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Abstract: A common feature of high-dimensional data is the data dimension is high, however, the sample size
is relatively low. We call such data HDLSS data. In this paper, we study HDLSS asymptotics when the data

dimension is high while the sample size is fixed. We first introduce two eigenvalue estimation methods: the

noise-reduction (NR) methodology and the cross-data-matrix (CDM) methodology. We show that the eigenvalue

estimators by the NR and the CDM enjoy asymptotic properties under mild conditions when the data dimension

is high. We provide asymptotic distributions of those estimators in the HDLSS context where the data dimension

is high while the sample size is fixed. We give a bias corrected CDM estimator of the largest eigenvalue. We

show that the NR estimator has the asymptotic distribution under a mild condition and so does the bias corrected
CDM estimator under a more relaxed condition. We give an application to construct confidence intervals of the

first contribution ratio in the HDLSS context. Finally, we summarize simulation results.
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1 Introduction

One of the features of modern data is the data has a high dimension and a low sample size. We call
such data “HDLSS” or “large $p$ , small $n$

” data where $p/narrow\infty$ ; here $p$ is the data dimension and $n$ is
the sample size. The asymptotic behaviors of HDLSS data were studied by Hall et al. (2005), Ahn et
al. (2007), and Yata and Aoshima (2012) when $parrow\infty$ while $n$ is fixed. They explored conditions to
give several types of geometric representations of HDLSS data. The HDLSS asymptotic study usually
assumes either the normality as the population distribution or a $\rho$-mixing condition as the dependency of
random variables in a sphered data matrix. See Jung and Marron (2009). In a more general framework,

Yata and Aoshima (2009) succeeded in proving consistency properties for both eigenvalues and eigen-
vectors of the sample covariance matrix and showed that the conventional principal component analysis
(PCA) cannot give a consistent estimate in the HDLSS context. In order to overcome this inconvenience,

Yata and Aoshima (2012) developed the noise-reduction $(NR)$ methodology to give consistent estima-
tors of both eigenvalues and eigenvectors together with principal component scores for Gaussian-type
HDLSS data. As for non-Gaussian HDLSS data, Yata and Aoshima $(2010, 2013)$ created the cross-data-
matrix $(CDM)$ methodology that provides a nonparametric method to ensure the consistent properties in
the HDLSS context. On the other hand, Aoshima and Yata $(201la,b, 2013a)$ developed a variety of in-
ference for HDLSS data such as given-bandwidth confidence region, two-sample test, test of equality of
two covariance matrices, classification, variable selection, regression, pathway analysis and so on along
with sample size determination to ensure prespecified accuracy for each inference. See Aoshima and
Yata $(2013b,c)$ for a review covering this field of research.
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In this paper, suppose we have a $p\cross n$ data matrix, $X_{(p)}=[x_{1(p)}, x_{n(p)}]$ , where $x_{j(p)}=$

$(x_{1j(p)}, x_{pj(p)})^{T},$ $j=1,$ $n$ , are independent and identically distributed $(i.i.d.)$ as a $p$-dimensional
distribution with mean vector $\mu_{p}$ and covariance matrix $\Sigma_{p}(\geq 0)$ . We assume $n\geq 4$ . The eigen-
decomposition of $\Sigma_{p}$ is given by $\Sigma_{p}=H_{p}\Lambda_{p}H_{p}^{T}$ , where $\Lambda_{p}$ is a diagonal matrix of eigenvalues,
$\lambda_{1(p)}\geq\cdots\geq\lambda_{p(p)}(\geq 0)$ , and $H_{p}=[h_{1(p)}, h_{p(p)}]$ is an onhogonal matnx of the corresponding

eigenvectors. Let $X_{(p)}-[\mu_{p}, \mu_{p}]=H_{p}\Lambda_{p}^{1/2}Z_{(p)}$ . Then, $Z_{(p)}$ is a $p\cross n$ sphered data matrix
from a distribution with the zero mean and the identity covariance matrix. Here, we write $Z_{(p)}=$

$[z_{1(p)}, z_{p(p)}]^{T}$ and $z_{j(p)}=$ $(z_{j1(p)}, z_{jn(p)})^{T},$ $j=1,$ $p$ . Note that $E(z_{ji(p)}z_{j’i(p)})=0(j\neq j’)$

and $Var(z_{j(p)})=I_{n}$ , where $I_{n}$ is the $n$-dimensional identity matrix. Hereafter, the subscript $p$ will be
omitted for the sake of simplicity when it does not cause any confusion. We assume that the fourth
moments of each variable in $Z$ are uniformly bounded. Note that if $X$ is Gaussian, $z_{ij}s$ are i.i.$d.$

as $N(O, 1)$ , where $N(O, 1)$ denotes the standard normal distribution. Let us write the sample covari-
ance matrix as $S=(n-1)^{-1}(X- \overline{X})(X-\overline{X})^{T}=(n-1)^{-1}\sum_{j=1}^{n}(x_{j}-\overline{x})(x_{j}-\overline{x})^{T}$ , where
$\overline{X}=[\overline{x}, \overline{x}]$ and $\overline{x}=\sum_{j=1}^{n}x_{j}/n$ . Then, we define the $n\cross n$ dual sample covariance matrix by

