as defined in Sec-
tion 2.1. Let

$\hat{S}=\frac{1}{n}\sum_{i=1}^{n}[\Upsilon_{i}(\hat{\theta},\hat{r}(\hat{\theta}))\Upsilon_{i}(\hat{\theta},\hat{r}(\hat{\theta}))’], \hat{Q}=\frac{1}{n}\sum_{i=1}^{n}[\frac{\partial\Upsilon_{i}(\hat{\theta},\hat{r}(\hat{\theta}))}{\partial(\theta’,r)’}]$

Then we defined the following information criterion

$SIC_{T}=\sum_{i=1}^{n}\rho(y_{i},\hat{\theta},\hat{r}(\hat{\theta}))-trace(\hat{S}\hat{Q}^{-1})$ . (2.12)

The proposed criterion $SIC_{T}$ has the following properties.

PROPOSITION 2.2 Under the regularity conditions (C1) $-(C6)$ listed in Section 2.3 and
2.4, $SIC_{T}$ is an asymptotically unbiased estimator of the expected information.

$SIC_{T}$ can be understood as a semiparametric extension of the Takeuchi information criterion
for parametric likelihood analysis (Takeuchi, 1976).
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3 Data Analysis

Now we illustrate the use of SIC using a well-known data set Orobanche on germination of
the seed variates, which was considered in Crowder (1978, Table 3). In this experiment,
two types of seeds from Orobanche (O.aegyptiaca75 and O.aegyptiaca73) were tested for
germination when they were given with two different root extracts (Bean and cucumber).
The goal of the experiment was to determine the effect of the root extract on inhibiting the
growth of the parasitic plant. There is suspicion of overdispersion for this data set and a
number of authors have used this data set to study methodologies extending the classical
GLM to take into consideration the problem of overdispersion. For instance, this data
was analyzed by Breslow and Clayton (1993) to illustrate the use of the generalized linear
mixed models for overdispersion. In these studies, however, the authors have not considered
the aspects of model selection. Now we shall reanalyze it by applying the model selection
technique proposed in the previous section based on the quasi-likelihood.

Now let $y_{i}$ be the proportions of germinated seeds, and $n_{i}$ the seeds in the ith data set
$(i=1, \ldots, 21)$ . Suppose that $E[y_{i}]=\pi_{i}$ and $var[y_{i}]=\phi v(\pi_{i})=\phi\pi_{i}(1-\pi_{i})/n_{i}$ , where $\phi$ is the
overdispersion parameter. Further, we shall suppose that logit $(\pi_{i})=\log(\pi_{i}/(1-\pi_{i}))=x_{i}’\beta,$

where $x_{i}=(1,$ $x_{1i},$ $x_{2i},$ $x_{1i}x_{2i}$ where $x_{1i}=1$ if the root extract is cucumber, otherwise $0$ if
the root extract is Bean; and $x_{2i}=1$ if the type of seeds is O.aegyptiaca75, otherwise $0$ if
the type of seeds is O.aegyptiaca73. We shall compare the folowing five candidate models:

(1) logit $(\pi_{i})=\beta_{0}$

(2) logit $(\pi_{i})=\beta_{0}+\beta_{1}x_{1i}$

(3) logit $(\pi_{i})=\beta_{0}+\beta_{2}x_{2i}$

(4) logit $(\pi_{i})=\beta_{0}+\beta_{1}x_{1i}+\beta_{2}x_{2i}$

(5) logit $(\pi_{i})=\beta_{0}+\beta_{1}x_{1i}+\beta_{2}x_{2i}+\beta_{3}x_{1i}x_{2i}$

Table 1: Model selection criteria for the Orobanche data

$\overline{\frac{Models(1)(2)(3)(4)(5)}{SIC3.8212.7325.9713.8815.521}}$

$SIC_{T}$ 0.551 1.260 0.305 1.860 3.380
$AIC_{BB}$ 133.0 120.4 133.1 119.7 117.5

We computed the values of the various information criteria and the results are summa-
rized in Table 1. The proposed SIC has the smallest value for model (2) among all candidate
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models. SIC ranks the models in the following way: (2) $>(1)>(4)>(5)>(3)$ . This result
is consistent with the results obtained in Crawley (2005, p.255-260). Crawley (2005) used
quasi-likelihood method to analyze the Orobanche data. He applied the $F$-test to compare
the full model (5) with other simpler models. He found that there is no compelling evidence
that the types of seeds and the interaction should be kept in the model, and the minimal
adequate model is model (2). In Table 1, we have also shown the values of $AIC_{BB}$ , the values
of AIC based on the beta-binomial model. $AIC_{BB}$ has minimum value for model (5), the
most complicated model considered here. In Table 1 the values $SIC_{T}$ are also shown; $SIC_{T}$

is a modified version of SIC which is not discussed here. $SIC_{T}$ is a corresponding version of
the Takeuchi type information criteria in full likelihood analysis.
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