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1 Introduction

In these notes, we will be mainly focussing on the proof of the so-called ASM-DPP conjec-
ture of Mills, Robbins and Rumsey [22] which relates refined enumerations of Alternating
Sign Matrices (ASM) and Descending Plane Partitions (DPP).

ASMs were introduced by Mills, Robbins and Rumsey [24] in their study of Dodgsons
condensation algorithm for the evaluation of determinants. DPPs were introduced by
Andrews [1] while attempting to prove a conjectured formula for the generating function
of cyclically symmetric plane partitions.

1.1 ASMs from lambda-determinant

$Th-\bigcap_{ノ}$ definition of the so-called lambda-determinant of Mills, Robbins and Rumsey [24] is
based on the famous Dodgson condensation algorithm [12] for computing determinants,
itself based on the Desnanot-Jacobi equation, a particular Pl\"ucker relation, relating minors
of any square $k+1\cross k+1$ matrix $M$ :

$|M|\cross|M_{1,k+1}^{1,k+1}|=|M_{k+1}^{k+1}|\cross|M_{1}^{1}|-|M_{1}^{k+1}|\cross|M_{k+1}^{1}|$ (1.1)

where $|M_{\dot{|}12,1,}^{j_{1},j_{2}.’.\cdot\cdot.\cdot,j_{r}}|$ stands for the determinant of the matrix obtained from $M$ by deleting
rows $i_{1},$ $i_{r}$ and columns $j_{1},$ $j_{f}$ . The relation (1.1) may be used as a recursion relation
on the size of the matrix, allowing for efficiently compute its determinant.

More formally, we may recast the algorithm using the so-called $A_{\infty}$ $T$-system (also
known as discrete Hirota) relation:

$T_{i,j,k+1}T_{i,j,k-1}=T_{j+1},{}_{ki,j-1,k}T-T_{i+1,j},{}_{ki-1,j,k}T$ (1.2)

for any $i,j,$ $k\in \mathbb{Z}$ with fixed parity of $i+j+k$. Now let $A=(a_{i,j})_{i,j\in\{1,2,\ldots,n\}}$ be a fixed
$n\cross n$ matrix. Together with the initial data:

$T_{\ell,m,0}$ $=$ $1$ $(\ell, m\in \mathbb{Z};\ell+m=n mod 2)$

$T_{l,j,1}$
$=a \frac{-:+n+1}{2},:++n+1\tilde{2}$ $(i,j\in \mathbb{Z};i+j=n+1 mod 2; |i|+|j|\leq n-1)$ , (1.3)
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the solution of the $T$-system (1.2) satisfies:

$T_{0,0,n}=\det(A)$ (1.4)

Given a fixed formal parameter $\lambda$ , the lambda-determinant of the matrix $A$ , denoted
by $|A|_{\lambda}$ is simply defined as the solution $T_{0,0,n}=|A|_{\lambda}$ of the deformed $T$-system

$\tau_{i,j,k+1}T_{j,k-1}=T_{j+1,k}T_{j-1,k}+\lambda T_{i+1,j,k}T_{-1,j,k}$ (1.5)

subject to the initial condition (1.3).
The discovery of Mills, Robbins and Rumsey is that the lambda-determinant is a

homogeneous Laurent polynomial of the matrix entries of degree $n$ , and that moreover the
monomials in the expression are coded by $n\cross n$ matrices $B$ with entries $b_{i,j}\in\{0, 1, -1\},$

characterized by the fact that their row and column sums are 1 and that the partial row
and column sums are non-negative, namely

$\sum_{i=1}^{k}b_{i,j}\geq 0 \sum_{i=1}^{k}b_{j,i}\geq 0 (k=1,2, n-1;j=1,2, \ldots, n)$

$\sum_{i=1}^{n}b_{i,j}=1 \sum_{i=1}^{n}b_{j,i}=1 (j=1,2, \ldots, n)$

Such matrices $B$ are called alternating sign matrices (ASMs). These include the permu-
tation matrices (the ASMs with no $-1$ entry). Here are the 7 ASMs of size 3:

