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ABSTRACT. This is a short survey of the paper [F1] where the notion of profinite knots
is introduced and the action of the absolute Galois group of the rational number field
there is constructed.

1. PROFINITE BRAIDS

We briefly review several known facts on Galois actions on profinite braid groups.
Let $B_{n}(n\geq 2)$ be the Artin braid group $B_{n}$ with $n$ -strings is the group with generators

$\sigma_{i}(1\leq i\leq n-1)$ subject to two relations $\sigma_{i}\sigma_{i+1}\sigma_{i}=\sigma_{i+1}\sigma_{i}\sigma_{i+1}$ and $a_{i}\sigma_{j}=\sigma_{j}\sigma_{i}$ for
$|i-j|>1$ . The profinite braid group $\hat{B}_{n}$ means its profinite completion. The following
is one of the basic properties of braid groups (consult [KT], for example).

Lemma 1. The braid group $B_{n}(n\geq 2)$ is residually-finite, that is, the natural map
$B_{n}arrow\hat{B}_{n}$ is injective.

The absolute Galois group $G_{\mathbb{Q}}$ of the rational number field $\mathbb{Q}$ means the profinite group

$G_{\mathbb{Q}}=Gal(\overline{\mathbb{Q}}/\mathbb{Q}):=1\dot{L}mGal(F/\mathbb{Q})$

where the limit runs over all finite Galois extension $F$ of $\mathbb{Q}$ and $Gal(F/\mathbb{Q})$ means its
Galois group. A geometric continuous $G_{\mathbb{Q}}$-action

$\rho_{n}:G_{\mathbb{Q}}arrow Aut\hat{B}_{n}.$

$(n\geq 2)$ , associated with the arithmetic Galois action on the profinite fundamental group
of the moduli space of curves with $(0, n)$-type, is discussed intensively by Drinfeld [D],
Ihara [I], etc.

Proposition 2 $([D, IM A pair (\lambda, f)\in\hat{\mathbb{Z}}^{\cross}\cross\hat{F}_{2}$ can be associated with each $\sigma\in G_{\mathbb{Q}}$

so that the action $\rho_{n}(\sigma)(n\geq 2)$ is given by

$\sigma(\sigma_{i})=f_{1\cdot\cdot i-1,i,i+1}^{-.1}\sigma_{i}^{\lambda}f_{1\cdots i-1,i,i+1} (2\leq i\leq n-1)$ .

Here the symbol $\hat{\mathbb{Z}}$ is the profinite completion of the ring $\mathbb{Z}$ of integers, which is nothing
but the product $\prod_{p}\mathbb{Z}_{p}$ of the ring $\mathbb{Z}_{p}$ of $p$-adic integers ($p$ : a prime). The symbol $\hat{F}_{2}$ is
the profinite completion of the free group $F_{2}$ . For the symbol $f_{1\cdots i-1,i,i+1}$ , see [F1]. The
following is one of the basic properties of the Galois action $\rho_{n}$ , which is a consequence of
$Bely\dot{1}’ S$ theorem [Be].
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Proposition 3. The action $\rho_{n}$ is faithful for $n\geq 3.$

The action is extended into the one of the Grothendieck-Teichm\"uller group $\hat{GT},$
$a$

profinite group introduced by Drinfeld [D]. It contains $G_{\mathbb{Q}}$ and is closely related to
the philosophy of Teichm\"uller-Lego posed by Grothendieck in his article ‘Esquisse d’un
programme’ [G].

2. PROFINITE KNOTS

This section is a short survey of the paper [F1], where the notion of profinite knots is
introduced and the Galois actions on profinite braids (explained in \S 1) are developed into
the ones on profinite knots.

