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1 Introduction

The $SL_{2}(\mathbb{C})$-character varieties of a 3-manifold is known to be a powerful tool for the study of

3-manifolds. It is showed by the work of Culler-Shalen in [4] that they can be used to construct

essential surfaces in the 3-manifolds. $SL_{2}(\mathbb{C})$-character varieties are algebraic varieties defined

by finite number of polynomials with rational coefficients (precisely they are affine algebraic

sets). Later another invariant, $A$ -polynomials are defined in [3] for 3-manifolds with one cusp,
which enabled us to study the essential surfaces coming from the $SL_{2}(\mathbb{C})$-character varieties

more directly.

Hasse-Weil zeta functions in the title are natural generalization of the Dedekind zeta functions

for algebraic varieties over number fields. As we could see in the class number formula for the

Dedekind zeta functions and the Birth and Swinnerton-Dyer conjecture for elliptic curves, we

expect that they inherit geometric and number theoretic properties of the varieties.

In this note we consider Hasse-Weil zeta functions of the $SL_{2}(\mathbb{C})$-character varieties of certain

hyperbolic 3-manifolds and the $A$-polynomials of torus knots, and study what kind of topologi-

cal information appears in the description of the zeta functions.

2 Hasse-Weil zeta functions of polynomials

2.1 Local zeta function

Let $p$ be a prime number and $\mathbb{F}_{p^{n}}$ the finite field with $p^{n}$ elements. For given finite number of

polynomials $f_{1},$ $\cdots$ , $f_{r}\in \mathbb{Z}[X_{1}, \cdots, X_{m}]$ we denote by $V(f_{1}, \cdots , f_{r};\mathbb{F}_{t^{t}})$ the set of $\mathbb{F}_{p^{n}}$ -rational

points of $f_{1},$ $\cdots,$ $f_{r}$ :

$V(\mathbb{F}_{〆}):=V(f_{1}, \cdots, f_{r};\mathbb{F}_{〆})=\{(a_{1}, \cdots, a_{m})\in(\mathbb{F}_{p^{n}})^{m}|f_{1}(a_{1}, \cdots, a_{m})=\cdots=f_{r}(a_{1}, \cdots,a_{m})=0\}.$

Then the local (congruence) zeta function of $V$ at $p$ is defined by

$Z(V, p, T):= \exp(\sum_{n=1}^{\infty}\frac{\# V(\mathbb{F}_{p^{n}})}{n}T^{n})\in \mathbb{Q}[T\Pi.$
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Here

$\exp(T):=\sum_{n=0}^{\infty}\frac{1}{n!}T^{n}, \log(\frac{1}{1-T})=\sum_{n=1}^{\infty}\frac{1}{n}T^{n}.$

Example 2.1. Consider the case $f=X\in \mathbb{Z}[X]$ and $V=V(f)$ . Then it is clear that $V(\mathbb{F}_{p^{n}})=\{0\}.$

Therefore $\# V(\mathbb{F}_{p^{n}})=1$ and we have

$Z(V, p, T)= \exp(\sum_{n=1}^{\infty}\frac{1}{n}T^{n})=\frac{1}{1-T}.$

Example 2.2. When $f=X^{2}+1\in \mathbb{Z}[X]$ . In this case

$\# V(f)(\mathbb{F}_{p^{n}})=\{\begin{array}{l}1, p=2,02,’ p\neq 2p\neq 2,’\}_{\frac{}{}}^{\frac{-1}{-1pp}}\{_{=-1,n\equiv 1(mod 2)}=1or(\frac{-1}{p})=-1,n\equiv 0 (mod 2) ,\end{array}$

Here $( \frac{-1}{p})$ is the Legendre symbol. Thus we have

$Z(V, p, T)=\{\begin{array}{ll}1/(1-T) , p=2,1/(1-T^{2})1/(1-T)^{2},’ p\neq 2p\neq 2, \}_{\frac{}{}}^{\frac{-1}{-1pp}}[Case]\end{array}$

In general it is known that $Z(V, p, T)$ is a rational function.

Theorem 2.3 (Dwork [5]). $Z(V, p, T)$ is a rational function.
Remark2.4. This is true for schemes of finite type over $\mathbb{Z}$ . In particular, $Z(V, p, T)$ is a rational
function for any open set $V$ (e.g. irreducible part of a character variety).

Hence we can write down $Z(V, p, T)$ as a product of monomials as

$Z(V, p, T)= \exp(\sum_{n=1}^{\infty}\frac{\# V(\mathbb{F}_{p^{\int/}})}{n}T^{n})=\frac{\prod_{i}(1-\alpha_{i}T)}{\prod_{j}(1-\beta_{j}T)}.$

where $\alpha_{i},\beta_{j}\in \mathbb{C}$ are algebraic numbers. Then we have

$\# V(\mathbb{F}_{p^{n}})=\sum_{j}\beta_{j}^{n}-\sum_{i}\alpha_{i}^{n} (\alpha_{j},\beta_{j}\in \mathbb{C})$ .

