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1 Introduction

Kontsevich-Kuperberg-Thurston invariant is one variation of M. Kontsevich’s Chern-

Simons perturbation theoretic invariant. G. Kuperberg and D. Thurston ([5]) gave the

construction of the invariant based on M. Kontsevich’s idea in [4] and they showed that

this invariant is a universal finite type invariant for integral homology 3-spheres as the

LMO is.

Kontsevich-Kuperberg-Thurston invariant, denoted by $z^{KKT}$ , is a sequence $\{z_{n}^{KKT}\}_{n\in N}.$

$z_{n}^{KKT}$ is a topological invariant of rational homology 3-spheres taking values in the finite

dimensional rational vector space $\mathcal{A}_{n}(\emptyset)$ . $\mathcal{A}_{n}(\emptyset)$ is the quotient space divided by some
relations (called IHX, AS relations) from the vector space freely generated by oriented

Jacobi diagrams with $2n$-vertexes. We don’t give an explicit definition of this space and

Jacobi diagrams (For example, see [5], [6]). In this article we treat only the case of $n=1.$

In this case $\mathcal{A}_{1}(\emptyset)$ is isomorphic to the 1-dimensional vector space $\mathbb{Q}$ . So we take and fix

such an isomorphism and then we consider $z_{1}^{KKT}$ as $a\mathbb{Q}$ valued invariant. It is known

that $z_{1}^{KKT}$ equals to $\frac{4}{3}$ times the Casson-Walker invariant.

2 Preliminary

In this article, all homology 3-spheres are oriented, smooth and with a metric. The

assumptions “smooth”, “oriented and “with a metric” are not usual. We will use these

structures in the construction of the invariant. The invariant is, however, independent of

the choices of these structure (i.e. topological invariant).

Let $Y$ be a rational homology 3-sphere. Let $\infty\in Y$ be a base point. Take $N(\infty;Y)\subset Y$

a neighborhood of $\infty$ in $Y$ and let $N(\infty;S^{3})$ be a neighborhood of $\infty$ in $S^{3}=\mathbb{R}^{3}\cup\{\infty\}.$

We take an orientation preserving diffeomorphism $\varphi^{\infty}$ : $(N(\infty;Y), \infty)arrow\simeq(N(\infty;S^{3}), \infty)$
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and then we identify $N(\infty;Y)$ with $N(\infty;S^{3})$ via $\varphi^{\infty}$ . So we consider $N(\infty;Y)\backslash \infty\subset \mathbb{R}^{3}$

under this identification.

We introduce a compactification $C_{2}(Y)$ of the two point configuration space $(Y\backslash \infty)^{2}\backslash$

$\triangle=\{(x, y)|x\neq y\}$ . We denote by $B\ell(A, B)$ the real blowing-up of $A$ along $B$ for

submanifold $B$ in $A:B\ell(A, B)=A\backslash B\cup S\nu_{B}$ . Here $\nu_{B}$ is the normal bundle of $B$ in $A$

and $S\nu_{B}$ is the unit sphere bundle of $\nu_{B}.$

Let $q_{1}$ : $B\ell(Y^{2}, \infty^{2})arrow Y^{2}$ be the blow-down map. There are three submanifolds
$\overline{q_{1}^{-1}((Y\backslash \infty)\cross\infty)},$ $q_{1}^{-1}(\infty\cross(Y\backslash \infty))$ and $q_{1}^{-1}(\triangle\backslash \infty^{2})$ of $B\ell(Y^{2}, \infty^{2})$ . The over-line

means that the closure. We define

$C_{2}(Y)=Bl(B\ell(Y^{2}, \infty^{2}), \overline{q_{1}^{-1}((Y\backslash \infty)\cross\infty)}\sqcup\overline{q_{1}^{-1}(\infty\cross(Y\backslash \infty))}\sqcup\overline{q_{1}^{-1}(\triangle\backslash \infty^{2})})$ .

We denote by $q$ : $C_{2}(Y)arrow Y^{2}$ the composition of blow-down maps. $C_{2}(Y)$ is a closed 6-

manifold with boundary and corner. It is known that there is a natural smooth structure

on $C_{2}(Y)$ ([6]).