Let $k,$ $l\geq 0$ . Let $\epsilon=(\epsilon_{1}, \ldots, \epsilon_{k})$ and $\epsilon’=(\epsilon_{1}’, \ldots, \epsilon_{l}’)$ be sequences (including the empty
sequence $\emptyset$ ) of symbols $\uparrow and\downarrow.$

Definition 4. The set of fundamental profinite tangles means the disjoint union of the
following three sets $A,$

$\hat{B}$ and $C^{1}$ of symbols:

$A:=\{a_{k,l}^{\epsilon}|k, l=0, 1, 2, . . . , \epsilon=(\epsilon_{i})_{i=1}^{k+l+1}\in\{\uparrow, \downarrow\}^{k}\cross\{\cap\vee, \cap\}\cross\{\uparrow, \downarrow\}^{l}\},$

$\hat{B} :=\{b_{n}^{\epsilon}|b_{n}^{\epsilon}=(b_{n}, \epsilon=(\epsilon_{i})_{i=1}^{n})\in\hat{B}_{n}\cross\{\uparrow, \downarrow\}^{n}, n=1, 2, 3, 4, \},$

$C:=\{c_{k,l}^{\epsilon}|k, l=0, 1, 2, . . . , \epsilon=(\epsilon_{i})_{i=1}^{k+l+1}\in\{\uparrow, \downarrow\}^{k}\cross \cup\}\cross\{\uparrow, \downarrow\}^{l}\}.$

Here all arrows are merely regarded as symbols.

We occasionally depict these fundamental profinite tangles with ignorance of arrows
(which represent orientation of each strings) as the pictures in Figure 1, which we call
their topological pictures.

$|\cap$ $|\cup|$

$\overline{k}$ $\overline{l}$ $n$ $\overline{k}$ $\overline{l}$

$a_{k,l}^{\epsilon} b_{n}^{\epsilon} c_{k,l}^{\epsilon}$

FIGURE 1. Topological picture of fundamental profinite tangles

For a fundamental profinite tangle $\gamma$ , its source $s(\gamma)$ and its target $t(\gamma)$ are sequences
$of\uparrow and\downarrow$ defined below:

(1) When $\gamma=a_{k,l}^{\epsilon},$ $s(\gamma)$ is the sequence $of\uparrow and\downarrow$ replacing $\wedge$ (resp. $\cap$ ) $by\uparrow\downarrow$

(resp. $\downarrow\uparrow$ ) in $\epsilon$ and $t(\gamma)$ is the sequence omitting $\sim$ and $rightarrow$ in $\epsilon$ (cf. Figure2).
(2) When $\gamma=b_{n)}^{\epsilon}s(\gamma)=\epsilon$ and $t(\gamma)$ is the permutation of $\epsilon$ induced by the image of

$b_{n}^{\epsilon}$ of the projection $\hat{B}_{n}$ to the symmetric group $\mathfrak{S}_{n}$ (cf. Figure 3).
(3) When $\gamma=c_{k,l}^{\epsilon},$ $s(\gamma)$ is the set omitting $\cup$ and $\cup$ in $\epsilon$ and $t(\gamma)$ is the set replacing

$\cup$ (resp. $\cup$ ) $by\downarrow\uparrow($resp. $\uparrow\downarrow)$ in $\epsilon.$

$1A,$ $B$ and $C$ stand for Annihilations, Braids and Creations respectively.
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$[$ $|$

$\cup$$\cup$

FIGURE 2. $a_{2,1}^{\epsilon}$ with $s(a_{2,1}^{\epsilon})=\uparrow\downarrow\uparrow andt(a_{2,1}^{\epsilon})=\uparrow\downarrow\downarrow\uparrow\uparrow$

FIGURE 3. An example of $b_{3}^{\epsilon}$ with $s(b_{3}^{\epsilon})=\epsilon=\downarrow\uparrow\uparrow andt(b_{3}^{\epsilon})=\uparrow\downarrow\uparrow$

Definition 5. A profinite (oriented) tangle diagram means a finite consistent 2 sequence
$T=\{\gamma_{i}\}_{i=1}^{n}$ of fundamental profinite tangles (which we denote by $\gamma_{n}\cdots\gamma_{2}\cdot\gamma_{1}$ ). Its source
and its target are defined by $s(T)$ $:=\mathcal{S}(\gamma_{1})$ and $t(T)$ $:=t(\gamma_{n}).$ A profinite link diagram
means a profinite tangle $T$ with $s(T)=t(T)=\emptyset.$ A profinite knot diagram is a profinite
link diagram with a single connected component. (The notion of connected components
of profinite tangle diagrams are introduced in [F1].)