Therefore if it is possible to compute $Z(V, p, T)$ then we can obtain $(\# V(\mathbb{F}_{p^{n}}))_{n}$ . Moreover we
can also expect to study the qualitative properties of $(\# V(\mathbb{F}_{p^{\prime 1}}))_{n}$ like the Weil conjecture for

smooth projective varieties over finite fields.

TYpical examples of algebraic sets in Algebraic topology are the following two cases:
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$\bullet$ The set of $SL_{2}(\mathbb{C})$-representations of a finitely presented group

$\bullet$ $SL_{2}(\mathbb{C})$-character variety of a finitely presented group

It is not known whether the set of conjugacy classes of $SL_{2}(\mathbb{F}_{\rho^{l1}})$-representations of a finitely

presented group is an algebraic set or not. (It is true that the set of conjugacy classes of abso-

lutely irreducible $SL_{2}(\mathbb{F}_{p^{n}})$-representations of a finitely presented group is an algebraic set.) I

will list up some work in this direction. For detail, see the corresponding references.

$\bullet$ Work of Sink [24].

$\bullet$ Computation of the number of conjugacy classes of $SL_{2}(F_{q})$-representations of torus knot

groups (Li, Xu [16, 17

$\bullet$ Computation of the number of conjugacy classes of $SL_{2}(\mathbb{F}_{p})$ (surjective) representations

of knots in the Rolfsen’s table (Kitano,Suzuki [13]).

2.2 Hasse-Weil zeta function

For given polynomials $f_{1},$ $\cdots$ , $f_{r}\in \mathbb{Z}[X_{1}, \cdots, X_{m}]$ its Hasse-Weil zeta function is defined by

the product of the local zeta functions as follows:

$\zeta(V, s):=\zeta(V(f_{1}, \cdots,f_{r}), s):=\prod_{p:pnme}Z(V, p, p^{-s})$ .

$\zeta(V, s)$ converges absolutely in ${\rm Re}(s)>\dim V(f_{1}, \cdots , f_{r})$ ([22]). It is conjectured to have mero-
morphic continuation but it is not known in general ([21]).

Example 2.5 (Riemann zeta function). If $f=X\in \mathbb{Z}[X]$ then as we see in the previous subsec-

tion we have $Z(V, p, T)=1/(1-T)$ . Therefore we have

$\zeta(V, s):=\prod_{p:pnme}(1-p^{-s})^{-1}=\zeta(s)$
,

which is the Riemann zeta function.

In general, if $K$ is an algebraic number field (finite extension field of $\mathbb{Q}$), its ring of integers
$O_{K}$ is a finitely generated algebra. Hence it is written as $0_{K}arrow\sim \mathbb{Z}[X_{1}, \cdot , X_{m}]/(f_{1}, \cdots,f_{r})$ .

Therefore

$\zeta(V, s)=\zeta(K, s)$
$:= \prod_{p:non-aeropnme}(1-N(\mathfrak{p})^{-s})^{-1}$

: Dedekind zeta function

where $N(\mathfrak{p})=\#(0_{K}/\mathfrak{p})$ is the norm of the prime ideal $\mathfrak{p}$ . However the polynomials which

generate the kernel is difficult to compute in general. Here we present one well-known case.
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Example 2.6 (zeta of cyclotomic polynomial). Let $\Phi_{d}(X)$ be the d-th cyclotomic polynomial,
namely the minimal polynomial of a primitive d-th root $\zeta_{d}$ of unity. For small $d$ , we have

$\Phi_{1}(X)=X-1, \Phi_{2}(X)=X+1, \Phi_{3}(X)=X^{2}+X+1, \Phi_{4}(X)=X^{2}+1.$

Let $\mathbb{Q}_{d}$ $:=\mathbb{Q}(\zeta_{d})$ be the d-th cyclotomic field. It is well-known that the ring of integers $(9_{d}$ of
$\mathbb{Q}_{d}$ is equal to $\mathbb{Z}[\zeta_{d}]$ (cf. [29]). Hence we have $0_{d}arrow\sim \mathbb{Z}[X]/(\Phi_{d}(X))$ . Therefore we see that
$\zeta(\Phi_{d}(X), s)=\zeta(\mathbb{Q}_{d}, s)$ . For instance $\zeta(X^{2}+1, s)=\zeta(\mathbb{Q}(\sqrt{-1}), s)$ .

3 Hasse-Weil zeta functions of hyperbolic 3-manifolds

3.1 $SL_{2}\cdot$character variety

Here we briefly review the definition of the $SL_{2}(\mathbb{C})$-character variety. For details, see the
original paper [4] or [23].
Let $M$ be an orientable complete hyperbolic 3 manifold with finite volume. Let $X(M)$ be the

set of the characters of $SL_{2}(\mathbb{C})$-representations of $\pi_{1}(M)$ , namely

$X(M)$ $:=$ {characters of $\rho$ : $\pi_{1}(M)arrow SL_{2}(\mathbb{C})$ }.