$S_{D}=(n-1)^{-1}(X-\overline{X})^{T}(X-\overline{X})$ . Let $\hat{\lambda}_{1}\geq\cdots\geq\hat{\lambda}_{n-1}\geq 0$ be the eigenvalues of $S_{D}$ . Let us
write the eigen-decomposition of $S_{D}$ as $S_{D}= \sum_{j=1}^{n-1}\hat{\lambda}_{j}\hat{u}_{j}\hat{u}_{j}^{T}$ . Note that $S$ and $S_{D}$ share non-zero
eigenvalues.

In this paper, we study HDLSS asymptotics when $parrow\infty$ while $n$ is fixed. In Section 2, we
show that the eigenvalue estimators by the NR and the CDM enjoy asymptotic properties under mild
conditions when the data dimension is high. We provide asymptotic distributions of those estimators in
the HDLSS context. We give a bias corrected CDM estimator of the largest eigenvalue. We show that the
NR estimator has the asymptotic properties under a mild condition and so does the bias corrected CDM
estimator under a more relaxed condition. In Section 3, we give an application to construct confidence
intervals of the first contribution ratio in the HDLSS context. Finally, in Section 4, we summarize
simulation results.

2 Largest Eigenvalue Estimation and its Asymptotic Distribution

In this section, we consider eigenvalue estimation and give an asymptotic distribution for the largest
eigenvalue when $parrow\infty$ while $n$ is fixed.

2.1 Noise-Reduction Estimator

Yata and Aoshima (2012) proposed a method for eigenvalue estimation called the noise-reduction $(NR)$

methodology that was brought by a geometric representation. See Sections 2 and 3 in Yata and Aoshima
(2012) for the details. When we apply the NR methodology, the NR estimator of $\lambda_{j}$ is given by

$\tilde{\lambda}_{j}=\hat{\lambda}_{j}-\frac{tr(S_{D})-\sum_{i=1}^{j}\hat{\lambda}_{i}}{n-1-j} (j=1, \cdots, n-2)$ .

Note that $\tilde{\lambda}_{j}\geq 0$ for $j=1,$ $n-2$ . Yata and Aoshima $(2012, 2013)$ showed that $\tilde{\lambda}_{j}$ has several
consistency properties when $parrow\infty$ and $narrow\infty$ . In this paper, we focus on the largest eigenvalue, $\tilde{\lambda}_{1},$

that has the most important information in data analyses. We assume the following conditions for the
largest eigenvalue:

(A-i) $\frac{tr(\Sigma^{2})-\lambda_{1}^{2}}{\lambda_{1}^{2}}=\frac{\sum_{s--2}^{p}\lambda_{s}^{2}}{\lambda_{1}^{2}}arrow 0,$
$parrow\infty$ ;
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(A-ii) $\frac{\sum_{r,s\geq 2}^{p}\lambda_{r}\lambda_{s}E\{(z_{rk}^{2}-1)(z_{sk}^{2}-1)\}}{\lambda_{1}^{2}}arrow 0,$
$parrow\infty.$

Note that (A-ii) is naturally satisfied when $X$ is Gaussian and (A-i) is met. Let $z_{oj}=z_{j}-(\overline{z}_{j}, \overline{z}_{j})^{T},$ $j=$

$1_{\}}\ldots,p$ , where $\overline{z}_{j}=n^{-1}\sum_{k=1}^{n}z_{jk}$ . Then, Ishii et al. (2014) gave the following results.

Theorem 2.1 (Ishii et al., 2014). Assume $P( \lim_{parrow\infty}||z_{01}||\neq 0)=1$ . Under (A-i) and (A-ii), it holds
that as $parrow\infty$

$\frac{\tilde{\lambda}_{1}}{\lambda_{1}}=||z_{01}/\sqrt{n-1}||^{2}+o_{p}(1)$ .

Corollary 2.1 (Ishii et al., 2014). If $z_{1j},$ $j=1,$ $n$ , are i.id. as $N(O, 1)$ , it holds that as $parrow\infty$

$(n-1) \frac{\tilde{\lambda}_{1}}{\lambda_{1}}\Rightarrow\chi_{n-1}^{2}$

under (A-i) and (A-ii). Here, $”\Rightarrow$
“ denotes the convergence in distribution and $\chi_{n-1}^{2}$ denotes a random

variable distributed as $\chi^{2}$ distribution with $n-1$ degrees offreedom.