$(\begin{array}{lll}1 0 00 1 00 0 1\end{array})(\begin{array}{lll}1 0 00 0 10 l 0\end{array})(\begin{array}{lll}0 1 01 0 00 0 1\end{array})(\begin{array}{lll}0 1 0l- 1 101 0\end{array})(\begin{array}{lll}0 1 00 0 11 0 0\end{array})(\begin{array}{lll}0 0 11 0 o0 1 0\end{array})(\begin{array}{lll}0 0 10 1 o1 0 0\end{array})$

There is an explicit formula for the lambda-determinant[24]:

$|A|_{\lambda}= \sum_{n\cross nASMB}\lambda^{Inv(B)-N(B)}(1+\lambda)^{N(B)}\prod_{i,j}a_{i,j^{j}}^{b}$
(1.6)

where $Inv(B)$ and $N(B)$ denote respectively the inversion number and the number of
entries $-1$ in $B$ , with

$Inv(B) = \sum_{1\leq k<\ell\leq n1\leq i<j\leq n} b_{i,\ell}b_{j,k}$

$N(B) = \frac{1}{2}(-n+\sum_{1\leq i,j\leq n}|b_{i,j}|)$

Note that for $\lambda=-1$ , only the ASMs with $N(B)=0$ contribute, i.e. the permutation
matrices, for which $Inv(B)$ coincides with the usual inversion number of the corresponding
permutation, and therefore (1.6) reduces to the usual formula for the determinant.

Mills, Robbins and Rumsey [22] noticed that apart from the quantities $Inv(B)$ and
$N(B)$ , another “observable” of interest is the position of the unique 1 in the top row of
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any ASM. We denote by $t(B)$ the number of $0$ entries to the left of the 1 in the top row
of $B.$

Associating a weight
$W(B)=z^{t(B)}y^{Inv(B)-N(B)_{X}N(B)}$ (1.7)

to each ASM $B$ , we may form the partition function

$Z_{ASM}^{(n)}(x, y, z)= \sum_{n\cross nASMB}W(B)$ (1.8)

In the case $n=3$ listed above, the ASMs receive respective weights: 1, $zy,$ $zxy,$ $y,$ $zy^{2},$ $z^{2}y^{2},$ $z^{2}y^{3},$

leading to $Z_{ASM}^{(3)}(x, y, z)=1+zy+zxy+y+zy^{2}+z^{2}y^{2}+z^{2}y^{3}.$

1.2 DPPs

Descending plane partitions are arrays of positive integers of the form:

$a_{1,1}$ $a_{1,2}$ $a_{1,3}$
. . . .. .

$a_{1,\mu_{1}-2}$ $a_{1,\mu_{1}-1}$ $a_{1,\mu_{1}}$

$a_{2,2}$ $a_{2,3}$
. . . $\cdots$

$a_{2,\mu_{2}}$

$a_{3,3}$
. . .

$a_{3,\mu_{3}}$

$\cdots$

$a_{r,r}\cdots a_{r,\mu_{r}}$

such that the sequece $\mu_{i}$ is strictly decreasing $\mu_{i+1}<\mu_{i}$ , and that for $\lambda_{i}=\mu_{i}-i+1,$

$\lambda_{0}=\infty$ :
$a_{i,j}\geq a_{i,j+1} a_{\iota,j}>a_{i+1,j} \lambda_{i}<a_{i,i}\leq\lambda_{i-1}$

for all $i,$ $j$ . By convention, the empty partition is a DPP. Here are the 7 DPPs of order 3:

3 3
$\emptyset, 2, 3, 3 1, 3 2, 3 3,$

2

The integers $a_{i,j}$ are called parts. A DPP $A$ is said to be of order $n$ if $a_{i,j}\leq n$ for
all $i,$ $j$ . A part $a_{i,j}$ is said to be special if $a_{i,j}\leq j-i$ . We denote by $S(A)$ and $NS(A)$

respectively the total number of special parts and the total number of non-special parts of
any DPP $A$ . Another observable of interest among the DPPs $A$ of order $n$ is the number
of parts in $A$ equal to the order, which we denote by $M(A)$ . To each DPP $A$ of given
order, we associate a weight