The set $X(M)$ is known to be an (affine) algebraic set over $\mathbb{Q}$ , that is, it is expressed as the
set of zeros of some finite number of polynomials with coefficients in $\mathbb{Q}$ . Let $X_{0}(M)$ be an
irreducible component of $X(M)$ which contains the character corresponding to the holonomy
representation of $M$, which is called a canonical component of $M$. In general it is not known

about the dimension of $X(M)$ . However the following result is known for the dimension of

$X_{0}(M)$ .

Theorem 3.1 (Thurston [25]). if $M$ is a complete hyperbolic 3 manifold with cusp $n$ then
$\dim X_{0}(M)=n.$

There is a way to compute the defining polynomials of $X(M)$ from a given group presentation
of the fundamental group $\pi_{1}(M)$ of $M$. For an concrete example, see for instance [18] for

two-bridge knots by Riley’s method, and see [7] in the general case.

3.2 Hasse-Weil zeta function of $M$

Now we define the Hasse-Weil zeta function of a hyperbolic 3 manifold $M$ . Since $X(M)$ is an
affine algebraic set over $\mathbb{Q}$ there are finitely many polynomials in $\mathbb{Q}[X_{1}, \cdots, X_{m}]$ . Thus we can
obtain polynomials in $\mathbb{Z}[X_{1}, \cdots, X_{m}]$ by multiplying the above polynomials by some positive
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integer. Let $Z(X(M),p, T)$ be the local zeta function for those polynomials. Then define $\zeta(M, s)$

by the following:

$\zeta(M, s):=\prod_{p:prime}Z(X(M), p, p^{-s})$ .

Remark 3.2. There is an ambiguity to take the defining polynomials of $X(M)$ with integer

coefficients. However we can see that it only affects difference of rational functions in $p^{-s}$ for

finitely many primes $p$ . Thus $\zeta(M, s)$ is defined up to rational functions in $\mathbb{Q}(p^{-s})$ for finitely

many prime numbers $p$ . In the following examples we will abbreviate these rational functions

even for the zeta functions of polynomials with integer coefficients.

3.3 Hasse-Weil zeta functions of the figure 8 knot, two.bridge knots

The description of the $SL_{2}(\mathbb{C})$-character variety of the figure 8 knot complement $M_{8}$ in $S^{3}$ is

well-known. It is defined by the polynomial

$(x^{2}-y-2)(y^{2}-(1+x^{2})y+2x^{2}-1)=0.$

The canonical component of $M_{8}$ is the elliptic curve defined by $(y^{2}-(1+\nearrow)y+2x^{2}-1)=0.$

Its Weierstrass model is $E:Y^{2}=X^{3}-2X+1$ . This is an elliptic curve over $\mathbb{Q}$ whose conductor

is 40. The curve $x^{2}-y-2=0$ corresponds to the points of the reducible characters. It would

depend on the situation whether we should consider the zeta function of the whole character

variety or just the canonical component. Here we present the zeta function of the irreducible

part of $X(M_{8})$ .

3.3.1 Hasse.Weil zeta function of flgure 8 knot

Theorem 3.3 (H. [9]).

$\zeta(M_{8}, s)=\frac{\zeta(E,s)}{\zeta(s)\zeta(\mathbb{Q}(\sqrt{5}),s)},$

At present it is difficult to study the Hasse-Weil zeta functions of algebraic varieties in general.

Except the dimension $0$ case (Dedekind zeta case), elliptic curves over $\mathbb{Q}$ are the almost only

case we can study some properties of the zeta functions in the general setting. Since the above

elliptic curve has analytic rank $0$ , we can also study its special values,

$\bullet$ If we consider the following completed function

$\xi(M_{8}, s):=\frac{4\pi^{(3s/2)+1}}{(10\sqrt{2})^{s}\Gamma(s\int 2)^{3}}\cross\zeta(M_{8}, s)$

it has a functional equation $\xi(M_{8},2-s)\xi(2-s)\xi(\mathbb{Q}(\sqrt{5}), 2-s)=-\xi(M_{8}, s)\xi(s)\xi(\mathbb{Q}(\sqrt{5}), s)$ .
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$\bullet$ The special value of $\xi(M_{8}, s)$ at $s=1$ is computed as

$\lim_{sarrow 1}\frac{\xi(M_{8},s)}{s-1}=-\frac{AGM(\varphi,\varphi-1)}{\sqrt{10}\log(\varphi)}.$

Here $\varphi=(\sqrt{5}+1)/2$ and $AGM(\varphi, \varphi-1)$ is the arithmetic geometric mean.

We remark that here the Hasse-Weil zeta function $\zeta(E, s)$ means the Hasse-Weil zeta function

of the projective model of the affine curve $E:Y^{2}=X^{3}-2X+1.$

For any Laurent polynomial $P=P(t_{1}, \cdots , t_{n})\in \mathbb{C}[t_{1}^{\pm 1}, \cdots, t_{n}^{\pm 1}]$ the Mahler measure of $P$ is

defined by

$m(P) := \int_{0}^{1}\cdots\int_{0}^{1}\log|P(e^{2\pi t\downarrow\sqrt{-1}}, \cdots, e^{2\pi t_{n^{\sqrt{-1}}}})|dt_{1}\cdots dt_{n}.$

There are some research trying to find geometric interpretation of the Mahler measures of poly-
nomial invariants in Algebraic Topology. For instance see [1]. Since $\zeta(M_{8}, s)$ has a functional

equation between $s$ and $2-s$, special values at $s=1$ , 2 should be the most interesting ones.
We have some interpretation of the special values of $\zeta(M_{8}, s)$ at $s=1$ , 2 in terms of the Mahler

measures of certain polynomials.

