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An alternative construction of
Kontsevich-Kuperberg-Thurston’s universal finite type
invariant of homology 3-spheres
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Research Institute for Mathematical Sciences, Kyoto University

1 Introduction

Kontsevich-Kuperberg-Thurston invariant is one variation of M. Kontsevich’s Chern-
Simons perturbation theoretic invariant. G. Kuperberg and D. Thurston ([5]) gave the
construction of the invariant based on M. Kontsevich’s idea in [4] and they showed that
this invariant is a universal finite type invariant for integral homology 3-spheres as the
LMO is.

Kontsevich-Kuperberg-Thurston invariant, denoted by 2XXT | is a sequence {2XKT},cn.
o

dimensional rational vector space A,(#). A,(0) is the quotient space divided by some
relations (called THX, AS relations) from the vector space freely generated by oriented

KT is a topological invariant of rational homology 3-spheres taking values in the finite

Jacobi diagrams with 2n-vertexes. We don’t give an explicit definition of this space and
Jacobi diagrams (For example, see [5], [6]). In this article we treat only the case of n = 1.
In this case 4;(0) is isomorphic to the 1-dimensional vector space Q. So we take and fix

KKT
1

such an isomorphism and then we consider z as a Q valued invariant. It is known

that zf*T equals to § times the Casson-Walker invariant.

2 Preliminary

In this article, all homology 3-spheres are oriented, smooth and with a metric. The
assumptions “smooth”,“oriented” and “with a metric” are not usual. We will use these
structures in the construction of the invariant. The invariant is, however, independent of
the choices of these structure (i.e. topological invariant).

Let Y be a rational homology 3-sphere. Let oo € Y be a base point. Take N(oo0;Y) C Y
a neighborhood of oo in Y and let N(oo; S%) be a neighborhood of oo in §* = R® U {oo}.
We take an orientation preserving diffeomorphism ¢™ : (N(00;Y), 00) 3 (N(o0; 83), 00)
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and then we identify N(oo;Y’) with N(00;.5%) via ¢™. So we consider N(oo;Y)\ 0o C R3
under this identification.

We introduce a compactification Co(Y) of the two point configuration space (Y \ 00)?\
A = {(z,y) | £ # y}. We denote by B{(A, B) the real blowing-up of A along B for
submanifold B in A: B¢(A,B) = A\ BU Svg. Here vp is the normal bundle of B in A
and Svg is the unit sphere bundle of vg.

Let q1 : Bl(Y? 00%) — Y? be the blow-down map. There are three submanifolds
a7 ((Y '\ 00) x 00), g7 (00 x (Y \ 00)) and ¢ }(A\ 00?) of BL(Y? 00?). The over-line
means that the closure. We define

Co(Y) = BUBU(Y?,00%), 47 (Y \ 00) x 00) Ugy " (00 x (¥ \ 00)) U g7 (A \ 00?)).

We denote by ¢ : Co(Y) — Y2 the composition of blow-down maps. C3(Y) is a closed 6-
manifold with boundary and corner. It is known that there is a natural smooth structure

on Cy(Y) ([6)).
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3 The original construction of Kontsevich-Kuperberg-Thurston

invariant

Take a;,a2,a3 € S? C R3 be unit vectors. Let 7 : T(Y \ 00) = (¥ \ 00) x R3 be a
framing such that 7|y(ee:v)\co COincides with the standard trivialization of TR?® = R* x R®.

To define the invariant, we will construct 4-cycles Wi(7), Wy (7) and Ws(T) of
(C2(Y),0C(Y)) by using 7.

We first construct 3-dimensional submanifolds W2 (7), W2(r) and W2(r) of 8C,(Y).

Let pgs : C2(S3) — S? be the extended map of R3 x R\ A — 2, (z,y) — ﬁ Let
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po : 0C2(Y)\ ¢7}(A \ 00?) — S? be the smooth map defined as follows:
polq—l(ooz) = pgalq—1(002) : q_l(OOQ) — SQ,
pOIq‘l((Y\oo)xoo) : q—l(Y \ OO) X o0 = (Y \ OO) X STOOY — STOOY = 52 *_—; 52 and
pO’q—l(oox(Y\oo)) : q_l(oo X (Y \ OO)) = STOOY X (Y \ OO) — STOOY = 52.
Here the maps SToY X (Y \ 00) = ST Y, STY x (Y \ 00) = ST Y are projection
and 52 =} $? is an involution defined by z — —z. Then Py (a1),p5 (az) and pyl(as)
are 3-dimensional submanifolds of dCy(Y) \ ¢7'(A \ 00?). There is a canonical bundle
isomorphism va\ez = ST(Y \ 00). We define p(7) : ¢7}(A \ 00?) = S? as follows:
g7\ 00?) = Sva\eer = ST(Y \ 00) & (Y \ 00) x S% — S2.
Here the last map is the projection.

Definition 3.1. For i =1, 2,3,
WP(r) =5 (a:) Up(r) ™ (as).