3 The original construction of Kontsevich-Kuperberg-Thurston

invariant

Take $a_{1},$ $a_{2},$
$a_{3}\in S^{2}\subset \mathbb{R}^{3}$ be unit vectors. Let $\tau$ : $T(Y\backslash \infty)arrow\underline{\simeq}(Y\backslash \infty)\cross \mathbb{R}^{3}$ be a

framing such that $\tau|_{N(\infty;Y)\backslash \infty}$ coincides with the standard trivialization of $T\mathbb{R}^{3}=\mathbb{R}^{3}\cross \mathbb{R}^{3}.$

To define the invariant, we will construct 4-cycles $W_{1}(\tau)$ , $W_{2}(\tau)$ and $W_{3}(\tau)$ of
$(C_{2}(Y), \partial C_{2}(Y))$ by using $\tau.$

We first construct 3-dimensional submanifolds $W_{1}^{\partial}(\tau)$ , $W_{2}^{\partial}(\tau)$ and $W_{3}^{\partial}(\tau)$ of $\partial C_{2}(Y)$ .

Let $p_{S^{3}}$ : $C_{2}(S^{3})arrow S^{2}$ be the extended map of $\mathbb{R}^{3}\cross \mathbb{R}^{3}\backslash \trianglearrow S^{2},$
$(x, y) \mapsto\frac{y-x}{\Vert y-x\Vert}$ . Let
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$p_{0}:\partial C_{2}(Y)\backslash q^{-1}(\triangle\backslash \infty^{2})arrow S^{2}$ be the smooth map defined as follows:

$p_{0}|_{q^{-1}(\infty^{2})}=p_{S^{3}}|_{q^{-1}(\infty^{2})}:q^{-1}(\infty^{2})arrow S^{2},$

$p_{0}|_{q^{-1}((Y\backslash \infty)\cross\infty)}$ : $q^{-1}(Y\backslash \infty)\cross\infty=(Y\backslash \infty)\cross ST_{\infty}Yarrow ST_{\infty}Y=S^{2}arrow-1S^{2}$ and

$p_{0}|_{q^{-1}(\infty\cross(Y\backslash \infty))}$ : $q^{-1}(\infty\cross(Y\backslash \infty))=ST_{\infty}Y\cross(Y\backslash \infty)arrow ST_{\infty}Y=S^{2}.$

Here the maps $ST_{\infty}Y\cross(Y\backslash \infty)arrow ST_{\infty}Y,$ $ST_{\infty}Y\cross(Y\backslash \infty)arrow ST_{\infty}Y$ are projection

and $S^{2}arrow-1S^{2}$ is an involution defined by $x\mapsto-x$ . Then $p_{0}^{-1}(a_{1}),p_{0}^{-1}(a_{2})$ and $p_{0}^{-1}(a_{3})$

are 3-dimensional submanifolds of $\partial C_{2}(Y)\backslash q^{-1}(\triangle\backslash \infty^{2})$ . There is a canonical bundle

isomorphism $\nu_{\Delta\backslash \infty^{2}}\cong ST(Y\backslash \infty)$ . We define $p(\tau)$ : $q^{-1}(\triangle\backslash \infty^{2})arrow S^{2}$ as follows:

$q^{-1}(\triangle\backslash \infty^{2})=Sv_{\Delta\backslash \infty^{2}}\cong ST(Y\backslash \infty)\cong \mathcal{T}(Y\backslash \infty)\cross S^{2}arrow S^{2}.$

Here the last map is the projection.

Definition 3.1. For $i=1$ , 2, 3,

$W_{i}^{\partial}(\tau)=p_{0}^{-1}(a_{i})\cup p(\tau)^{-1}(a_{i})$ .

We remark that $W_{i}^{\partial}(\tau)$ is a compact 3-manifold without boundary owing to the as-
sumption of $\tau.$ $W_{i}^{\partial}(\tau)$ represents a cyclel of $\partial C_{2}(Y)$ . We next extend it to a cycle of
$(C_{2}(Y), \partial C_{2}(Y))$ .

Lemma 3.2. There exists a 4-cycle $W_{i}(\tau)$ of $(C_{2}(Y), \partial C_{2}(Y))$ such that $\partial W_{i}(\tau)=W_{i}^{\partial}(\tau)$ ,

for $i=1$ , 2, 3.