$\bullet$ $\log(\varphi^{2})=m(\Delta_{7\subset}(T))$ , where $\Delta_{7C}(T)$ is the Alexander polynomial o$f^{(}K.$

$\bullet$ $AGM(\varphi, \varphi-1)=\frac{1}{2}(\frac{d}{dk}m(P_{k})(\sqrt{5}))^{-1}$ . Here $P_{k}$ $:=x+ \frac{1}{x}+y+\frac{1}{y}-4k$ is a family of elliptic

curves $for4k\neq 0$, 1.

Remark 3.4. The special Value at $s=2$ is as follows.

$\lim_{sarrow 2}(s-2)\xi(M_{8}, s)=\frac{75}{2\sqrt{5}\pi^{2}\mathcal{L}(E,2)}.$

Here $\mathcal{L}(E, s)$ is the completed $L$-series of $E/\mathbb{Q}$ . It is numerically observed by Rodriguez-

Villegas ([27], TABLE 4) that $\mathcal{L}_{E/Q}(2)$ would be equal to $m(P_{\sqrt{-4}/4})$ . In fact this has been

confirmed by Mellit ([20]).

3.3.2 Two-bridge knots case

We would like to obtain similar results to the figure 8 knot case for more general families of

knots. Hence it is natural to consider the two-bridge knots case for this purpose.
It is known that the $SL_{2}(\mathbb{C})$-character varieties of the two-bridge knots have dimension 1. Still

it is not so easy to study the algebraic geometric properties of their character varieties.
Macasieb, Petersen, Van Luijk [18] have studied the genus of $SL_{2}(\mathbb{C})$ -character curves of

certain family of hyperbolic two-bridge knots which contains all the twist knots. In that family

of two-bridge knots, only two canonical curves have genus 1, elliptic curves.
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Example 3.5. Up to $(a, b)(a, b<50)$ , In the 5 cases $(5, 2)$ $=4_{1},$ $(15, 4)$ $=7_{4},$ $(21, 8)$ $=$

$7_{7},$ $(27, 8)=8_{11},$ $(45, 14)=10_{21}$ canonical curves are elliptic curves.

Question 3.6. Are there finitely many elliptic curves appeared as canonical components of
$SL_{2}(\mathbb{C})$-character varieties ofhyperbolic two-bridge knots.?

3.4 Hasse.Weil zeta function of arithmetic $two\cdot$bridge link

An arithmetic hyperbolic 3-manifold is a special class of hyperbolic 3-manifolds. They are
relatively simple among hyperbolic 3-manifolds, since their commensurable classes are de-

termined by the pair of the invariant trace fields and the invariant quaternion algebras asso-
ciated with the arithmetic 3-manifolds. It is also known that the smallest volume hyperbolic

3-manifolds with cusp $0$ , 1, 2 are arithmetic. For details, see [19].

In what follows, we use the notation ‘arithmetic’ in somewhat strict sense. Namely, a hyper-

bolic 3 manifold $M$ is arithmetic when the image of the holonomy representation $\rho_{M}$ : $\pi_{1}(M)arrow$

$SL_{2}(\mathbb{C})$ is in $SL_{2}(O)$ up to conjugacy, where $0$ is the ring of integers of some number field.

Theorem 3.7 (Gehring, Maclachlan, Martin [6]). Arithmetic two-bridge links in the 3,sphere

are thefigure8knot, the Whitehead link $5_{1}^{2}=(8,3)$ , $6_{2}^{2}=(10,3)$, $6_{3}^{2}=(12,5)$ .

Here we consider the canonical components of $SL_{2}(\mathbb{C})$-character varieties of the Whitehead

link, $6_{2}^{2},$ $6_{3}^{2}.$

Defining polynomials of the canonical components of the Whitehead link, $6_{2}^{2},$ $6_{3}^{2}$ in $\mathbb{C}^{3}$ are

$f_{0}:=z^{3}-xyz^{2}+(x^{2}+y^{2}-2)z-xy,$

$f_{1} :=z^{4}-xyz^{3}+(\fbox{Error::0x0000}+y^{2}-3)z^{2}-xyz+1,$

$f_{2}:=z^{3}-xyz^{2}+(x^{2}+y^{2}-1)z-xy.$

These surfaces $V(f)\subset \mathbb{C}^{3}$ are smooth affine surfaces.