Next, we consider asymptotic properties of the conventional estimator, $\hat{\lambda}_{1}$ , for the sake of comparison
when $parrow\infty$ while $n$ is fixed. We assume the following condition for the largest eigenvalue:

($A$-iii) $\frac{tr(\Sigma)-\lambda_{1}}{\lambda_{1}}=\frac{\sum_{s=2}^{p}\lambda_{s}}{\lambda_{1}}arrow 0,$

$parrow\infty.$

Under ($A$-iii), it holds that $\sum_{s=2}^{p}\lambda_{s}^{2}/\lambda_{1}^{2}\leq\lambda_{2}\sum_{s=2}^{p}\lambda_{s}/\lambda_{1}^{2}\leq\sum_{s=2}^{p}\lambda_{s}/\lambda_{1}arrow 0$ and $\sum_{r,s\geq 2}^{p}\lambda_{r}\lambda_{s}E\{(z_{rk}^{2}-$

$1)(z_{sk}^{2}-1) \}/\lambda_{1}^{2}=O\{(\sum_{s=2}^{p}\lambda_{s})^{2}/\lambda_{1}^{2}\}arrow 0$ . Hence, ($A$-iii) is stronger than (A-i) and (A-ii). For the
conventional estimator $\hat{\lambda}_{1}$ , Ishii et al. (2014) gave the following results.

Corollary 2.2 (Ishii et al., 2014). Assume $P( \lim_{parrow\infty}||z_{01}||\neq 0)=1$ . Under (A-iii), it holds as $parrow\infty$

$\frac{\hat{\lambda}_{1}}{\lambda_{1}}=||z_{01}/\sqrt{n-1}||^{2}+o_{p}(1)$ .

In addition, if $z_{1j},$ $j=1,$ $n$ , are i.id. as $N(O, 1)$ , it holds that

$(n-1) \frac{\hat{\lambda}_{1}}{\lambda_{1}}\Rightarrow\chi_{n-1}^{2}$ . (2.1)

Remark 2.1. Jung and Marron (2009) gave (2.1) under different but still strict assumptions.

Remark2.2. By comparing Theorem 2.1 and Corollary 2.1 with Corollary 2.2, we can conclude that $\tilde{\lambda}_{1}$

has the asymptotic properties under milder conditions than $\hat{\lambda}_{1}$ when $parrow\infty$ while $n$ is fixed. In fact,

($A$-iii) is a too strict condition in real high-dimensional data analyses. It should be noted that ($A$-iii) is
equivalent to the condition that $\lambda_{1}/tr(\Sigma)arrow 1,$ $parrow\infty$ , that is ($A$ -iii) means that the contribution ratio
of the first principal component is asymptotically 1 as $parrow\infty.$
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2.2 Bias Corrected Cross-Data-Matrix Estimator

We consider the case when (A-ii) is not always met. In such cases, the NR methodology does not

ensure the asymptotic properties. Yata and Aoshima (2010) proposed a method called the cross-data-

matrix $(CDM)$ methodology to proceed with eigenvalue estimation even in such cases. Let $n_{1}=\lceil n/2\rceil$

and $n_{2}=n-n_{1}$ , where $\lceil x\rceil$ denotes the smallest integer $\geq x$ . We divide the data matrix $X$ into
$X_{1}=[x_{11}, x_{1n_{1}}]$ and $X_{2}=[x_{21}, x_{2n_{2}}]$ at random. We define a cross data matrix by $S_{D(1)}=$

$\{(n_{1}-1)(n_{2}-1)\}^{-1/2}(X_{1}-\overline{X}_{1})^{T}(X_{2}-\overline{X}_{2})$ , where $\overline{X}_{i}=[\overline{x}_{i}, \overline{x}_{i}]^{T}$ is having $p$-vector $\overline{x}_{i}=$

$n_{i}^{-1} \sum_{j=1}^{n_{i}}x_{ij}(i=1,2)$ . Let $r=n_{2}-1$ . When we consider the singular value decomposition of $S_{D(1)},$

it follows that $S_{D(1)}= \sum_{j=1}^{r}\acute{\lambda}_{j}\acute{u}_{j(1)}\acute{u}_{j(2)}^{T}$ , where $\acute{\lambda}_{1}\geq\cdots\geq\acute{\lambda}_{r}(\geq 0)$ denote singular values of $S_{D(1)},$

and $\acute{u}_{j(1)}$ (or $\acute{u}_{j(2)}$ ) denotes a unit left-(or right-) singular vector corresponding to $\acute{\lambda}_{j}(j=1, r)$ . Yata
and Aoshima $(2010, 2013)$ showed that $\acute{\lambda}_{j}$ has several consistency properties when $parrow\infty$ and $narrow\infty.$

Again, we would like to emphasize that in this paper we focus on the largest eigenvalue and give its
asymptotic properties when $parrow\infty$ while $n$ is fixed.