Proof. Since $Y$ is a rational homology 3-sphere, the boundary map
$H_{4}(C_{2}(Y), \partial C_{2}(Y);\mathbb{Q})arrow H_{3}(\partial C_{2}(Y);\mathbb{Q})$ is an isomorphism. $\square$

We take $W_{i}(\tau)$ as above.

Remark 3.3. This 4-cycle or the Poincar\’e dual of this 4-cycle is called a propagator.

For generic $W_{1}(\tau)$ , $W_{2}(\tau)$ and $W_{3}(\tau)$ , the intersection $W_{1}(\tau)\cap W_{2}(\tau)\cap W_{3}(\tau)$ is a compact

oriented $0$-dimensional manifold. So we can count it with sign.

Theorem 3.4 (Kuperberg and Thurston [5]). For generic $a_{i}$ and $W_{i}(\tau)$ ,

$z_{1}^{KKT}(Y)= \#(W_{1}(\tau)\cap W_{2}(\tau)\cap W_{3}(\tau))+\frac{1}{4}\sigma(\tau)$

is a topological invariant of Y. In particular, $z_{1}^{KKT}(Y)$ is independent of the choice of $\tau.$

Here $\sigma(\tau)\in \mathbb{Z}$ is the signature defect of $\tau$ defined as follows. Let $\tau_{S^{3}}$ be a framing of $S^{3}$

satisfying $\tau_{S^{3}}|_{S^{3}\backslash N(\infty;S^{3})}=\tau_{\mathbb{R}^{3}}$ . Then $\tau\cup\tau_{S^{3}}=\tau|_{Y\backslash N(\infty,\cdot Y)}\cup\tau_{S^{3}}|_{N(\infty;S^{3})}$ is a framing of $Y.$

Let $\sigma_{Y}(\tau\cup\tau_{S^{3}})$ be the signature defect2 of it and $\sigma_{S^{3}}(\tau_{S^{3}})$ be the signature defect of $\tau_{S^{3}}.$

We define $\sigma(\tau)=\sigma_{Y}(\tau\cup\tau_{S^{3}})-\sigma_{S^{3}}(\tau_{S^{3}})$ .
1In this article, all cycles are with rational coefficients.
2See[1] for the definition of the signature defect of an honest framing.
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4 An alternative construction ofKontsevich-Kuperberg-Thurston

invariant

In this section, we give an alternative construction of $z_{1}^{KKT}$ We also construct propa-

gators as 4-cycles.

Take $a_{1},$ $a_{2},$
$a_{3}\in S^{2}\subset \mathbb{R}^{3}$ as above. Let $\gamma_{1},$ $\gamma_{2}$ and $\gamma_{3}$ be vector fields on $Y\backslash \infty$ such that

$\gamma_{i}|_{N(\infty;Y)\backslash \infty}$ coincides with the constant vector field $a_{i}$ of $\mathbb{R}^{3}$ and $\gamma_{i}$ transversally intersect

to the zero-section of $T(Y\backslash \infty)$ for $i=1$ , 2, 3.

We first construct 3-dimensional submanifolds $W^{\partial}(\gamma_{1})$ , $W^{\partial}(\gamma_{2})$ and $W^{\partial}(\gamma_{3})$ of $\partial C_{2}(Y)$

as in the above section. Let

$c_{\gamma_{i}}= \{\frac{\gamma_{i}(x)}{\Vert\gamma_{i}(x)\Vert}\in ST_{x}Y|x\inY\backslash (\infty\cup\gamma_{i}^{-1}(0))\}\subset ST(Y\backslash \infty)\ovalbox{\tt\small REJECT} 1$osure,
for $i=1$ , 2, 3. $c_{\gamma_{i}}$ is a manifold with boundary and an end. Its boundary is in near $\gamma_{i}^{-1}(0)$ .

Lemma 4.1. $c(\gamma_{i})=c_{\gamma_{i}}\cup c_{-\gamma_{i}}$ is a manifold without boundary3.

Outline of proof. $c_{\gamma_{i}}$ and $c_{-\gamma_{i}}$ have same boundaries but their orientation are opposite. So

these boundaries are cancel each other. $\square$

Definition 4.2. $W^{\partial}(\gamma_{i})=c(\gamma_{i})\cup p_{0}^{-1}(\{a_{i}, -a_{i}\})$

We take a 4-cycle $W(\gamma_{i})$ of $(C_{2}(Y), \partial C_{2}(Y))$ such that $\partial W(\gamma_{i})=\frac{1}{2}W^{\partial}(\gamma_{i})$ .