Put
$\mathbb{P}^{2}\cross \mathbb{P}^{1}:=\{(x:y:u, z:w)|(x:y:u)\in \mathbb{P}^{2}, (z:w)\in \mathbb{P}^{1}\}.$

Consider the compactification $X(F_{i})\subset \mathbb{P}^{2}\cross \mathbb{P}^{1}$ of these surfaces in $\mathbb{P}^{2}\cross \mathbb{P}^{1}$ . Here

$F_{0} :=u^{2}z^{3}-xyz^{2}w+(\fbox{Error::0x0000}+y^{2}-2u^{2})zw^{2}-xyw^{3},$

$F_{1} :=u^{2}z^{4}-xyz^{3}w+(l+y^{2}-3u^{2})z^{2}w^{2}-xyzw^{3}+u^{2}w^{4},$

$F_{2} :=u^{2}z^{3}-xyz^{2}w+(\fbox{Error::0x0000}+y^{2}-u^{2})zw^{2}-xyw^{3}.$

The surfaces $X(F_{i})\subset \mathbb{P}^{2}\cross \mathbb{P}^{1}$ are considered as (singular) conic bundles over $\mathbb{P}^{1}$ by $(x:y:u,$ $z$ :

$w)\mapsto(z:w)$ (Landes [14, 15], H. [8]), which enables us to compute the number of $\mathbb{F}_{q}$-rational

points of $F_{j}.$
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Theorem 3.8 (H. [10]). Let $X_{0},$ $X_{1},$ $X_{2}$ be the canonical components of the Whitehead link $5_{1}^{2}=$

$(8,3)$ , $6_{2}^{2}=(10,3),$ $6_{3}^{2}=(12,5)$ . Then we have

$\zeta(X_{0}, s)=\zeta(\mathbb{Q}(\sqrt{2}), s-1)\zeta(s)^{2}\zeta(s-1)^{2}\zeta(s-2)$ .
$\zeta(X_{1}, s)=\zeta(\mathbb{Q}(\sqrt{5}), s-1)^{2}\zeta(s)^{3}\zeta(s-2)$ .

$\zeta(X_{2}, s)=\zeta(s)^{2}\zeta(s-2)$ .

Remark 3.9. Note that

$\mathbb{Q}(\sqrt{2})$ , $\mathbb{Q}(\sqrt{5})$ , $\mathbb{Q}$ for $\zeta(X_{i}, s)=\mathbb{Q}(\begin{array}{lll}\mathbb{P}^{1}- coordinatesallthe ofthedegenerate fi bers \circ fX_{i}\end{array})$ . They are different from

the trace fields (invariant trace fields) $\mathbb{Q}(\sqrt{-1})$ , $\mathbb{Q}(\sqrt{-3})$ and $\mathbb{Q}(\sqrt{-7})$ of $5_{1}^{2},$ $6_{2}^{2}$ and $6_{3}^{2}.$

Remark 3.10. $X_{i}$ is birationally equivalent to $\mathbb{P}^{2}$ . However the zeta functions of $A_{Q}^{2},$ $\mathbb{P}_{\mathbb{Q}}^{2}$ are
$\zeta(A_{\mathbb{Q}}^{2}, s)=\zeta(s-2)$ , $\zeta(\mathbb{P}_{\mathbb{Q}}^{2}, s)=\zeta(s)\zeta(s-1)\zeta(s-2)$ .

Recently the following result was obtained, which contains The Whitehead link, $6_{2}^{2}$ cases.

Theorem 3.11 (Tran [26]). The $SL_{2}(\mathbb{C})$-character varieties of the two-bridge link $(2m, 3)(m\neq$

3) have 2 irreducible components. Canonical components are defined in terms of Chebyshev
polynomials. Their compactification have conic bundle structure.

In general, the canonical components of the $SL_{2}(\mathbb{C})$-character variety of a hyperbolic two-
bridge link do not have a conic bundle structure over $\mathbb{P}^{1}$ (For examples, see [14, 15 However
we might expect the following.

Question 3.12. Does the canonical component of the $SL_{2}(\mathbb{C})$ -character variety ofa hyperbolic
two-bridge link have afibered structure over $\mathbb{P}^{1_{7}}.$

3.5 Hasse.Weil zeta function of closed arithmetic 3 manifold

Here we present some examples of the Hasse-Weil zeta functions of the irreducible part of
the $SL_{2}(\mathbb{C})$-character varieties of closed arithmetic 3-manifolds with small volumes.
In the table below $X(M)_{1rr}(\mathbb{C})$ means the open subset of the $SL_{2}(\mathbb{C})$-character variety of $M$

consisting of irreducible characters, $K_{M}$ is the trace field $\mathbb{Q}(Tr\rho_{M}(\pi_{1}(M))$ of $M$, where $\rho_{M}$ de-
notes the holonomy representation of $M$ . Note that in the examples below the character varieties
$X(M)$ have dimension O.
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The Hasse-Weil zeta functions $\zeta(X(M)_{1rr}, s)$ are equal to the Dedekind zeta functions of the trace

fields of $M$ (up to $\mathbb{Q}(p^{-s})$ for finitely many primes $p$ ). Thus we may expect the following.

Question 3.13. Let $M$ be an (arithmetic) closed 3 manifold and $K_{M}$ the tracefield ofM. Then

$\zeta(M, s)=\zeta(K_{M}, s)$ ?