Definition 6. For profinite tangles diagram, the moves $(T1)-(T6)$ are defined as follow.

(T1) Trivial braids invariance: for a profinite tangle $T$ with $|s(T)|=m$ (resp. $|t(T)|=$

$n)$ , 3

$e_{n}^{t(T)}\cdot T=T=T\cdot e_{m}^{s(T)}.$

Here $e_{k}^{\epsilon}$ means the unit in $\hat{B}_{k}$ whose source and targets are both $\epsilon$ . Figure 4 depicts the
move.

FIGURE 4. (T1): trivial braids invariance

(T2) Braids composition: for $b_{n^{1}}^{\epsilon},$
$b_{n^{2}}^{\epsilon}\in\hat{B}$ with $t(b_{n^{1}}^{\epsilon})=s(b_{n^{2}}^{\epsilon})$ ,

$b_{n^{2}}^{\epsilon}\cdot b_{n^{1}}^{\epsilon}=b_{n^{3}}^{\epsilon}.$

Here $b_{n^{3}}^{\epsilon}$ means the element in $\hat{B}$ with $s(b_{n^{3}}^{\epsilon})=s(b_{n^{1}}^{\epsilon})$ and $t(b_{n^{3}}^{\epsilon})=t(b_{n^{2}}^{\epsilon})$ which represents
the product $b_{2}\cdot b_{1}$ of two braids in $\hat{B}_{n}$ . Figure 5 depicts the move.

$2Here^{(}consistent$ ’ means successively composable, that is, $s(\gamma_{i+1})=t(\gamma_{i})$ holds for all $i=1,2,$ $\ldots,$
$n-1.$

$3p_{or}$ a set $S,$ $|S|$ stands for its cardinality.
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FIGURE 5. (T2): braids composition

(T3) Independent tangles relation: for profinite tangles $T_{1}$ and $T_{2}$ with $|s(T_{1})|=m_{1},$

$|t(T_{1})|=n_{1},$ $|s(T_{2})|=m_{2}$ and $|t(T_{2})|=n_{2},$

$(e_{n_{1}}^{t(T_{1})}\otimes T_{2})\cdot(T_{1}\otimes e_{m_{2}}^{s(T_{2})})=(T_{1}\otimes e_{n_{2}}^{t(T_{2})})\cdot(e_{m_{1}}^{s(T_{1})}\otimes T_{2})$ .

For the symbol $\otimes see$ [F1]. We occasionally denote both hands side of the above equation
simply by $T_{1}\otimes T_{2}$ . Figure 6 depicts the move.

FIGURE 6. (T3): independent tangles relation

(T4) Braid-tangle relations: for $b_{l}^{\epsilon}\in\hat{B},$ $k$ with $1\leq k\leq l$ and a profinite tangle $T$ with
$|s(T)|=m$ and $|t(T)|=n,$

$ev_{k,t(T)}(b_{l}^{\epsilon})\cdot(e_{k-1}^{s_{1}}\otimes T\otimes e_{l-k}^{s_{2}})=(e_{k-1}^{t_{1}}\otimes T\otimes e_{l-k’}^{t_{2}})\cdot).$

For $ev$ , see [F1]. For $s(b_{l}^{\epsilon})=\epsilon=(\epsilon_{i})_{i=1}^{l}$ we put $s_{1}:=(\epsilon_{i})_{i=1}^{k-1}$ and $s_{2}:=(\epsilon_{i})_{-k}^{l}1$ . Put
$k’=b_{l}^{\epsilon}(k)$ . Here $b_{l}^{\epsilon}(k)$ stands for the image of $k$ by the permutation which corresponds to
$b_{l}^{\epsilon}$ by the projection $B_{l}arrow \mathfrak{S}_{l}$ . For $t(b_{l}^{\epsilon})=(\epsilon_{i}’)_{i=1}^{l}$ we put $t_{1}:=(\epsilon’\cdot)_{-1}^{k’-1}$ and $t_{2}:=(\epsilon’\cdot)^{l}.$