Let us write $X_{i}-[\mu, \mu]=H\Lambda^{1/2}Z_{i}$ , where $Z_{i}=[z_{i1}, z_{ip}]^{T}$ and $z_{ij}=$
$(z_{ij1}, z_{ijn_{i}})^{T},$

$i=1$ , 2; $j=1,$ $p$ . Let $z_{oij}=z_{ij}-$
$(\overline{z}_{ij}, \overline{z}_{ij})^{T},$ $j=1,$ $p$ , where $\overline{z}_{ij}=n_{i}^{-1}\sum_{k=1}^{n_{l}}z_{ijk}(i=$

$1$ , 2; $j=1,$ $p)$ . Then, we have that

$\sqrt{(n_{1}-1)(n_{2}-1)}S_{D(1)}=\lambda_{1}z_{011}z_{021}^{T}+\sum_{j=2}^{p}\lambda_{j}z_{01j}z_{02j}^{T}.$

Here, under (A-i), for any $(i,j)$ element of $\sum_{j=2}^{p}\lambda_{j}z_{01j}z_{02j}^{T}$ , it holds that as $parrow\infty$

$\frac{Var\{\sum_{s=1}^{p}\lambda_{j}(z_{1si}-\overline{z}_{1s})(z_{2sj}-\overline{z}_{2s})\}}{\lambda_{1}^{2}}=(1-1/n_{1})(1-1/n_{2})\frac{tr(\Sigma^{2})-\lambda_{1}^{2}}{\lambda_{1}^{2}}arrow 0.$

Then, under (A-i) without (A-ii), we claim that as $parrow\infty$

$\frac{\sum_{j=2}^{p}\lambda_{j}z_{01j}z_{02j}^{T}}{\lambda_{1}}arrow P\circ.$

Therefore, we have that

$\frac{\acute{\lambda}_{1}}{\lambda_{1}}=\acute{u}_{1(1)}^{T}\frac{S_{D(1)}}{\lambda_{1}}\acute{u}_{1(2)}=(\acute{u}_{1(1)}^{T}z_{o11}/\sqrt{n_{1}-1})(z_{021}^{T}\acute{u}_{1(2)}/\sqrt{n_{2}-1})+o_{p}(1)$ (2.2)

under (A-i). Then, from (2.2), we have the following results.

Theorem 2.2. Assume $P( \lim_{parrow\infty}||z_{(n1}||\neq 0)=1,$ $i=1,2$ . Under (A-i), it holds that as $parrow\infty$

$\frac{\acute{\lambda}_{1}}{\lambda_{1}}=||z_{011}/\sqrt{n_{1}-1}||||z_{021}/\sqrt{n_{2}-1}||+o_{p}(1)$ .

Corollary 23. If $z_{1j},$ $j=1,$ $n$ , are i.id. as $N(0,1)$ , it holds that as $parrow\infty$

$\frac{\acute{\lambda}_{1}}{\lambda_{1}}\Rightarrow\sqrt{\frac{\chi_{(1)n_{1}-1}^{2}}{n_{1}-1}}\sqrt{\frac{\chi_{(2)n_{2}-1}^{2}}{n_{2}-1}}$

under (A-i), where $\chi_{(i)n_{i}-1}^{2}(i=1,2)$ denotes a random variable distributed as $\chi^{2}$ distribution with
$n_{i}-1$ degrees offreedom, and $\chi_{(1)n_{1}-1}^{2}$ and $\chi_{(2)n_{2}-1}^{2}$ are independent.
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Now, we consider a bias correction of $\acute{\lambda}_{1}$ . We have that

$E( \sqrt{\frac{\chi_{(1)n_{1}-1}^{2}}{n_{1}-1}}\sqrt{\frac{\chi_{(2)n_{2}-1}^{2}}{n_{2}-1}})=\frac{c}{\sqrt{(n_{1}-1)(n_{2}-1)}}$ and

Var $( \sqrt{\frac{\chi_{(1)n_{1}-1}^{2}}{n_{1}-1}}\sqrt{\frac{\chi_{(2)n_{2}-1}^{2}}{n_{2}-1}})=1-\frac{c^{2}}{(n_{1}-1)(n_{2}-1)}$

with $c=2 \Gamma(\frac{n_{1}}{2})\Gamma(\frac{n_{2}}{2})\Gamma(\frac{n_{1}-1}{2})^{-1}\Gamma(\frac{n_{2}-1}{2})^{-1}$

where $\Gamma$ is the gamma function. Therefore, we give a bias corrected CDM estimator by

$\acute{\lambda}_{1*}=\frac{\sqrt{(n_{1}-1)(n_{2}-1)}}{c}\lambda_{1}\prime.$

Then, we have the following result.

