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1 Introduction

Callable bonds are bonds which have the possibility that the issuer may do prepayment before
its maturity for own convenience. The issuer is usually allowed to early exercise a call option in
coupon times before its maturity. Therefore, it is an American-type interest rate derivative. If
the issuer exercises the right, she purchases back the bond from an investor for a call price. Then,
the investor suffers a loss because of prepayment. We generally call the possible loss “prepayment
risk While, putable bonds are bonds with which an investor can demand prepayment for the
issuer before its maturity. If an investor exercises her right, the issuer must purchase the bond
for a put price. In this paper, we consider the bond where the issuer and investors simultaneously
have callable and putable options, respectively. To take prepayment risk into consideration, we
assume that the call and put prices are dependent on time and states.

As an interest rate model, we consider the Generalized Ho-Lee model ([2,3,4 This model
is a discrete-time and binomial lattice interest rate model. Since the volatilities are dependent
on time and states, it is flexible to model realistic interest rate processes. Moreover, it has the
term structure of interest rate at all nodes on the lattice. We assume that the issuer and an
investor decide whether or not to exercise their option by taking account of the interest rate
market.

The theory of stochastic games was originated by the seminal paper of Shapley (1953) [9],
and it can handle finite and infinite time horizon problems. We apply the stochastic game
approach to the valuation of the callable and putable bond as a finite time horizon problem.
That is, in each exercisable time and a state, we consider that the investor and issuer face a
zero-sum game whose payoff structure is dependent on the interest rate market. Given these
assumptions, using a dynamic programming approach, we can derive the optimality equation
for valuation of the bond.

The organization of this paper is as follows. In Section 2, we illustrate the generalized Ho-Lee
model. In Section 3, we define the callable and putable bonds. Then we derive the optimality
equation to evaluate the bond values. In Section 4, we show numerical examples, where we
consider the influence on the issuer’s optimal exercise strategies for the change in the call price.
Section 5 contains a conclusion.
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2 The Generalized $Ho$-Lee Model

The Generalized Ho-Lee model is a binomial lattice interest rate model ([2, 3, 4 A node on

the lattice is represented by $(n, i)$ where $n$ denotes the time and $i$ the state for $0\leq n\leq N$

and $0\leq i\leq n$ , respectively, $N$ is the time horizon of the model. Let $P(n, i;T)$ represent the

zero-coupon bond price at node $(n, i)$ with remaining maturity of $T$ periods.

We call $\delta(n, i;T)$ the binomial volatilities, which stand for uncertainty of interest rate on the

binomial lattice. We define it as

$\delta(n, i;1)=\frac{P(n+1,i+1;1)}{P(n+1,i;1)}.$

The one-period binomial volatilities in the Generalized Ho-Lee model are given by

$\delta(n, i;1)=\exp(-2\sigma(n)\min(R(n, i;1), R)\Delta t^{3/2})$ , (2.1)

where $\sigma(n)$ denotes an interest rate volatilities, $R(n, i;1)$ the one-period yield, $R$ a thereshold

rate, and $\triangle t$ a time interval of one period. Moreover, the $T$-periods binomial volatilities in the

model are given by

$\delta(n, i;T)=\delta(n, i_{\rangle}1)\delta(n+1, i;T-1)(\frac{1+\delta(n+1,i+1;T-1)}{1+\delta(n+1,i;T-1)})$ . (2.2)

Equation (2) shows the arbitrage free condition in the Generalized Ho-Lee model. To satisfy

Equation (2), the one-period zero-coupon bond prices in this model are given by

$P(n, i;1)= \frac{P(0,0;n+1)}{P(0,0;n)}\prod_{k=1}^{n}(\frac{1+\delta(k-1,0;n-k)}{1+\delta(k-1,0;n-k+1)})\prod_{j=0}^{i-1}\delta(n-1,j;1)$ , (2.3)

and the zero-coupon bond prices with the remaining maturity of $T$ periods are similarly given

by

$P(n, i;T)= \frac{P(0,0;n+T)}{P(0,0;n)}\prod_{k=1}^{n}(\frac{1+\delta(k-1,0;n-k)}{1+\delta(k-1,0;n-k+T)})\prod_{j=0}^{i-1}\delta(n-1,j;T)$ . (2.4)

Solving recursively Equations $(2.1)-(2.4)$ , we can derive the term structure of the interest rate

for any node $(n, i)$ .