Proposition 4.3. For generic $a_{i}$ and $\gamma_{i},$
$\#(W(\gamma_{1})\cap W(\gamma_{2})\cap W(\gamma_{3}))$ is independent of the

choice of $W(\gamma_{1})$ , $W(\gamma_{2})$ and $W(\gamma_{3})4.$

This proposition is proved by a homological argument similar to the argument to prove

the well-definedness of the linking number of two component links.

We next define the correction term to cancel out the influence of the choice of $\gamma_{1},$ $\gamma_{2}$

and $\gamma_{3}$ . Recall that $\tau_{S^{3}}$ : $TS^{3}arrow S^{3}\cross \mathbb{R}^{3}$ is a framing of $S^{3}$ such that $\tau_{S^{3}}|_{S^{3}\backslash N(\infty;S^{3})}=\tau_{\mathbb{R}^{3}}.$

We consider $a_{i}\in \mathbb{R}^{3}$ as a constant vector field of trivial $\mathbb{R}^{3}$ bundle. Then $\tau_{S^{3}}^{*}a_{i}$ is a

constant vector filed of $S^{3}$ . Let $X$ be a compact oriented 4-manifold with $\chi(X)=0$

and $\partial X=Y$ . Take a non-vanishing vector field $\eta_{X}$ on $X$ such that $\eta_{X}|_{Y}$ is the outward

normal vector field of $Y=\partial X$ . Let $T^{v}Xarrow X$ be the normal bundle of $\eta_{X}$ in $TX$ . Then

$T^{v}X|_{Y}=TY$ . Let $ST^{v}Xarrow X$ be the unit sphere bundle of $T^{v}X$ . Take $\beta_{i}$ is a generic

section of $T^{v}Xarrow X$ such that $\beta_{i}|_{Y}=\gamma_{i}|_{Y\backslash N(\infty,Y)}\cup\tau_{S^{3}}^{*}a_{i}|_{N(\infty,S^{3})}$ . Let$-$losure

$c_{\beta_{i}}= \{\frac{\beta_{i}(x)}{\Vert\beta_{i}(x)\Vert}\in(ST^{v}X)_{x}|x\in X\backslash \beta_{l}^{-1}(0)\} \subset ST^{v}X.$

$3_{\mathcal{C}(\gamma_{i})}$ has two ends near $\infty.$

$4$

This number depends on the choice of $\gamma_{1},$ $\gamma_{2}$ and $\gamma_{3}.$
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By a similar argument as in Lemma 4.1, $c(\beta_{i})=c_{\beta_{i}}\cup c_{-\beta_{i}}$ is a 4-dimensional submanifold
of $ST^{v}X$ such that $\partial c(\beta_{i})=c(\gamma_{i}\cup\tau_{S^{3}}^{*}a_{i})$ .

For generic $\beta_{1},$ $\beta_{2}$ and $\beta_{3},$ $c(\beta_{1})\cap c(\beta_{2})\cap c(\beta_{3})$ is a compact oriented $0$-dimensional
manifold. Furthermore, this argument is extended to any closed 4-manifold whose Euler
number is zero and we can check that $\#(c(\beta_{1})\cap c(\beta_{2})\cap c(\beta_{3}))$ is a cobordism invariant of
closed 4-dimensional manifold whose Euler number is zero.

Lemma 4.4 ([8], [7]). $\tilde{I}(\gamma_{1}, \gamma_{2}, \gamma_{3})=\frac{1}{8}\#(c(\beta_{1})\cap c(\beta_{2})\cap c(\beta_{3}))-\frac{3}{4}$SignX is independent

of the choice of $\beta_{i}$ and $X.$

Remark 4.5. This correction term was first defined by T. Watanabe in [8] for integral

homology 3-spheres to construct the Morse homotopy invariant. We modified his con-
struction to extend to rational homology 3-spheres and we determined the number - $\frac{3}{4}$

before the term SignX.

Theorem 4.6 ([7]).