Corollary 2.4. If $z_{1j},j=1,$ $n$ , are i.id. as $N(0,1)$ , it holds that as $parrow\infty$

$\frac{\acute{\lambda}_{1*}}{\lambda_{1}}\Rightarrow\frac{1}{c}\sqrt{\chi_{(1)n_{1}-1}^{2}}\sqrt{\chi_{(2)n_{2}-1}^{2}}$

under (A-i).

Remark 23. We note that

$E(c^{-1}\sqrt{\chi_{(1)n_{1}-1}^{2}}\sqrt{\chi_{(2)n_{2}-1}^{2}})=1$ and $Var(c^{-1}\sqrt{\chi_{(1)n_{1}-1}^{2}}\sqrt{\chi_{(2)n_{2}-1}^{2}})=\frac{(n_{1}-1)(n_{2}-1)}{c^{2}}-1.$

Also, note that

Var $(c^{-1} \sqrt{\chi_{(1)n_{1}-1}^{2}}\sqrt{\chi_{(2)n_{2}-1}^{2}})>Var((n-1)^{-1}\chi_{n-1}^{2})=\frac{2}{n-1}.$

Therefore, from Corollaries 2.1 and 2.4, we emphasize that $\acute{\lambda}_{1*}$ has the asymptotic distribution without
(A-ii) when $parrow\infty$ while $n$ is fixed, however, the asymptotic variance of $\lambda_{1*}$ is larger than that of $\tilde{\lambda}_{1}.$

3 Application

In this section, we consider a confidence interval of the contribution ratio for the first principal component
by using the NR estimator. Let $a$ and $b$ be constants satisfying $P\{a\leq\chi_{n-1}^{2}\leq b\}=1-\alpha$ . Then, from
Corollary 2.1, under (A-i) and (A-ii), if $z_{1j},$ $j=1,$ $n$ , are i.i.$d$ . as $N(O, 1)$ , it holds that as $parrow\infty$

$P( \frac{\lambda_{1}}{tr(\Sigma)}\in[\frac{\tilde{\lambda}_{1}}{b\kappa 1)\tilde{\lambda}_{1}}, \frac{-1)\tilde{\lambda}_{1}}{a\kappa n-1)\tilde{\lambda}_{1}}])$

$=P(a \leq(n-1)\frac{\tilde{\lambda}_{1}}{\lambda_{1}}\leq b)=1-\alpha+o(1)$ ,

where $\kappa=tr(\Sigma)-\lambda_{1}=\sum_{s=2}^{p}\lambda_{s}$ . From Lemma A.1 in Appendix, we give a consistent estimator of $\kappa$

by $\hat{\kappa}=(n-1)(tr(S_{D})-\hat{\lambda}_{1})/(n-2)$ . Then, we have the following result.
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Theorem 3.1. Assume $\lim\inf_{parrow\infty}\kappa/\lambda_{1}>$ O. Under (A-i) and (A-ii), if $z_{1j},$ $j=1,$ $n$ , are i.id. $as$

$N(O, 1)$ , it holds that as $parrow\infty$

$P( \frac{\lambda_{1}}{tr(\Sigma)}\in[\frac{(n-1)\tilde{\lambda}_{1}}{b\hat{\kappa}+(n-1)\tilde{\lambda}_{1}}, \frac{(n-1)\tilde{\lambda}_{1}}{a\hat{\kappa}+(n-1)\overline{\lambda}_{1}}])=1-\alpha+o(1)$ . (3.1)

Remark 3.1. If $\kappa/\lambda_{1}arrow 0$ as $parrow\infty$ , the contribution ratio of the first principal component is asymp-
totically 1 in the sense that $\lambda_{1}/tr(\Sigma)arrow 1$ as $parrow\infty$ . We emphasize that the conventional estimator,
$\hat{\lambda}_{1}$ , cannot yield a confidence interval of the contribution ratio when $parrow\infty$ while $n$ is fixed because the
contribution ratio of the first principal component is asymptotically 1 under ($A$-iii).

Let us construct a confidence interval of the contribution ratio for the first principal component. We
used a microarray data by Alon et al. (1999). The data set was composed of 40 $(=n_{1})$ colon tumor
samples and 22 $(=n_{2})$ normal colon tissue samples. The samples were analyzed by the Affymetrix
oligonucleotide array. They chose 2000 $(=p)$ genes with highest minimal intensity across the samples.
We constructed a 95% confidence interval by using the NR estimator. Here, the constants $(a, b)$ were
chosen for the confidence interval to have a minimum length. The results were summarized in Table 1.