3 A Stochastic Game Approach

3.1 Callable and Putable Bonds

Let $t_{0},$ $t_{1}$ , . . . , $t_{N}$ be the time sequences, where $t_{0}$ is the initial time, $t_{1},$ $t_{2}$ , . . . , $t_{N-1}$ are the

coupon times and $t_{N}$ is the maturity time. The coupons of the bond are represented by $c.$

Callable bonds are bonds that give the issuer the right to purchase back the bond for a call

price at the admissible exercise times within the bond’s life. Similarly, putable bonds are bonds

that give investors the right to demand for the issuer to purchase the bond for a put price at

the admissible exercise times within the bond’s life.

Each of the investor and issuer decides whether or not to exercise the right at the coupon

times $t_{n}(n\in\{n^{*},$ $n^{*}+1,$
$\ldots,$

$N-1$ where $t_{n}*is$ the first admissible exercise time. If each
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player (or both players) exercises the right at the exercisable time $t_{n}$ , the investor receives the
payoffs from the issuer at the next coupon time $t_{n+1}$ . For simplicity, we use a time index $n$ to
represent the time, instead of $t_{n}.$

Let $C(n, i)$ and $P(n, i)$ denote the call and put prices at node $(n, i)$ , respectively. We usually
have $P(n, i)\leq C(n, i)$ . If both players simultaneously exercise the right then the investor receives
a payoff $\varphi(n, i)$ from the issuer. We assume that $P(n, i)\leq\varphi(n, i)\leq C(n, i)$ .

3.2 A Stochastic Game Approach

We consider the situation where the issuer and an investor are simultaneously granted the right
to exercise the call and put options, respectively. The investor and issuer choose the strategy $x$

and $y$ $(x, y\in \{$Exercise, $NotExercise\} =:S)$ at each exercisable node $(n, i)$ , respectively. The
investor gains the payoff $\mathcal{A}(x, y;n, i)$ from the issuer whenever the pair $x,$ $y$ is chosen at node
$(n, i)$ . The payoffs of a stage game at node $(n, i)$ are given by

$\{$

$C(n, i)+c$ if the issuer exercises,

$\mathcal{A}(x, y;n, i)=$ $P(n, i)+c$ if the investor exercises,

$\varphi(n, i)+c$ if both players exercise.

If both players hold the bond, the game is carried over to the next time $t_{n+1}$ . Under this situation,

the two players face a two-person, zero-sum game whose payoff structure is dependent on node
$(n, i)$ composed of interest rate market. We call it a stochastic game, or a Markov game.

For a two-person, zero-sum game (a matrix game) defined by a payoff matrix $A\in \mathbb{R}^{m\cross n}$

$(m,$ $n\in \mathbb{N}$ $:=\{1,2,$ $\cdots$ we define the value of the game as follows:

$val[A] := \min_{q\in\Delta^{n}}\max_{\in p\triangle^{m}}p^{T}Aq=\max_{\in}\min_{p\triangle^{m}q\in\Delta^{n}}p^{T}Aq$ , (3.1)

where, for a positive integer $\ell\in \mathbb{N},$
$\triangle^{\ell}$ denotes the $\ell$-dimensional unit simplex defined by:

$\triangle^{\ell}:=\{x=(x_{1}, \ldots, x_{\ell})^{T}\in \mathbb{R}^{p}$ : $x_{i}\geq 0,$ $i=1$ , . . . , $\ell;\sum_{i=1}^{\ell}x_{i}=1\}.$

Let $\rho(n, i;1)$ denote the one-period discount factor at node $(n, i)$ , which is the one-period

zero-coupon bond price calculated by the Generalized Ho-Lee model, and $V(n, i)$ the bond value
at node $(n, i)$ . Then, according to the optimality principle, by solving the following optimality
equation backwardly in $n$ , we can simultaneously derive the bond value at the initial time and
the optimal exercise strategies of the investor and issuer.
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Optimality Equation:

$V(n, i)=F+c=1+c$ (3.2)

for $n=N,$ $i\in\{0, 1, . . . , N\}$

$V(n, i)=\rho(n, i;1)\{val\{\begin{array}{ll}\varphi(n,i) P(n,i)C(n,i) \mathbb{E}^{\mathbb{Q}}[V(n+1,I_{n+1})]\end{array}\}+c\}$ (3.3)

for $n=N-1,$ $N-2$ , . . . , $n^{*}$

$V(n, i)=\rho(n, i;1)\{\mathbb{E}^{\mathbb{Q}}[V(n+1, I_{n+1})]+c\}$ (3.4)

for $n=n^{*}-1,$ $n^{*}-2$ , . . . , $0,$

where $F$ denotes the principal of the bond which is scaled to 1, $I_{n+1}$ a random state in the next

coupon time $t_{n+1}$ , and $\mathbb{Q}$ the risk-neutral probability measure.