We remark that W2(r) is a compact 3-manifold without boundary owing to the as-
sumption of 7. W2(7) represents a cycle! of dCy(Y). We next extend it to a cycle of
(C2(Y), 0CH(Y)).
Lemma 3.2. There ezists a 4-cycle Wi() of (Co(Y), 8Cy(Y)) such that OWi(1) = W2(T),
fori=1,23.
Proof. Since Y is a rational homology 3-sphere, the boundary map

Hy(Co(Y),0C5(Y); Q) — H3(0C(Y'); Q) is an isomorphism. O

We take W;(T) as above.
Remark 3.3. This 4-cycle or the Poincaré dual of this 4-cycle is called a propagator.

For generic Wi(7), Wa(7) and W3(7), the intersection W1 (7)NW,(7)NW3(7) is a compact
oriented 0-dimensional manifold. So we can count it with sign.

Theorem 3.4 (Kuperberg and Thurston [5]). For generic a; and W;(7),
1
ZKET (YY) = (Wi (1) N Wa(T) N Wa(7T)) + ZO’(T)

is a topological invariant of Y. In particular, zXXT(Y') is independent of the choice of T.

Here o(7) € Z is the signature defect of 7 defined as follows. Let 7gs be a framing of S3
satisfying Tgs|ss\n(co;53) = Trs. Then 7 UTgs = T|y\N(oo;x) U Ts3| N(oo;s3) I8 & framing of Y.
Let oy (7 U Tg3) be the signature defect? of it and ogs(7gs) be the signature defect of 7gs.
We define o(7) = oy (T U Tgs) — 0g3(7s3).

In this article, all cycles are with rational coefficients.
2See [1] for the definition of the signature defect of an honest framing.




4 An alternative construction of Kontsevich-Kuperberg-Thurston

invariant

In this section, we give an alternative construction of zKXT We also construct propa-
gators as 4-cycles.

Take a;,a9,a3 € S C R? as above. Let 71,7, and 73 be vector fields on Y \ co such that
¥i| N(oo;¥)\oo CoOincides with the constant vector field a; of R3 and +; transversally intersect
to the zero-section of (Y \ oo) for i = 1,2, 3.

We first construct 3-dimensional submanifolds W2(vy;), W9(y,) and W?(y3) of 8Cs(Y)
as in the above section. Let

closure

Cy, = i) T o0 -1 o0
P esny |se Y ourrt o)) € ST \=0)

for i = 1,2, 3. c,, is a manifold with boundary and an end. Its boundary is in near ;" (0).

Lemma 4.1. ¢(y;) = ¢y, Uc_, is a manifold without boundary’®.

Outline of proof. c,, and c_,, have same boundaries but their orientation are opposite. So
these boundaries are cancel each other. O

Definition 4.2. W?(y;) = c(v;) Upg *({as, —ai})
We take a 4-cycle W (;) of (Co(Y'),0C5(Y)) such that OW (y;) = SW9(v,).

Proposition 4.3. For generic a; and v;, §(W (7)) "W (y2) "W (~3)) is independent of the
choice of W (m), W (72) and W (vs) *.

This proposition is proved by a homological argument similar to the argument to prove
the well-definedness of the linking number of two component links.

We next define the correction term to cancel out the influence of the choice of 1, o
and 3. Recall that 753 : TS® — $% x R? is a framing of S® such that 7gs|gs\n(00;53) = Trs.
We consider a; € R® as a constant vector field of trivial R® bundle. Then 7%.a; is a
constant vector filed of S%. Let X be a compact oriented 4-manifold with x(X) = 0
and 0X =Y. Take a non-vanishing vector field 7x on X such that nx|y is the outward
normal vector field of Y = 0X. Let T’ X — X be the normal bundle of nx in TX. Then
T'X|y =TY. Let ST*X — X be the unit sphere bundle of T?X. Take [ is a generic
section of TX — X such that Gi|ly = 7Yily\N(coyy) U T Gil N(oo;s3). Let

closure

xeX\ﬁ;I(O)} C STX.

o = Bi(z) .
& {twi(m)ne(‘g”)’

3¢(7;) has two ends near oo.
4This number depends on the choice of 41,72 and 73.
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By a similar argument as in Lemma 4.1, ¢(8;) = ¢, Uc_g, is a 4-dimensional submanifold
of ST X such that 0c(8;) = c(v; U T3sa;).

For generic §;, 8, and B3, ¢(f1) N ¢(B2) N ¢(B3) is a compact oriented O-dimensional
manifold. Furthermore, this argument is extended to any closed 4-manifold whose Euler
number is zero and we can check that f(c(81) N ¢(B2) Ne(B3)) is a cobordism invariant of
closed 4-dimensional manifold whose Euler number is zero.

Lemma 4.4 ([8], [7]). I(m,72,7s) = §H(c(B1) Nc(Be) Nec(Bs)) — 2SignX is independent
of the choice of B; and X.