Table 1. The confidence interval (CI) of the first contribution ratio, $\tilde{\lambda}_{1}$ and $\hat{\kappa}$ for a microarray data set
with $p=2000.$

4 Simulation Studies

4.1 Comparisons ofthe Largest Eigenvalue Estimators

In order to compare the performances of the three largest eigenvalue estimators, $\hat{\lambda}_{1},$ $\tilde{\lambda}_{1}$ and $\acute{\lambda}_{1*}$ , we
used computer simulations. We set $\Sigma=diag(\lambda_{1}, \lambda_{p})$ with $\lambda_{1}=p^{2/3},$ $\lambda_{2}=p^{1/3}$ and $\lambda_{3}=\cdots=$

$\lambda_{p}=1$ . Note that (A-i) holds, however ($A$-iii) does not hold. We considered the cases of $p=2^{k}(k=$

$4$ , 12) and $n=10$ . We considered three distributions: (a) $z_{1j},$ $j=1,$ $n$ , are i.i.$d$ . as $N(O, 1)$ and
$(z_{2j}, z_{pj})^{T},$ $j=1,$ $n$ , are i.i.$d$ . as $a(p-1)$-variate $t$ -distribution, $t_{p-1}(0, I_{p-1},5)$ , with mean zero
vector, covariance matrix $I_{p-1}$ and 5 degrees of freedom, where $z_{1j}$ and $(z_{2j}, z_{pj})^{T}$ are independent
for each $j;(b)z_{1j},$ $j=1,$ $n$ , are i.i.$d$ . as $N(O, 1)$ and $(z_{2j}, z_{pj})^{T},$ $j=1,$ $n$ , are i.i.$d$ . as
$t_{p-1}(0, I_{p-1},15)$ , where $z_{1j}$ and $(z_{2j}, z_{pj})^{T}$ are independent for each $j$ ; and (c) $X$ is Gaussian. Note
that (A-ii) does not hold for (a) and (b). For (c), (A-ii) holds. Also, note that $t(O, I_{p}, \nu)\Rightarrow N_{p}(0, I_{p})$ as
$\nuarrow\infty.$

The findings were obtained by averaging the outcomes from 2000 $(=R, say)$ replications. Under a
fixed scenario, suppose that the r-th replication ends with estimates, $\hat{\lambda}_{1r},$ $\tilde{\lambda}_{1r}$ and $\acute{\lambda}_{1*r}$ for $r=1,$ $R.$

Let us simply write $\hat{\lambda}_{1}=R^{-1}\sum_{r=1}^{R}\hat{\lambda}_{1r},$ $\tilde{\lambda}_{1}=R^{-1}\sum_{r=1}^{R}\tilde{\lambda}_{1r}$ and $\acute{\lambda}_{1*}=R^{-1}\sum_{r=1}^{R}\acute{\lambda}_{1*r}$ . We

also considered the Monte Carlo variability. Let $var(\hat{\lambda}_{1}/\lambda_{1})=(R-1)^{-1}\sum_{r=1}^{R}(\hat{\lambda}_{1r}-\hat{\lambda}_{1})^{2}/\lambda_{1}^{2},$

$var(\tilde{\lambda}_{1}/\lambda_{1})=(R-1)^{-1}\sum_{r=1}^{R}(\tilde{\lambda}_{1r}-\tilde{\lambda}_{1})^{2}/\lambda_{1}^{2}$ and $var(A_{1*}/\lambda_{1})=(R-1)^{-1}\sum_{r=1}^{R}(\acute{\lambda}_{1*r}-\acute{\lambda}_{1*})^{2}/\lambda_{1}^{2}.$

Then, we gave $\hat{\lambda}_{1}/\lambda_{1},$ $\tilde{\lambda}_{1}/\lambda_{1}$ and $\acute{\lambda}_{1*}/\lambda_{1}$ for $p=2^{k}(k=4, \ldots 10)$ in the left panel of Fig. 1. In the right
panel of Fig. 1, we gave $var(\hat{\lambda}_{1}/\lambda_{1})$ , $var(\tilde{\lambda}_{1}/\lambda_{1})$ , and $var(\acute{\lambda}_{1*}/\lambda_{1})$ .
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Throughout, the conventional estimator, $\hat{\lambda}_{1}$ , gave bad performances. In case of (a), $\tilde{\lambda}_{1}$ by the NR

method did not give always preferable performances especially when $p$ is large. This is probably due to

$v=5$ that is not large enough for $X$ to satisfy (A-ii). Contrary to that, $\acute{\lambda}_{1*}$ by the CDM method showed

a quite good performance in (a). The NR method improved the performance in (b) and gave an excellent

performance in (c) that satisfies (A-ii). We also observed that the NR method improves the Monte Carlo
variability as well. Contrary to that, the CDM method does not improve the Monte Carlo variability.
Thus, we conclude that if one can assume (A-ii), we recommend the NR method. Otherwise, one may
use the CDM method freely from the assumption.