$W(A)=x^{S(A)}y^{NS(A)_{Z}M(A)}$ (1.9)

and define the partition function for DPPs of order $n$ to be:

$Z_{DPP}^{(n)}(x, y, z)= \sum_{DPPA\circ fordern}W(A)$ (1.10)

The 7 DPPs of order 3listed above have respective weights: 1, $y,$ $zy,$ $zxy,$ $zy^{2},$ $z^{2}y^{2},$ $z^{2}y^{3},$

as $M(A)$ is the number of occurrences of the part 3, and the only special part is the entry
1 in the fourth DPP. This leads to the partition function $Z_{DPP}^{(3)}=1+y+zy+zxy+zy^{2}+$

$z^{2}y^{2}+z^{2}y^{3}.$

24



1.3 The ASM-DPP conjecture

The ASM-DPP conjecture as stated by Mills, Robbins and Rumsey [22] amounts to the
identity between the partition functions of ASMs and DPPs as defined in the previous

sections. This is the following:

Theorem 1.1. The partition functions for the refined enumeration of ASMs and DPPs
coincide, namely

$Z_{ASM}(x, y, z)=Z_{DPP}(x, y, z)$

This was finally proved in all its generality in [4], and then generalized so as to include
yet another observable in [5]. In the present note, we explain the rationale behind these
proofs which strongly rely on manipulations of finite truncations of infinite matrices.

For simplicity of exposition we shall start with the identity between the doubly refined
partition functions $Z_{ASM}^{(n)}(x, y, 1)$ and $Z_{DPP}^{(n)}(x, y, 1)$ . Each will be expressed as the deter-
minant of a finite truncation (of size $n\cross n$ ) of an infinite matrix, and the identity between
determinants will be derived from general principles relating the two

$\langle$

infinite” matrices.
One key ingredient is the use of the double generating series for the matrix entries (see
Appendix A for definitions and properties).

1.4 Outline

The use of infinite matrices is somewhat non-standard in this context, and we would like
to stress the power and beauty of the method. The infinite matrices occurring here actu-
ally involve some fundamental object that came up in the study of so-called Lorentzian
triangulations [8], giving rise to one of the simplest examples of quantum integrable sys-
tem. More precisely, random configurations of this particular class of triangulations may
be generated by iterated powers of a transfer matrix $T$ of infinite size. The problem was
solved exactly by diagonalization of $T$ in [8]. A drastic simplification of the problem
comes from the existence of an infinite parametric family of such transfer matrices, which
all commute with each other.

The notes are organized as follows.
In Section 2, we recall a number of facts about the transfer matrix of $1+1$-dimensional

Lorentzian triangulations, including other applications to trees and lattice path enumer-
ation.

In Section 3, we compute $Z_{ASM}^{(n)}(x, y, 1)$ by use of the Izergin-Korepin (IK) [15, 17]
determinant formulation of the partition function of the bijectively equivalent configura-
tions of the 6 Vertex (6V) model with Domain-Wall Boundary Conditions (DWBC). The
difficulty here is to extract a homogeneous hmit out of the IK determinant, and to put
it in the form of the determinant of a finite truncation to size $n\cross n$ of an infinite matrix
which is independent of $n.$

In Section 4, we compute $Z_{DPP}^{(n)}(x, y, 1)$ by use of the lattice path formulation of the
problem [19], and by use of the Lindstr\"om Gessel-Viennot (LGV) determinant formula
for the partition function of non-intersecting families of lattice paths. This expresses
$Z_{DPP}^{(n)}(x, y, 1)$ as the determinant of the finite truncation to size $n\cross n$ of an infinite matrix
independent of $n.$
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In Section 5, we show how the relation between the double generating functions of the
two infinite matrices above implies the identity between the determinants of any finite
truncation thereof. This is the key to the proof of the ASM-DPP conjecture. We then
show how this has to be adapted to include more refinements.