$\iota\iota-$

Figure 7 depicts the move.
$\iota\iota=k’+1.$

$\vee\vee\Vert\cdot\cdot|\ovalbox{\tt\small REJECT}\tau| \Vert \overline{l-1+m}$

$k-1m l-k$

FIGURE 7. (T4): braid-tangle relation
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(T5) Creation-annihilation relations for $c_{k,l}^{\epsilon}\in C$ and $a_{k+1,l-1}^{\epsilon’}\in$ $A$ with $t(c_{k,l}^{\epsilon})=$

$s(a_{k+1,l-1}^{\epsilon’})$

$a_{k+1,l-1}^{\epsilon’}\cdot c_{k,l}^{\epsilon}=e_{k+l}^{s(c_{k,l}^{\epsilon})}$

And for $c_{k,l}^{\epsilon}\in C$ and $a_{k-1,l+1}^{\epsilon’}\in A$ with $t(c_{k,l}^{\epsilon})=s(a_{k-1,l+1}^{\epsilon’})$

$a_{k-1,l+1}^{\epsilon’}\cdot c_{k,l}^{\epsilon}=e_{k+l}^{s(c_{k,l}^{\epsilon})}$

Figure 8 depicts the move.

$= \frac{\Vert 1}{k+l} |_{\check{k}}||\cup|_{\check{l}}|_{\frac{|||}{k+l}}^{=}|\cdot\cdot|_{\cap}|||$

FIGURE 8. (T5): creation-annihilation relations

(T6) First Reidemeister move: for $c\in\hat{\mathbb{Z}}4,$
$c_{k,l}^{\epsilon}\in C$ and $\sigma_{k+1}^{\epsilon’}\in\hat{B}$ which represents

$\sigma_{k+1}\in\hat{B}_{k+l+2}$ and $t(c_{k,l}^{\epsilon})=s(\sigma_{k+1}^{\epsilon’})$

$(\sigma_{k+1}^{\epsilon’})^{c}\cdot c_{k,l}^{\epsilon}=c_{k,l}^{\overline{\epsilon}}$

where $\overline{\epsilon}$ is chosen to be $t(\overline{\epsilon})=t((\sigma_{k+1}^{\epsilon’})^{c})$ .

For $c\in\hat{\mathbb{Z}},$
$a_{k,l}^{\epsilon}\in A$ and $\sigma_{k+1}^{\epsilon’}\in\hat{B}$ which represents $\sigma_{k+1}\in\hat{B}_{k+l+2}$ and $s(a_{k,l}^{\epsilon})=t(\sigma_{k+1}^{\epsilon’})$

$a_{k,l}^{\epsilon}\cdot(\sigma_{k+1}^{\epsilon’})^{c}=a_{k_{\rangle}l}^{\overline{\epsilon}}.$

where $\overline{\epsilon}$ is chosen to be $s(\overline{\epsilon})=s((\sigma_{k+1}^{\epsilon’})^{c})$ . Figure 9 depicts the moves.

FIGURE 9. (T6): first Reidemeister move

We note that in the first (resp. second) equation $c_{k,l}^{\epsilon}=c_{k,l}^{\overline{\epsilon}}$ (resp. $a_{k,l}^{\epsilon}=a_{k_{\rangle}l}^{\overline{\epsilon}}$ ) if and

only if $c\equiv 0$ (mod2).
These moves $(T1)-(T6)$ are profinite analogues of the so-called Turaev moves [Tu] for

oriented tangles (consult also [CDM, $K,$ $O$ Our above formulation is stimulated by the

moves (RI)-(RII) presented in [Ba].

Definition 7. Two profinite (oriented) tangle diagrams $T_{1}$ and $T_{2}$ are isotopic, denoted
$T_{1}=T_{2}$ by abuse of notation, if they are related by a finite number of the moves $(T1)-$

(T6). An (oriented) profinite tangle stands for each isotopy class. We denote the set of

profinite tangles by $\hat{\mathcal{T}}$ . Similarly a profinite knot stands for $eac_{\wedge}hi$sotopy class of profinite

knot diagrams. The set $\hat{\mathcal{K}}$ of profinite knots is the subset of $\mathcal{T}$ consisting of profinite

knots.