$\prime$

$arrow\hat{\lambda}_{1}/\lambda_{1}$

$rightarrow\tilde{\lambda}_{1}/\lambda_{1}$

$–\blacksquare.\prime$

’
$arrow\acute{\lambda}_{1}./\lambda_{1}$

10
$12l\circ g_{2}p$

(a) $z_{1j},$ $j=1,$ $n$ , are i.i.$d$ . as $N(O, 1)$ and $(z_{2j}, z_{pj})^{T},$ $j=1,$ $n$ , are i.i.$d$ . as $t_{p-1}(0, I_{p-1},5)$ .

(b) $z_{1j},$ $j=1,$ $n$ , are i.i.$d$ . as $N(O, 1)$ and $(z_{2j}, z_{pj})^{T},$ $j=1,$ $n$ , are i.i.$d$ . as $t_{p-1}(0, I_{p-1},15)$ .
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(c) When X is Gaussian.

Figure 1. The values of $\hat{\lambda}_{1}/\lambda_{1},$ $\tilde{\lambda}_{1}/\lambda_{1}$ and $\acute{\lambda}_{1*}/\lambda_{1}$ for $p=2^{k}(k=4, \ldots 12)$ in the left panel.
The values of $var(\hat{\lambda}_{1}/\lambda_{1})$ , $var(\tilde{\lambda}_{1}/\lambda_{1})$ , and $var(\acute{\lambda}_{1*}/\lambda_{1})$ for $p=2^{k}(k=4, \ldots 12)$ in the right panel.
In the right panel, the dashed lines denote $var((n-1)^{-1}\chi_{n-1}^{2})=0.222$ and the chain lines denote

$var(c^{-1}\sqrt{\chi_{(1)n_{1}-1}^{2}}\sqrt{\chi_{(2)n_{2}-1}^{2}})=0.281.$

4.2 Confidence Interval of the First Contribution Ratio

In order to study the performance of the confidence interval of the contribution ratio for the first principal
component by (3.1), we used computer simulations. Our goal was to construct a 95% confidence interval
by (3.1), so we set $\alpha=0.05,$ $a=\chi_{n-1}^{2}$ (0.975) and $b=\chi_{n-1}^{2}$ (0.025), where $\chi_{\nu}^{2}(\beta)$ denotes the
upper $\beta$ point of $\chi_{\nu}^{2}$ . We considered the cases of $p=20$ , 100, 500 and 2500 when $n=10$ . We set
$\Sigma=$ diag $(\lambda_{1}, \lambda_{p})$ with $\lambda_{1}=p^{2/3}$ and $\lambda_{2}=\cdots=\lambda_{p}=1$ . We considered $x_{j},$ $j=1,$ $n$ , as
$z_{1j}$ being distributed as $N(O, 1)$ and $z_{ij},$ $i=2,$ $p$ , being i.i.$d$ . as $t_{p-1}(0, I_{p-1},5)$ , where $z_{1j}$ and
$(z_{2j}, z_{pj})$ are independent. Note that (A-i) and (A-ii) hold, however ($A$-iii) does not hold.

Independent pseudorandom 2000 $(=R, say)$ observations of $\tilde{\lambda}_{1}$ and $\hat{\kappa}$ were generated from the dis-
tribution. Let $\tilde{\lambda}_{1r}$ and $\hat{\kappa}_{r}$ be the r-th observation of $\tilde{\lambda}_{1}$ and $\hat{\kappa}$ respectively, for $r=1$ , R. $1xt$ us simply
write $\tilde{\lambda}_{1}=R^{-1}\sum_{r=1}^{R}\tilde{\lambda}_{1r}$ and $\hat{\kappa}=R^{-1}\sum_{r=1}^{R}\hat{\kappa}_{r}$ . We also considered the Monte Carlo variability. Let
$var(\tilde{\lambda}_{1}/\lambda_{1})=(R-1)^{-1}\sum_{r=1}^{R}(\tilde{\lambda}_{1r}-\tilde{\lambda}_{1})^{2}/\lambda_{1}^{2}$ and $var(\hat{\kappa}/\kappa)=(R-1)^{-1}\sum_{r=1}^{R}(\hat{\kappa}_{r}-\hat{\kappa})^{2}/\kappa^{2}$ . In the end
of the rth replication, we checked whether $\lambda_{1}/tr(\Sigma)$ does (or does not) belong to the corresponding con-
fidence interval and defined $P_{r}=1$ (or O) accordingly. Let $\overline{P}(0.95)=R^{-1}\sum_{r=1}^{R}P_{r}$ , which estimates
the target coverage probability, having its estimated standard error $s\{\overline{P}(0.95)\}$ , where $s^{2}\{\overline{P}(0.95)\}=$