Next, we prove the equilibrium solution at the exercisable node $(n, i)$ .

Theorem 1. For the all exercisable node $(n, i)$ , the matrix game possess saddle points in the

pure strategies:

$\max_{x\in s}\min_{y\in S}\mathcal{A}(x, y;n, i)=\min_{y\in S}\max_{x\in S}\mathcal{A}(x, y;n, i)$ .

Furthermore, the optimal exercise strategies are given by

$(x,y)=\{\begin{array}{l}(E, N) if \mathbb{E}^{\mathbb{Q}}[V(n+1, I_{n+1})]\leq P(n, i)\leq C(n, i)(N, N) if P(n, i)\leq \mathbb{E}^{\mathbb{Q}}[V(n+1, I_{n+1})]\leq C(n,i)(N, E) if P(n, i)\leq C(n, i)\leq \mathbb{E}^{\mathbb{Q}}[V(n+1, I_{n+1}\end{array}$

where $E$ and $N$ denote the strategy “Exercise” and “Not Exercise”, respectively.

Proof. The issuer chooses the strategy $N$ when $\mathbb{E}^{\mathbb{Q}}[V(n+1, I_{n+1})]\leq P(n, i)\leq C(n, i)$ , because
$N$ is the weakly dominant strategy for the issuer (the minimizer). The investor then chooses

the best response strategy $E$ and hence $(x, y)=(E, N)$ . When $P(n, i)\leq \mathbb{E}^{\mathbb{Q}}[V(n+1, I_{n+1})]\leq$

$C(n,i)$ , for both players, the strategy $N$ is the weakly dominant strategy and $(x, y)=(N, N)$ .

When $P(n, i)\leq C(n, i)\leq \mathbb{E}^{\mathbb{Q}}[V(n+1,$ $I_{n+1}$ the investor chooses the strategy $N$ which is the

weakly dominant strategy for him (the maximizer). Then, the issuer chooses the best response

strategy $E$ , and hence $(x, y)=(N, E)$ . $\square$

4 Numerical Examples

In this section, we show numerical examples on the basis of the above argument. For the interest

rate calculated by the Generalized Ho-Lee model, we propose the values for the simple fixed

coupon bond and the bond including the callable and putable options. Thereby, we discuss the

bond values in the initial time and the optimal exercise strategies of the issuer.

We set the time sequences $t_{0},$ $t_{1}$ , . . . , $t_{20}$ , the exercisable times $t_{10},$ $t_{11}$ , . . . , $t_{19}$ , and $\triangle(t)=0.5.$

That is, we consider the bond that the maturity is 10-year and the admissible exercise times

98



are from 5-year onward. The other parameters are a coupon $c=0.1$ and the interest rate
volatilities in the Generalized Ho-Lee model $\sigma(n)=0.2$ which is constant in $n$ . We set the call
price $C(n, i)=1.4$ , 1.6, 1.8 and the put price $P(n, i)=1.$

Table 1 shows the values of the 1 -year fixed coupon bond, and Tables 2, 3 and 4 shows
the values of the bond including the options for the call price 1.4, 1.6 and 1.8, respectively. In
all Tables, the upside of Table means high interest rates. For Tables 2-4, the upper surrounded
area represents the investor’s exercise nodes and the lower the issuer’s exercise nodes. The
parameters in Tables 2-4 are the same values except for a call price.

Tables 2-4 show that the investor exercises the right in high interest rates while the issuer

exercises the right in low interest rates. Accordingly, if interest rates is high, we can infer that
the investor may do prepayment to seek the higher yields on an investment. While, if interest
rates is low, we can similarly infer that the issuer may do prepayment to switch to loans with
lower interest rates.

As for the bond values in the initial time, the fixed coupon bond in Table 1 is the highest of
the four ones. Furthermore, with regard to bonds including the options, Tables 2-4 show that

as the call price is higher, the bond values in the initial time are higher.

In order to consider the investor’s prepayment risk for a change in the call price, we observe
the issuer’s optimal exercise strategies. Tables 2-4 show that as the call prices are lower, the
issuer’s optimal exercise area is bigger. This is because, if we regard a call price as a penalty for
the issuer doing prepayment before the maturity, the issuer has the more incentive to exercise

the right as the call price is lower.