4It should be worthy to emphasize that $c$ is assumed to be not in $\mathbb{Z}$ but in $\hat{\mathbb{Z}}.$
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We notice that the number of connected components is an isotopic invariant of profinite
tangles. The profinite topology on $\hat{B}_{n}(n=1,2, \ldots)$ and the discrete topology on $A$ and
on $C$ yield a topology on the space of profinite tangles. Hence $\hat{\mathcal{T}}$ carries a structure of
topological space (cf. [F1]).

Theorem 8 ([F1]). (1). Let $\mathcal{T}$ be the set of isotopy classes of (topological) oriented
tangles. There is a natural map

$h:\mathcal{T}arrow\hat{\mathcal{T}},$

which we call the profinite realization map.
(2). The above profinite realization map induces the map

$h:\mathcal{K}arrow\hat{\mathcal{K}}.$

Here $\mathcal{K}$ stands for the set of isotopy classes of topological oriented knots.

By abuse of notation, we occasionally denote the image $h(K)$ of $K\in \mathcal{K}$ by the same
symbol $K$ . As a knot analogue of the residually-finiteness (Lemma 1) of the braid group
$B_{n}$ , we raise the conjecture below.

Conjecture 9. The map $h:\mathcal{K}arrow\hat{\mathcal{K}}$ is injective.

Remark 10. If the above conjecture, i.e. the injectivity of $h$ , failed, then the Kontse-
vich invariant [Ko] would fail to be a perfect invariant (cf. [F1]). We remind that the
Kontsevich invariant is an invariant of oriented knots which is conjectured to be a perfect
invariant, i.e. an invariant detecting all oriented knots.

The notion of connected sum for knots can be extended into profinite knots.

Theorem 11 ([F1]). For any two profinite knot diagrams $K_{1}=\alpha_{m}\cdots\alpha_{1}$ and $K_{2}=$

$\beta_{n}\cdots\beta_{1}$ with $(\alpha_{m}, \alpha_{1})=(\sqrt\neg, rightarrow)$ and $(\beta_{n}, \beta_{1})=(\cap$ , their connected sum means the
profinite tangle diagram defined by

(2.1) $K_{1}\# K_{2}:=\alpha_{m}\cdots\alpha_{2}\cdot\beta_{n-1}\cdots\beta_{1}.$

Then
(1). the above connected sum induces a well-defined product

$\#:\hat{\mathcal{K}}\cross\hat{\mathcal{K}}arrow\hat{\mathcal{K}}.$

(2). By the product $\#$ , the set $\hat{\mathcal{K}}$

forms a topological (that is, the map $\#$ is continuous
with respect to the topology given above) commutative associative monoid, whose unit is
given by the oriented circle $0:=\cap$

(3). The profinite realization map $h:\mathcal{K}arrow\hat{\mathcal{K}}$ forms a monoid homomorphism whose
image is dense in $\hat{\mathcal{K}}.$

For the proofs of Theorem 8 and 11, see [F1].
In knot theory, the so-called Alexander-Markov’s theorem is fundamental on construc-

tions of knot invariants. The theorem is to translate knots and links into purely algebraic
objects:
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Theorem 12 (Alexander-Markov’s theorem). There is $a$ one-to one correspondence

$\mathcal{L}rightarrow u_{n}B_{n}/\sim M$

between the set $\mathcal{L}$ of isotopy classes of oriented links and the (disjoint) union $U_{n}B_{n}$ of
braids groups modulo the equivalence $\sim M$ given by the following Markov moves

$(Ml)$ . $b_{1}\cdot b_{2}\sim b\cdot b_{1}$ $(b_{1}, b_{2}\in B_{n})$ , $(M2)$ . $b\in B_{n}\sim Mb\sigma_{n}^{\pm 1}\in B_{n+1}$ $(b\in B_{n})$

For more on the theorem, consult [CDM, $O$] for example. The question below is to ask
a validity of profinite analogue of Alexander-Markov’s theorem.

Problem 13. Is there a ‘profinite analogue’ of the Alexander-Markov’s theorem which

holds for the set $\hat{\mathcal{L}}$ of isotopy classes of profinite links?

There are several proofs of Alexander-Markov’s theorem for topological links ([Bi, Tr,
V, $Y]$ etc). But they look heavily based on a certain finiteness property, which we (at

least the author) may not expect the validity for profinite links.