Remark 4.5. This correction term was first defined by T. Watanabe in [8] for integral
homology 3-spheres to construct the Morse homotopy invariant. We modified his con-
struction to extend to rational homology 3-spheres and we determined the number ~4§

before the term SignX.
Theorem 4.6 ([7]).

2(Y) =4(W(n) N W(r) "W () — I(m,72,7s)
s a topological invariant of Y.
Theorem 4.7 ([7]). 2,(Y) = zKXT(Y') for any rational homology 3-sphere Y.

Proof. Let T be a framing of Y \ 0o as above section. Then 7*a; is a non-vanishing vector
field of Y \ 0o by considering a; € R® as a constant vector filed of trivial R® bundle. By
the definition, we have OW (7*a;) = OW;(7). Then,

§(W(r7a1) N W (T ag) "W (7*a3)) = §(W1(1) N Wa(7) N Ws(T)).

Let 038" be the cobordism group generated by all 3-dimensional framed manifolds
{(¥,7) | 7: TY 5 Y x R®} and dividing by a cobordism relation ~: (Y,7) ~ 0 if and
only if there exists compact framed 4-manifold (X, T) such that

e Sign(X) =0,

e T|y is isomorphic to the stable framing of 7.

We consider I(7*a1, 7*aq, 7*a3) and o(7) as an invariant of framed manifold (Y, T|y\N(oo;)U
Ts3|N(oo;s%)). Then these two invariant factor through Q§ig"=°. We can show that Q§‘g“=°®
Q= Q and 7(75a1,73a2,75a3) = —20(79) # 0 for a framing 7o of S®\ co. Then we have

I(t*ay1, T*ag, T*a3) = —iU(T) for any 7 and Y. a

5 An application of our construction

In this section, we give an application of our construction of zKKT,



5.1 Watanabe’s invariant

In the 1990s, K. Fukaya constructed an invariant of a pair of two local systems on a
3-manifold by using three Morse functions in [2]. Fukaya’s invariant is sum of principal
term depending on Morse functions and the correction term to cancel out the influence
of the choice of Morse functions. M. Futaki pointed out in [3] that Fukaya’s invariant
sometimes depends on the choice of Morse functions.

In 2012, T. Watanabe introduced a new type of correction term and then constructed a
topological invariant of a integral homology 3-spheres taking values in A(0) = I1,,.4,(0).

In this subsection, we review the degree 1-part, i.e. A;(@) & Q-valued part, of Watan-
abe’s invariant with a little modification.

Take a1, a2,a3 € S? C R® as above. Let fi, fa, f3: Y \ 0o = R be Morse functions such
that fi|n(o;v)\eo coincides with the projection g, : R® — R to the a;-direction and f;
has no critical points of index 0 or 3. Let Crit(f;) = {p},...,p},q},...,q},} be the set of
critical points of f;. We assume that ind(p}) = 2,ind(q}) =1. Let &' : Co(Y \ 00; Q) —
Ci(Y'\o0;Q), 8[pi] = 3=, 8%:[qi] be the boundary map of the Morse-Smale complex of f;.
Since Y\ oo is rational homology ball, the map &' is an isomorphism. Then there exists
the inverse map g* : C1(Y \ 00;Q) = Co(Y \ 00;Q), ¢[¢}] = X gl [ph]- Let {® }iem be
the 1-parameter family of dlffeomorphlsms associated to —gradf;. We denote by A . and
D - the ascending manifold of ¢¢ and the descending manifold of pJ respectively.

Definition 5.1.
W(f) = {(z,y) € (Y \0o)’\ A |3t € R\ 0, ¥} (2) =y}

+ D (g5 (Ag X Dp) = gi(Dys x Ag))-

ik
W (f;) is a wighted sum of 4-manifold in (Y \ c0).

Theorem 5.2 (Watanabe [8]).

1
2 (Y) = SHW(A) N W(f2) N W(fs)) — I(grad fu, gradfy, gradfs)
15 a topological invariant of Y.
Watanabe also defined 2fW(Y) € A,(0) and he conjectured that

e Is 2f'W trivial or not?

FW

o VW = 2KKT?

127
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5.2 An application of our construction to Watanabe’s invariant
Theorem 5.3. 2V (Y) = 2KKT(Y).

Proof. Let W(f;) be the closure of W(f;) N ((Y \ 00)?\ A) in Cy(Y). Then W(f;) is a
4-cycle of (Cy(Y),0C5(Y)). By the definition of W(f;),
aW(fl) = PEI({% _a’i}) U C(gradfi) + Z(g;k:(Aq; N Dp;) - g;k(Dpj N Aq;))
ik
= pp ({ai, —ai}) Uc(gradf)
= WO(gradfy).

Then 2FV(Y) = 21(Y) = 2KXT(Y). 0O

Remark 5.4. We can show that zEW (Y) = 2,(Y) = 2XKT(Y) for any n > 1. See [7] for
more detail.
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