11

0.897 1.1

0782 0.971 11

0.721 0897 1028 11

0.693 0.860 0991 1073 11

0.689 0.848 0.979 1067 1.106 11

0.701 0.856 0.986 1078 1.126 1.131 1.1

0.726 0.878 1008 1.103 1.157 1.171 1.150 11

0.762 0.913 1042 1139 1.197 1218 1205 1.164 11

0.807 0.957 1086 1.184 1246 1272 1265 1231 1.174 1.1

0860 1010 1.139 1238 1303 1333 1330 1301 1249 1181 1.1

0.921 1071 1200 1300 1366 1398 1400 1375 1327 1263 1.186 1.1

0.990 1.140 1269 1368 1435 1469 1473 1451 1408 1347 1.274 1190 1.1

1065 1215 1344 1443 1.510 1545 1551 1531 1490 1432 1362 1281 1193 1.1

1.147 1298 1425 1.523 1589 1625 1632 1614 1575 1519 1451 1372 1286 1.195 1.1

1.235 1386 1512 1609 1674 1709 1716 1699 1662 1608 1541 1464 1380 1290 1197 1.1

$1329 1480 1604 1699 1763 1797 1804 1787 1751 1698 1632 1557 1474 1386 1293 119811$
1430 1579 1702 1794 1856 1889 1895 1878 1841 1789 1725 1651 1569 1481 1390 1295 1198 1.1

1536 1684 1.804 1893 1953 1983 1.988 1970 1934 1883 1819 1745 1664 1577 1487 1393 1297 1199 1.1

1647 1793 1910 1996 2.053 2.081 2.084 2.065 2.029 1977 1913 1840 1760 1674 1.584 1490 1395 1298 1.199 1.1

1.763 1906 2.020 2.103 2.156 2.181 2.182 2.162 2.125 2.073 2009 1936 1856 1771 1681 1.588 1493 1396 1298 1.199 11

$0$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time

Table 4.1: Values of the 10-year fixed coupon bond
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11

1.277

$1353 1464$

$1433 1539 1611$

1518 1620 1688 1725

1608 1706 1772 1806 1814

$0$ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$Tne$

Table 4.2: Values of the bond including the options for the call price 1.4

11

0.956 1074 1.200 1300 1366 1.398 1400 1375 1327 1263 1186 1.1

1005 1.141 1269 1368 1435 1469 1473 1451 1408 1347 1274 1.190 1.1

1072 1216 1.344 1443 1510 1545 1551 1531 1490 1432 1362 1281 1193 11

1150 1298 1425 1523 1589 1625 1632 1614 1575 1519 1451 1372 1286 1195 1.1

$1324$

1416 1.555

$1510 1643 1741$

1607 1733 1824 1880

1.707 1826 1912 1963 1982

$0$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$T$ ne

Table 4.3: Values of the bond including the options for the call price 1.6
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1.1

0.956 1074 1200 1300 1366 1398 1400 1375 1327 1263 1.186 1.1

1005 1.141 1269 1368 1435 1469 1473 1451 1408 1347 1274 1.190 1.1

1072 1216 1344 1443 1.510 1545 1551 1531 1490 1432 1362 1281 1193 1.1

1150 1298 1425 1.523 1589 1625 1632 1614 1575 1519 1451 1372 1.286 1195 1.1

1236 1386 1.512 1609 1674 1709 1.716 1699 1662 1608 1541 1464 1380 1290 1197 1.1

1330 1480 1604 1699 1763 1797 1804 1787 1751 1.698 1632 1557 1474 1386 1293 1198 1.1

$1430 1579$

$1535 1683 1802$

$1645 1790 1905 1987$

1.759 1900 2.009 2086 2.130

01234567891011121314151617181920

Time

Table 4.4: Values of the bond including the options for the call price 1.8

5 Conclusion

In this paper, we propose a pricing method for the bond including the callable and putable

options. If we consider the bond that both the issuer and the investor are simultaneously

granted the right to exercise the option, then we assume that they face a two-person, zero-sum
game whose payoff structure is dependent on node $(n, i)$ . Thereby, we formulate such bond’s

valuation as a stochastic game problem. Furthermore, according to a dynamic programming

approach, we derive the optimality equation for such bond’s valuation. Consequently, we obtain

the bond values and the optimal exercise strategies of the issuer and investor. Besides, we show
that the stochastic games have a solution in pure strategies and derive the equilibrium solution

in stage games.
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