In the conclusive Section 6, the ASM-DPP correspondence is placed in the wider con-
text of the myriad of combinatorial objects and physical systems connected to ASMs. We
also compare the two very different forms of quantum integrability underlying the ASM-
DPP correspondence, one coming from the Lorentzian triangulations, the other from the
$6V$ model.

We collect the useful formulas and definitions for generating functions and truncated
determinants of infinite matrices in Appendix A.
Acknowledgments. These notes are largely based on work with E. Guitter, C. Krist-
jansen, R. Behrend and P. Zinn-Justin. I thank the Mathematical Sciences Research
Instiitute, Berkeley, California for hosting me while these notes were completed.

2 The main actor: the transfer matrix of Lorentzian gravity

2.1 $1+1D$ Lorentzian gravity

Discrete models for $1+1D$ Lorentzian gravity are defined as follows. They are statistical
models whose configurations are discrete space-times, in the form of random triangulations
with a regular discrete time direction $(an$ integer segment $[t_{1}, t_{2}]\subset \mathbb{N})$ and a random space
direction, modeled by random triangulations of the unit time strips $[t, t+1],$ $t\in \mathbb{N}$ , by
arbitrary but finite numbers of triangles with one edge along the time line $t$ (resp. $t+1$ )
and the opposite vertex on the time line $t+1$ (resp. $t$ ). All other edges are then glued
to their neighbors so as to form a triangulation. Each “horizontal edge”’ along a time line
$t$ is shared by two triangles, one in each time slice $[t-1, t]$ and $t,$ $t+1$]. The boundary
conditions along the time lines may be taken free, periodic or staircase-like [8]. A typical
free boundary Lorentzian triangulation $\Theta$ in $1+1D$ reads as follows:

space

These triangulations are best described in the dual picture by considering triangles as
vertical half-edges and pairs of triangles that share a timelike (horizontal) edge as vertical
edges between two consecutive time-slices. We may now concentrate on the transition
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between two consecutive time-slices which typically reads as follows:

(2.1)

with say $i$ half-edges on the bottom and $j$ on the top (here for instance we have $i=9$

and $j=10)$ . Denoting by $|i\rangle$ and $|j\rangle$ , withl $i,j\in \mathbb{Z}_{+}$ , the bottom and top Hilbert space
state bases, we may describe the generation of a triangulation by the iterated action of a
transfer operator 7 with matrix elements $T_{i,j}=(\begin{array}{l}i+ji\end{array})$ between states $|i\rangle$ and $|j\rangle$ . Note that
the corresponding matrix $T=(T_{i,j})_{i,j\in z_{+}}$ is infinite. We shall deal with such matrices
in the following. As detailed in Appendix $A$ , a compact characterization of the infinite
matrix $T$ is via its double generating function:

$f_{T}(u, v)= \sum_{i,j\geq 0}T_{i,j}u^{i_{l)}j}=\frac{1}{1-u-v}.$

2.2 Integrability

To make the model more realistic, we may include both area and curvature-dependent
terms, by introducing Botlzmann weights $w(\Theta)$ equal to the product of local weights of
the form $g$ per triangle (area term) and $a$ per pair of consecutive triangles in a time-slice
pointing in the same direction, either both up or both down (curvature term). The rules
in the dual picture are as follows:

$T \perp T \perp$
$g$ $g$ a a

For instance, in the example (2.1) above with $i=9$ and $j=10$ , the product of local
weights is $g^{19}a^{9}$ . For the staircase-like boundary conditions of [8], namely assuming that
each state-to-state transition as in (2.1) has at least one leftmost half-edge on the bottom
and one rightmost half-edge on top (and not counting the leftmost and rightmost half-edge
weights $g^{2}$), it is easy to compute the new transfer operator $T(g, a)$ with matrix elements