Moreover,

$\zeta(M, s)=\zeta(M’, s)\Leftarrow\Rightarrow K_{M^{arrow}}^{\sim}K_{M’}$ ?

The second statement might be true since this is true for invariant trace fields as follows.

Theorem 3.14 (Chinburg, Hamilton, Long, Reid [2]). Let $K,$ $K’$ be numberfields having only

one complex place. Then $K$ and $K’$ are isomorphic ifand only if $\zeta(K, s)=\zeta(K’, s)$ .

4 Hasse-Weil zeta function of $A$ -polynomials of torus knots

4.1 $A$ -polynomial of knots in $S^{3}$

Here we review some properties of the $A$ -polynomials of knots which are needed in this note.

For details, see the original paper [3].

Let $K$ be a knot in $S^{3}$ and let $\lambda,\mu\in\pi_{1}(S^{3}\backslash K)$ be the canonical longitude and meridian of

$K$ . Let
$R(JC)=\{\rho:\pi_{1}(S^{3}\backslash \etaarrow SL_{2}(\mathbb{C})\}$

be the set of $SL_{2}(\mathbb{C})$-representations of $\pi_{1}(S^{3}\backslash (K)$ and

$R_{U}=$ {$p\in R(7C)|\rho(\lambda),\rho(\mu)$ : upper triangular}

the subset of $R(q()$ consisting of upper triangular matrices in $R(^{t}K$). Then define the eigenvalue

map $\xi$ by
$\xi:R_{U}arrow \mathbb{C}^{\cross}\cross \mathbb{C}^{x}, \rho\mapsto(a_{\rho}(\lambda), a_{\rho}(\mu))$
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if

$\rho(\lambda)=(^{a_{\rho}(\lambda)}0a_{\rho}(\lambda)^{-1)}b_{\rho}(\lambda),$ $\rho(\mu)=(^{a_{\rho}(\mu)}0a_{\rho}(\mu)^{-l)}b_{\rho}(\mu).$

Then we can obtain an algebraic curve in $\mathbb{C}^{2}$ by considering

$\mathbb{C}^{2}\supset\bigcup_{c}\overline{\xi(C)}.$

Here $C$ runs through all the i1Teducible components of $R_{U}$ whose closures $\xi(C)$ in $\mathbb{C}^{2}$ are curves.
Since this is a plane curve, it is defined by $a$ (reduced) polynomial $A_{K}(L, M)\in \mathbb{C}[L, M]$ , namely

$\mathbb{C}^{2}\supset\bigcup_{c}\overline{\xi(C)}=V(A_{K}(L, M$

This polynomial is called the $A$ -polynomial of $\prime\kappa$ . By definition it is defined up to constant,

multiplicity. Here are some properties of the $A$ -polynomials of knots in $S^{3}.$

$\bullet A_{7C}(L, M)\in \mathbb{Z}[L, M],$

$\bullet A_{O}(L, M)=L-1,$

$\bullet L-1|A\prime\kappa(L, M)$ ,

$\bullet$ $(K : non-trivia1\Rightarrow A_{K}(L, M)\neq L-1.$

4.2 Hasse-Weil zeta functions of $A\cdot$polynomials of torus knots

Let $a,$ $b$ be positive integers such that $(a, b)=1$ . The general form of the $A$ -polynomials of

$(a, b)$-torus knots $T(a, b)$ are well-known as follows.

$A_{a,b}(L, M)$ $:=A_{T(a,b)}(L, M)=\{\begin{array}{l}(L-1)(-1+(LM^{ab})^{2}) , if a, b>2,(L-1)(1+LM^{2(2m+1)}) , if (a, b)=(2,2m+1) .\end{array}$

Then the Hasse-Weil zeta functions of $A_{a,b}(L, M)$ are expressed as follows.

Theorem 4.1 (H.-Terashima [11]). Up to rationalfunctions in $\mathbb{Q}(\{p^{-s}\}_{p|2ab})$

the zeta function $\zeta(A_{a,b}(L, M), s)$ is equal to

$\{\begin{array}{ll}(\prod_{d|2ab}\frac{1}{\zeta(\mathbb{Q}_{d},s)}1\frac{\zeta(s-1)^{3}}{\zeta(s)^{2}}, if a, b>2,(\prod_{d|2ab.d(ab}\frac{1}{\zeta(\mathbb{Q}_{d},s)})\frac{\zeta(s-1)^{2}}{\zeta(s)}, if (a, b)=(2,2m+1) .\end{array}$

Example 4.2 (trivial knot). $\zeta(A_{O}(L, M))=\zeta(s-1)$ .
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Example 4.3 (trefoil knot). $\zeta(A_{2.3}(L, M), s)=\frac{\zeta(s-1)^{2}}{\zeta(s)}\cross\zeta(\mathbb{Q}_{4}, s)^{-1}\zeta(\mathbb{Q}_{12}, s)^{-1}.$

Example 4.4. $\zeta(A_{2,5}(L, M), s)=\frac{\zeta(s-1)^{2}}{\zeta(s)}\cross\zeta(\mathbb{Q}_{4}, s)^{-1}\zeta(\mathbb{Q}_{20}, s)^{-1}.$