Definition 14. The fractional group of profinite knots Fkac$\hat{\mathcal{K}}$ is defined to be the group
of fraction of the monoid $\hat{\mathcal{K}}$ , i.e., the quotient space of $\hat{\mathcal{K}}^{2}$ by the equivalent relations
$(r, \mathcal{S})\approx(r’, s’)$ if $r\# s’\# t\sim r’\# s\# t$ for some profinite knot $t$ , i.e. $r\#\mathcal{S}’\# t=r’\# s\# t$ holds in $\hat{\mathcal{K}}.$

Occasionally we denote the equivalent class $[(r, s)]$ by $\frac{r}{s}.$

We encode FYac$\hat{\mathcal{K}}$ with the quotient topology of $\hat{\mathcal{K}}^{2}$ . In [F1] it is shown that the product
$\#$ yields a topological commutative non-trivial group structure on Frac$\hat{\mathcal{K}}.$

Problem 15. Is fkac$\hat{\mathcal{K}}$ a profinite group?

By [RZ], to show that $Rac\hat{\mathcal{K}}$ is a profinite group, we must show that it is compact,
Hausdorff and totally-disconnected. The author is not aware of any one of their validities.

Definition 16. Let $(r, s)$ be a pair of profinite knot diagrams with $r=\gamma_{1,m}\cdots\gamma_{1,2}\cdot\gamma_{1,1}$

and $s=\gamma_{2,n}\cdots\gamma_{2,2}\cdot\gamma_{2,1}$ ( $\gamma_{i,j}$ : profinite fundamental tangle). Let a $\in G_{\mathbb{Q}}$ and $(\lambda, f)$ be
its associated pair (cf. Proposition 2). Define its action by

(2.2) $\sigma(\frac{r}{s})$
$:= \frac{\{\sigma(\gamma_{1,m})\cdots\sigma(\gamma_{1,2})\cdot\sigma(\gamma_{1,1})\}\#(\Lambda_{f})^{\#\alpha(s)}}{\{\sigma(\gamma_{2,n})\cdots\sigma(\gamma_{2,2})\cdot\sigma(\gamma_{2,1})\}\#(\Lambda_{f})\#\alpha(r)}\in$ FYac $\hat{\mathcal{K}}.$

Here $\sigma(\gamma_{i,j})$ and $\Lambda_{f}$ are defined in $Rac\hat{\mathcal{K}}$ as follows:

(1) When $\gamma_{i,j}=a_{k,l}^{\epsilon}$ , we define

$\sigma(\gamma_{i,j}):=\gamma_{i,j}\cdot f_{1\cdot\cdot k,k+1,k+2}^{s(.\gamma_{i,j})}.$

Figure 10 depicts the action. Here the thickened black band stands for the trivial

braid $e_{k}$ with $k$-strings. Consult [F1] in more precise.

(2) When $\gamma_{i,j}=b_{n}^{\epsilon}=(b_{n}, \epsilon)\in\hat{B}$ , we define

$\sigma(\gamma_{i,j}):=(\sigma(b_{n}), \epsilon)$

which is nothing but the image of $b_{n}\in\hat{B}_{n}$ by the $G_{\mathbb{Q}}$-action on $\hat{B}_{n}$ explained in
Proposition 2.
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FIGURE 10. $\sigma(a_{k,l}^{\epsilon})$

(3) When $\gamma_{i,j}=c_{k,l}^{\epsilon}$ , we define

$\sigma(\gamma_{i,j}):=f_{1\cdot\cdot k,k+1,k+2}^{-.1,t(\gamma_{i,j})}\cdot\gamma_{i,j}.$

Figure 11 depicts the action.

FIGURE 11. $\sigma(c_{k,l}^{\epsilon})$

The symbol $\Lambda_{f}$ represents the profinite tangle

$a_{\hat{0,}0}\cdot a_{\hat{0,}2}^{\downarrow\uparrow}\cdot(e_{1}^{\downarrow}\otimes f)\cdot c_{1,1}^{\downarrow\cdot\uparrow}\cdot c_{\dot{0,0}}$

(cf. Figure 12).