$\tau(9^{a})_{i,j}=(ag)^{i+j}\sum_{k=0}^{{\rm Min}(iij)}(\begin{array}{l}ik\end{array})(\begin{array}{l}jk\end{array})a^{-2k}$ (2.2)

for $i,$ $j\geq 0$ which expresses the transition between states $|i+1\rangle$ and $|j+1\rangle$ . Equivalently,
the double generating function reads:

$f_{T(g_{)}a)}(u, v)= \sum_{i,j\geq 0}T(g, a)_{i,j}u^{i}v^{j}=\frac{1}{1-ga(u+v)-g^{2}(1-a^{2})uv}$ (2.3)

and we have $T(g, a)=T(ga, ga, g^{2}(1-a^{2}))$ in the notations of Appendix A.

1Here and throughout the paper, we use the notation $z_{+}=\{0$ , 1, 2,
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This model turns out to provide one of the simplest examples of quantum integrable
system, with an infinite family of commuting transfer matrices. Indeed, we have:

Theorem 2.1. [8] The transfer matrices $T(g, a)$ and $T(g’, a’)$ commute if and only if the
parameters $(g, a, g’, a’)$ are such that $\varphi(g, a)=\varphi(9’, a’)$ where:

$\varphi(g, a)=\frac{1-g^{2}(1-a^{2})}{ag}$ (2.4)

This is easily proved by using the generating functions. This case corresponds to the
family of matrices $T_{s,t}(\alpha)$ of Appendix $A$ , with $s=1,$ $t=\varphi(g, a)$ and $\alpha=ga.$

2.3 Diagonalization

To diagonalize $T$ , we may first consider finite size truncations $T^{[0,k]}=(T_{i,j}(g, a))_{i,j\in[0,k]}.$

It is easy to see that the $(k+1)\cross(k+1)$ symmetric matrix $T^{[0,k]}$ is diagonalizable, with
eigenvalues $\lambda_{i}^{[0,k]}(g, a)=g^{2i}(1+O(g^{2}))$ , $i\in[0, k]$ , all with formal series expansions in
powers of $g$ with coefficients in $\mathbb{Z}[a]$ . As $k$ increases, we get more and more eigenvalues,
with power series expansions that stabilize. In this sense, the hmiting infinite matrix has
an infinite set of eigenvalues $\lambda_{i}=g^{2i}(1+O(g^{2}))$ , $i\in \mathbb{Z}_{+}$ , with well-defined formal power
series expansions in $g.$

Setting $\varphi(g, a)=q+q^{-1}$ for some $q\in \mathbb{C}^{*}$ , and introducing a new variable

$\lambda=\frac{1-q^{-1}ga}{1-qga},$

we may rewrite the double generating function of $\tau(9^{a})$ as:

$f_{T(g,a)}(u, v) = \frac{1-\lambda q^{2}}{(1-qu)(1-qv)-\lambda(u-q)(v-q)}$

$= \sum_{m=0}^{\infty}\frac{\sqrt{1-q^{2}}(q-u)^{m}}{(1-qu)^{m+1}}(\frac{1-\lambda q^{2}}{1-q^{2}}\lambda^{m})\frac{\sqrt{1-q^{2}}(q-v)^{m}}{(1-qv)^{m+1}}$ (2.5)

where we identify

$\Lambda^{(m)}=\frac{1-\lambda q^{2}}{1-q^{2}}\lambda^{m}$

as the m-th eigenvalue of $T(g, a)$ , $m\in \mathbb{Z}_{+}$ and

$f_{v^{(m)}(u)}= \sum_{i=0}^{\infty}v_{i}^{(m)}u^{i}=\frac{\sqrt{1-q^{2}}(q-u)^{m}}{(1-qu)^{m+1}}$

as the generating function for the corresponding eigenvector $v^{(m)}$ . Note that $(v^{(m)})_{m\in Z_{+}}$

form an orthonormal basis of the Hilbert space of states w.r. $t$ . the standard scalar product
$u \cdot v=\sum_{i\in Z_{+}}u_{t}v_{i}$ . It is easy to show that $\Lambda^{(m)}=g^{2m}(1+O(g^{2}))$ as a formal power series
of $g$ , thereby proving that these are the limits of the eigenvalues of the truncated matrices
as the size $karrow\infty.$