In general the $A$ -polynomial of a knot can be divided by $L-1$ . In fact it is clear from the

definition of the zeta function that $\zeta(A_{a.b}(L, M), s)$ is divided by $\zeta(L-1, s)=\zeta(s-1)$ . Therefore
considering reduced $A$-polynomials divided by $L-1$ might be better in certain cases. However

when we consider the zeta function this is not the case. For each component of the $A$ -polynomial

of a torus knot its zeta function has the following form:

$\zeta(L-1, s)=\zeta(s-1)$ , $\zeta(-1+(LM^{ab})^{2}, s)=\frac{\zeta(s-1)^{2}}{\zeta(s)^{2}},$ $\zeta(1+LM^{2(2m+1)}, s)=\zeta(s-1)/\zeta(s)$ .

Therefore we have to consider the intersection of two components of the $A$ -polynomial to re-

trieve essential information $(in the$ torus knot case, invariants with respect $to a, b)$ .

4.3 Characters of the minimal model

Here we explain a relation between the description of the Hasse-Weil zeta function of the
$A$ -polynomial of a torus knot and the Kashaev invariant of the torus knot.

Let $a,$ $b$ be coprime positive integers and put

$c(a, b)=1- \frac{6(a-b)^{2}}{ab}, h_{n,m}^{a,b}=\frac{(nb-ma)^{2}-(a-b)^{2}}{4ab}.$

Minimal models are a series of infinite dimensional representations of the Virasoro algebra,

namely those are irreducible highest weight representations of the Virasoro algebra with con-
formal weight $h_{n,m}^{a.b}$ and central charge $c(a, b)$ $($where $1\leq n\leq a-1,1\leq m\leq b-1)$ . For details
we refer to [28], Chapter 7.

Especially the normalized character $ch_{n.m}^{a.b}(\tau)$ of a minimal model $\mathcal{M}(a, b)$ has a presentation

in terms of the Dedekind $\eta$-function as follows (cf. [12], [28]):

$ch_{n,m}^{a.b}(\tau)=\frac{\Phi_{n,m}^{a.b}(\tau)}{\eta(\tau)}, \eta(\tau)=q^{\frac{1}{24}}\prod_{k\geq 1}(1-q^{k})$ .

Here $q=e^{2\pi i\tau}$ . Note that

$ch_{n.m}^{a,b}(\tau)=ch_{a-n,b-m}^{a,b}(\tau)=ch_{m,n}^{b.a}(\tau)=ch_{b-m,a-n}^{b,a}(\tau)$ .

Therefore there are $(a-1)(b-1)/2$ characters for the minimal model $\mathcal{M}(a, b)$ . Here

$\Phi_{n.m}^{a,b}(\tau)=\sum_{k=0}^{\infty}\chi_{2ab}^{(n,m)}(k)q^{\frac{k^{2}}{4ab}}.$
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The ’character’ $\chi_{2ab}^{(n,m)}$ : $\mathbb{Z}arrow \mathbb{C}$ is defined by

$\chi_{2ab}^{(n,m)}(k)=\{\begin{array}{ll}1, k\equiv\pm(nb-ma) (mod 2ab) ,-1, k\equiv\pm(nb+ma) (mod 2ab) ,0, otherwise.\end{array}$

Especially we note that $\chi_{2ab}^{(n.m)}(0)=0.$

Remark 4.5. Consider the normalized Alexander polynomial of the torus knot $T(a, b)$

$\Delta_{a,b}(T^{2})=\frac{(T^{ab}-T^{-ab})(T-T^{-1})}{(T^{a}-T^{-a})(T^{b}-T^{-b})}.$

(Here we consider $\Delta_{a.b}(T^{2})$ just for convenience.) Then its ‘inverse’ has the following power

series expansion:

$\frac{T-T^{-1}}{\Delta_{a,b}(T^{2})}=\frac{(T^{a}-T^{-a})(T^{b}-T^{-b})}{(T^{ab}-T^{-ab})}=\sum_{k\geq 0}\chi_{2ab}^{(a-1,1)}(k)T^{-k}.$

4.4 Relation with Quantum invariant

Consider the ’Eichler integral of $\Phi_{n,m}^{a,b}(\tau)$

$\tilde{\Phi}_{n,m}^{a.b}(\tau)=-\frac{1}{2}\sum_{k=0}^{\infty}k\chi_{2ab}^{(n.m)}(k)q^{\frac{k^{2}}{4ab}}.$

When $(n, m)=(a-1,1)$ , the following relation with the Kashaev invariant $\langle T(a, b)\rangle_{N}$ of $T(a, b)$

is known.

Theorem 4.6 (Hikami-Kirillov [12]). $\langle T(a, b)\rangle_{N}=\tilde{\Phi}_{a-1,1}^{a,b}(1/N)\cross\exp(\frac{(ab-a-b)^{2}}{2abN}\pi i)$ .