$\tilde{z}_{1}(Y)=\#(W(\gamma_{1})\cap W(\gamma_{2})\cap W(\gamma_{3}))-\tilde{I}(\gamma_{1}, \gamma_{2}, \gamma_{3})$

is a topological invariant of $Y.$

Theorem 4.7 ([7]). $\tilde{z}_{1}(Y)=z_{1}^{KKT}(Y)$ for any rational homology 3-sphere $Y.$

Proof. Let $\tau$ be a framing of $Y\backslash \infty$ as above section. Then $\tau^{*}a_{i}$ is a non-vanishing vector
field of $Y\backslash \infty$ by considering $a_{i}\in \mathbb{R}^{3}$ as a constant vector filed of trivial $\mathbb{R}^{3}$ bundle. By
the definition, we have $\partial W(\tau^{*}a_{i})=\partial W_{i}(\tau)$ . Then,

$\#(W(\tau^{*}a_{1})\cap W(\tau^{*}a_{2})\cap W(\tau^{*}a_{3}))=\#(W_{1}(\tau)\cap W_{2}(\tau)\cap W_{3}(\tau))$ .

Let $\Omega_{3}^{Sign=0}$ be the cobordism group generated by all 3-dimensional framed manifolds
$\{(Y, \tau)|\tau : TYarrow\underline{\simeq}Y\cross \mathbb{R}^{3}\}$ and dividing by a cobordism relation $\sim:(Y, \tau)\sim\emptyset$ if and
only if there exists compact framed 4-manifold $(X, T)$ such that

$\bullet$ Sign(X) $=0,$

$\bullet$ $T|_{Y}$ is isomorphic to the stable framing of $\tau.$

We consider $\tilde{I}(\tau^{*}a_{1}, \tau^{*}a_{2}, \tau^{*}a_{3})$ and $\sigma(\tau)$ as an invariant of framed manifold $(Y,$ $\tau|_{Y\backslash N(\infty;Y)}\cup$

$\tau_{S^{3}}|_{N(\infty;S^{3})})$ . Then these two invariant factor through $\Omega_{3}^{Sign=0}$ We can show that $\Omega_{3}^{Sign=0}\otimes$

$\mathbb{Q}\cong \mathbb{Q}$ and $\tilde{I}(\tau_{00\rangle}^{*}a_{1}, \tau^{*}a_{2}\tau_{0}^{*}a_{3})=-\frac{1}{4}\sigma(\tau_{0})\neq 0$ for a framing $\tau_{0}$ of $S^{3}\backslash \infty$ . Then we have
$\tilde{I}(\tau^{*}a_{1}, \tau^{*}a_{2}, \tau^{*}a_{3})=-\frac{1}{4}\sigma(\tau)$ for any $\tau$ and Y. $\square$

5 An application of our construction

In this section, we give an application of our construction of $z^{KKT}.$
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5.1 Watanabe’s invariant

In the $1990s$ , K. Fukaya constructed an invariant of a pair of two local systems on a
3-manifold by using three Morse functions in [2]. Fukaya’s invariant is sum of principal
term depending on Morse functions and the correction term to cancel out the influence
of the choice of Morse functions. M. Futaki pointed out in [3] that Fukaya’s invariant
sometimes depends on the choice of Morse functions.
In 2012, T. Watanabe introduced a new type of correction term and then constructed a

topological invariant of a integral homology 3-spheres taking values in $\mathcal{A}(\emptyset)=\Pi_{n}\mathcal{A}_{n}(\emptyset)$ .
In this subsection, we review the degree 1-part, i.e. $A_{1}(\emptyset)\cong \mathbb{Q}$-valued part, of Watan-

abe’s invariant with a little modification.
Take $a_{1},$ $a_{2},$

$a_{3}\in S^{2}\subset \mathbb{R}^{3}$ as above. Let $f_{1},$ $f_{2},$ $f_{3}$ : $Y\backslash \inftyarrow \mathbb{R}$ be Morse functions such

that $f_{i}|_{N(\infty,Y)\backslash \infty}$ coincides with the projection $q_{a_{i}}$ : $\mathbb{R}^{3}arrow \mathbb{R}$ to the $a_{i}$-direction and $f_{i}$

has no critical points of index $0$ or 3. Let Crit $(f_{i})=\{pi, \rangle p_{k_{i}}^{i}, qi, . . . , q_{k_{i}}^{i}\}$ be the set of
critical points of $f_{i}$ . We assume that $ind(p_{j}^{i})=2,$ $ind(q_{j}^{i})=1$ . Let $\partial^{i}$ : $C_{2}(Y\backslash \infty;\mathbb{Q})arrow$