$\cup^{\downarrow\uparrow}$

FIGURE 12. $\Lambda_{f}$

The symbol $\alpha(r)$ (resp. $\alpha(s)$ ) means the number of annihilations; the cardinality of the
set $\{j|\gamma_{i,j}\in A\}$ for $i=1$ (resp. $i=2$ ) and $(\Lambda_{f})^{\#\alpha(r)}$ (resp. $(\Lambda_{f})^{\#\alpha(s)}$ ) means the $\alpha(r)$ -th
(resp. the $\alpha(s)-th$ ) power of $\Lambda_{f}$ with respect to $\#$ . Particularly we have

$\sigma(O)\#\Lambda_{f}=O\in Rac\hat{\mathcal{K}}$

Our main theorem is that the equation (2.2) yields a well-defined $G_{\mathbb{Q}}$-action on Fkac$\hat{\mathcal{K}}$

$\rho_{0}:G_{\mathbb{Q}}arrow Aut\mathbb{R}ac\hat{\mathcal{K}}.$
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Theorem 17 ([F1]). (1). $\sigma(\begin{array}{l}\lrcorner rs_{1}\end{array})=\sigma(\begin{array}{l}srzs_{2}\end{array})\in$ Frac$\hat{\mathcal{K}}$

if $r_{1}\sim r_{2}$ and $s_{1}\sim s_{2},$ $i.e$ . if $r_{1}=r_{2}$

and $s_{1}=s_{2}$ in $\hat{\mathcal{K}}.$

(2). $\sigma(\begin{array}{l}\lrcorner rs_{1}\end{array})=\sigma(\begin{array}{l}\underline{r}_{2}s_{2}\end{array})\in Rac\hat{\mathcal{K}}$ if $(r_{1}, s_{1})\approx(r_{2}, s_{2})$ , i.e. if $\lrcorner s_{1}r=s_{2}r_{l}$ in $Rac\hat{\mathcal{K}}.$

(3). $\sigma_{1}(\sigma_{2}(x))=(\sigma_{1}\circ\sigma_{2})(x)$ for any $\sigma_{1},$ $\sigma_{2}\in G_{\mathbb{Q}}$ and $x\in Rac\hat{\mathcal{K}}.$

Furthermore $G\hat{\mathcal{K}}$ forms a topological $G_{\mathbb{Q}}$ -module. Namely,
(4). the action is compatible with the group structure, $i.e.$

$\sigma(e)=e, \sigma(x\# y)=\sigma(x)\#\sigma(y) , \sigma(x^{-1})=\sigma(x)^{-1}$

for any $\sigma\in G_{\mathbb{Q}}$ and $x,$
$y\in Rac\hat{\mathcal{K}}.$

(5). the action is continuous.

For a proof of the theorem, consult [F1]. Particularly when $\sigma\in G_{\mathbb{Q}}$ is equal to the
complex conjugation $\sigma_{0}$ , it corresponds to $(\lambda, f)=(-1,1)$ and its action on $\hat{B}_{n}$ is given
by $\sigma_{i}\mapsto\sigma_{i}^{-1}(1\leq i\leq n-1)$ . Therefore

Example 18. The action of the complex conjugation $\sigma_{0}$ on Fkac$\hat{\mathcal{K}}$ is given by

$\rho_{0}(\sigma_{0})(K)=\overline{K}$

for each $K\in \mathcal{K}$ . Here $\overline{K}$ means the mirror image of $K.$

As a analogue of $Bely\dot{1}$ ’s theorem (Proposition 3), the following problem is posed.

Problem 19. Is our action $\rho_{0}$ also faithful?

If it turns that it is not faithful, then in that case detecting the corresponding kernel
field, which is a Galois extension of $\mathbb{Q}$ , might be also an interesting problem.

Remark 20. (1). Actually our $G_{\mathbb{Q}}$-action on profinite knots are extended to a $\hat{GT}$-action
not only on profinite knots but also on profinite framed knots (cf. [F1]).

(2). In the subsequent paper [F2], the notion of proalgebraic knots, which is nothing
but knots completed by a filtration \‘a la Vassiliev, is introduced and the action of the
motivic Galois group there is discussed.
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