We would like to see a relation between the function $\tilde{\Phi}_{a-1,1}^{a,b}(1/N)$ and the description of

$\zeta(A_{a,b}(L, M), s)$ .
The asymptotic expansion of $\tilde{\Phi}_{a-1.1}^{a,b}(1/N)$ for $Narrow\infty$ is as follows ([12]):

$\tilde{\Phi}_{n,m}^{a,b}(1/N)+(-iN)^{\frac{3}{2}}-$term $\sim\sum_{k=0}^{\infty}\frac{T^{n.m}(k)}{k!}(\frac{\pi}{2abiN})^{k},$

where
$T^{n,m}(k)= \frac{1}{2}(-1)^{k+1}L(-2k-1,\chi_{2ab}^{(n,m)})$

and $L(s,\chi_{2ab}^{(n.m)})$ is the $L$-function $of\chi_{2ab}^{(n,m)}$ defined by the power series

$L(s, \chi_{2ab}^{(n.m)})=\sum_{k\geq 1}\frac{\chi_{2ab}^{(n.m)}(k)}{k^{s}}$

for ${\rm Re}(s)>1$ , which has a meromorphic continuation to $\mathbb{C}.$
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Remark 4.7. Consider $s=\log T$ for $L(s,\chi_{2ab}^{(n,m)})$ . Then

$\sum_{k\geq 1}\chi_{2ab}^{(n.m)}(k)T^{-\log k}=L(\log T,\chi_{2ab}^{(n,m)})$

When we consider $(n, m)=(a-1,1)$, essentially $L(s,\chi_{2ab}^{(n.m)})$ corresponds to the the previous
power series expansion of the Alexander polynomial $\Delta_{a,b}(T^{2})$ .

From the Fourier transform on finite abelian groups $\chi_{2ab}^{(n,m)}$ is written in terms of the Dirichlet

characters of modulo $2ab$ as follows:

$\chi_{2ab}^{(n,m)}=\frac{1}{\phi(2ab)}\sum_{\chi:even}c_{\chi}(a, b, n,m)\chi,$

where $\phi(2ab)=\#(\mathbb{Z}/2ab\mathbb{Z})^{\cross}$ is the Euler function and $\chi$ runs through all the even Dirichlet

characters modulo $2ab$ $($that $is, \chi(-1)=1$ ), and

$c_{\chi}(a, b, n, m)=2\overline{(\chi(nb-ma)-\chi(nb+ma))}.$

Therefore its $L$-function is written in terms of the $L$-functions of the even Dirichlet characters

modulo $2ab$

$L(s, \chi_{2ab}^{(n,m)})=\frac{1}{\phi(2ab)}\sum_{x:even}c_{\chi}(a, b, n,m)L(s,\chi)$ .

In general the Dedekind zeta functions of abelian number fields are written as the product of
Dirichlet $L$-functions. Especially, in the cyclotomic field case, we have

$\zeta(\mathbb{Q}_{d}, s)=\prod_{\chi}L(s,\chi)$
,

where $\chi$ runs through all the Dirichlet characters modulo $d$ . Therefore

$L(s, \chi_{2ab}^{(n,m)})=\frac{1}{\phi(2ab)}\sum_{\chi:even}c_{\chi}(a, b, n, m)L(s,\chi)$ .

Example 4.8. Consider the $(2, 3)$-torus knot case. In this case, there is only one character
$\chi_{12}^{(1.1)}=\chi_{12}^{(1,2)}$ , which is the unique even Dirichlet character modulo 12. The zeta function
$\zeta(A_{2.3}(L, M), s)$ is expressed as

$\zeta(A_{2,3}(L, M), s)=\frac{\zeta(s-1)^{2}}{\zeta(s)}\cross\zeta(\mathbb{Q}_{4}, s)^{-1}\zeta(\mathbb{Q}_{12}, s)^{-1}.$

Since $(\mathbb{Z}/12\mathbb{Z})^{\cross}$ has 4 characters, the Dedekind zeta function $\zeta(\mathbb{Q}_{12}, s)$ is decomposed into the

product of the Dirichlet $L$-functions

$\zeta(\mathbb{Q}_{12}, s)=\zeta(s)L(s,\chi_{12}^{(1.1)})L(s,\chi_{2})L(s,\chi_{3})$ ,

where $\chi_{2},\chi_{3}$ are the other two odd Dirichlet characters of $(\mathbb{Z}/12\mathbb{Z})^{x}$ . The $L$-function $L(s,\chi_{12}^{(1.1)})$

essentially corresponds to the Alexander polynomial $\Delta_{2,3}(T^{2})$ .
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Question 4.9. Is there a topological interpretation for $\tilde{\Phi}_{n,m}^{a,b}(\tau)$ and $L(s,\chi_{2ab}^{(n,m)})$ for $(n, m)\neq$

$(a-1,1)$ ?

Question 4.10. Is there a direct relation between $\langle T(a, b)\rangle_{N}$ (or colored Jones polynomial of
$T(a, b))$ and $L(s,\chi_{2ab}^{(n.m)})$ $(or other$ components $of\zeta(A_{a,b}(L, M),$ $s)$)?
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