$C_{1}(Y\backslash \infty;\mathbb{Q})$ , $\partial^{i}\lceil p_{j}^{i}]=\sum_{k}\partial_{jk}^{i}[q_{k}^{i}]$ be the boundary map of the Morse-Smale complex of $f_{i}.$

Since $Y\backslash \infty$ is rational homology ball, the map $\partial^{i}$ is an isomorphism. Then there exists
the inverse map $g^{i}$ : $C_{1}(Y\backslash \infty;\mathbb{Q})arrow C_{2}(Y\backslash \infty;\mathbb{Q})$ , $g^{i}[q_{j}^{i}]= \sum_{k}g_{jk}^{i}\lceil\int 2_{k}^{i}$ ]. Let $\{\Phi_{f_{i}}^{t}\}_{t\in \mathbb{R}}$ be
the 1-parameter family of diffeomorphisms associated to $-gradf_{i}$ . We denote by $\mathcal{A}_{q_{k}^{j}}$ and
$\mathcal{D}_{p_{j}^{i}}$ the ascending manifold of $q_{k}^{i}$ and the descending manifold of $p_{j}^{i}$ respectively.

Definition 5.1.

$W(f_{i})=\{(x, y)\in(Y\backslash \infty)^{2}\backslash \triangle|\exists t\in \mathbb{R}\backslash 0, \Phi_{f_{i}}^{t}(x)=y\}$

$+ \sum_{j,k}(9_{jk(\mathcal{A}_{q_{k}^{i}}}^{i}\cross \mathcal{D}_{p_{j}^{i}})-9_{jk(\mathcal{D}_{p_{j}^{i}}}^{i}\cross \mathcal{A}_{q_{k}^{i}}$

$W(f_{i})$ is a wighted sum of 4-manifold in $(Y\backslash \infty)^{2}.$

Theorem 5.2 (Watanabe [8]).

$z_{1}^{FW}(Y)= \frac{1}{8}\#(W(f_{1})\cap W(f_{2})\cap W(f_{3}))-\tilde{I}(gradf_{1}, gradf_{2}, gradf_{3})$

is a topological invariant of $Y.$

Watanabe also defined $z_{n}^{FW}(Y)\in \mathcal{A}_{n}(\emptyset)$ and he conjectured that

$\bullet$ Is $z_{n}^{FW}$ trivial or not?

$\bullet z_{n}^{FW}=z^{KKT}$ ?
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5.2 An application of our construction to Watanabe’s invariant

Theorem 5.3. $z_{1}^{FW}(Y)=z_{1}^{KKT}(Y)$ .

Proof. Let $\overline{W}(f_{i})$ be the closure of $W(f_{i})\cap((Y\backslash \infty)^{2}\backslash \triangle)$ in $C_{2}(Y)$ . Then $\overline{W}(f_{i})$ is a

4-cycle of $(C_{2}(Y), \partial C_{2}(Y))$ . By the definition of $W(f_{i})$ ,

$\partial\overline{W}(f_{i})$

$=p_{0}^{-1}( \{a_{i}, -a_{i}\})\bigcup_{\mathcal{C}}(gradf_{i})+\sum_{jk}(9_{jk(\mathcal{A}_{q_{k}^{i}}\cap \mathcal{D}_{p_{j}^{i}})-g_{jk}^{i}(\mathcal{D}_{p_{j}^{i}}\cap \mathcal{A}_{q_{k}^{i}}))}^{i}$

$=p_{0}^{-1}(\{a_{i}, -a_{i}\})\cup c(gradf_{i})$

$= W^{\partial}(gradf_{i})$ .

Then $z_{1}^{FW}(Y)=\tilde{z}_{1}(Y)=z_{1}^{KKT}(Y)$ . $\square$

Remark 5.4. We can show that $z_{n}^{FW}(Y)=\tilde{z}_{n}(Y)=z_{n}^{KKT}(Y)$ for any $n\geq 1$ . See [7] for

more detail.
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