$R^{-1}\overline{P}(0.95)(1-\overline{P}(0.95))$ . In Table 2, we gave $\overline{P}(0.95)$ , $s\{\overline{P}(0.95)\},$ $\tilde{\lambda}_{1}/\lambda_{1},$ $var(\tilde{\lambda}_{1}/\lambda_{1})$ , $\hat{\kappa}/\kappa$ and
$var(\hat{\kappa}/\kappa)$ . We observed from Table 2 that $\overline{P}(0.95)s$ become close to 0.95 as $p$ increases. In addition,
$var(\tilde{\lambda}_{1}/\lambda_{1})s$ become close to $Var(\chi_{n-1}^{2}/(n-1))=2/(n-1)\approx 0.222$ as $p$ increases.

Table 2. The coverage probability of the first contribution ratio, $\overline{P}(0.95)$ , together with $\tilde{\lambda}_{1}/\lambda_{1},$
$\hat{\kappa}/\kappa$ and

their standard errors in parentheses.
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A Appendix

The following lemma was given by Ishii et al. (2014).

Lemma A.l. Assume $P(hm_{parrow\infty}||z_{01}||\neq 0)=1$ . Under (A-i) and (A-ii), it holds that as $parrow\infty$

$\frac{tr(\Sigma)-\lambda_{1}}{\lambda_{1}(n-1)}-\frac{tr(S_{D})-\hat{\lambda}_{1}}{\lambda_{1}(n-2)}=o_{p}(1)$ .

Proofs of Theorem 2.2, Corollaries 23 and 2.4. Let $1_{n}=$ $(1, 1)^{T}\in R^{n}$ . We note that $\acute{u}_{1(i)}^{T}1_{n_{i}}=$

$0,$ $i=1$ , 2, with probability tending to 1 under $P( \lim_{parrow\infty}||z_{o\iota 1}||\neq 0)=1,$ $i=1$ , 2. Also, note that

$z_{oi1}^{T}1_{n_{i}}=0,$ $i=1$ , 2. Thus from (22), we have that $\acute{u}_{1(i)}arrow P(z_{oi1}/\sqrt{n_{i}-1})/||z_{o\iota 1}/\sqrt{n_{i}-1}||,$ $i=$

$1$ , 2, so that it concludes the result of Theorem 22. Note that $||z_{oi1}||^{2}= \sum_{k=1}^{n_{i}}z_{i1k}^{2}-n_{i}\overline{z}_{i1}^{2}$ is distributed
as $\chi_{n_{1}-1}^{2}$ for $i=1$ , 2, if $z_{1j},$ $j=1,$ $k$ , are i.i.$d$ . as $N(O, 1)$ . Thus we can conclude the results of

Corollaries 2.3 and 2.4. $\square$

Proof of Theorem 3.1. Under $\lim\inf_{parrow\infty}\kappa/\lambda_{1}>0$ , from Lemma A.1, it holds that as $parrow\infty$

$\hat{\kappa}/\kappa=1+o_{p}(1)$ . From Corollary 2.1, it holds under (A-i) and (A-ii) that

$P( \frac{\lambda_{1}}{tr(\Sigma)}\in[\frac{(n-1)\tilde{\lambda}_{1}}{b\hat{\kappa}+(n-1)\tilde{\lambda}_{1}}, \frac{(n-1)\tilde{\lambda}_{1}}{a\hat{\kappa}+(n-1)\tilde{\lambda}_{1}}])=P(\frac{(n-1)\tilde{\lambda}_{1}}{b\hat{\kappa}+(n-1)\tilde{\lambda}_{1}}\leq\frac{\lambda_{1}}{tr(\Sigma)}\leq\frac{(n-1)\tilde{\lambda}_{1}}{a\hat{\kappa}+(n-1)\tilde{\lambda}_{1}})$

$=P( \frac{a\hat{\kappa}}{(n-1)\tilde{\lambda}_{1}}\leq\frac{\kappa}{\lambda_{1}}\leq\frac{b\hat{\kappa}}{(n-1)\tilde{\lambda}_{1}})=P(a\leq(n-1)\frac{\tilde{\lambda}_{1}}{\lambda_{1}}\leq b)+o(1)=1-\alpha+o(1)$ .

It concludes the result. $\square$
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