This was extensively used in [8] to compute correlation functions of top/bottom bound-
ary loops in random Lorentzian triangulations. We want to stress here the very simple
form of the generating function (2.3), which will reappear later in these notes.
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2.4 Trees

For staircase boundary conditions, the dual random Lorentzian triangulations introduced
above may be viewed as random plane trees. This is easily realized by gluing all the
bottom vertices of parallel vertical edges whose both top and bottom halves contribute
to the curvature term (no interlacing with the neighboring time slices). A typical such
example reads:

Note that the tree is naturally rooted at its bottom vertex.
To summarize, we have unearthed some integrable structure abtached naturally to

certain plane trees. Note that in tree language the weights are respectively $g^{2}$ per edge
(except the left/right boundary ones), and $a$ per pair of consecutive descendent half-edges
(from left to right) and per leaf.

2.5 Paths

There is yet another interpretation of the transfer matrix $T(g, a)$ of $1+1D$ Lorentzian
gravity, in terms of lattice paths. First notice that $T(g, a)=V(g, a)V^{t}(g, a)$ for some
(infinite) lower triangular matrix $V(g, a)$ with entries

$V(g, a)_{i,k}=g^{i}a^{i-k}(\begin{array}{l}ik\end{array}) (i, k\in \mathbb{Z}_{+})$ (2.6)

and double generating function:

$f_{V(g,a)}(u, v)= \frac{1}{1-agu-guv}$ (2.7)

In the notations of Appendix A.2, we have $V(g, a)=L(a^{-1}, ga)$ .
Consider paths on the positive quadrant of the two-dimensional square lattice $\mathbb{Z}+^{2},$

with steps $(-1, O)$ (horizontal) and $(0,1)$ (vertical), as illustrated in Fig. $1(a)$ . Then the
total number of paths from the point $(i, 0)$ to the point $(k, k)$ on the diagonal is $(\begin{array}{l}ik\end{array}).$

Moreover if we attach a weight $ga$ per horizontal step and $g$ per vertical one, we get a
total contribution of $(ga)^{k-i}g^{k}(\begin{array}{l}ik\end{array})=V(g, a)_{i,k}$ , which we interpret as the partition function
for weighted paths from $(i, 0)$ to $(k, k)$ . This quantity will also reappear later.

Note that in this language $T(g, a)_{i,j}$ is the partition function of lattice paths from $(i, 0)$

to $(0,j)$ in the positive quadrant, with weights $9^{a}$ (resp. g) per horizontal step below
(resp. above) the diagonal and $g$ (resp. $ga$) per step above (resp. below) the diagonal
(see Fig. $1(b)$ for an illustration).
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(i,O)

$($a$)$

$(i,0)$

$($b$)$

Figure 1: A typical path contributing to the matrix element $V(g,a):,k(a)$ , and to $T(g,a):,j(b)$ . These paths are
taken on $\mathbb{Z}_{+}^{2}$ , with steps $(-1,0)$ and $(0,1)$ . In the latter case, we have indicated the weights of the steps below
and above the diagonal.

This formulation allows to visualize immediately the truncated transfer matrix $T^{[0,k]}(g, a)$

as corresponding to paths within the square $[0, k]\cross[0, k]\subset \mathbb{Z}_{+}^{2}$ . For such paths, both
the portion below the diagonal and that above are within the same square, so that we
may write $T^{[0,k]}(g, a)=V^{[0,k]}(g, a)V^{[0,k]}(g, a)^{t}$ , wich immediately yields the determinant
of $T^{[0,k]}$ , as $V^{[0,k]}(g, a)$ is lower triangular (see also Appendix A.4):

$\det(T^{[0,k]}(g, a))=\det(V^{[0,k]}(g, a))^{2}=g^{k(k+1)}$

This is compatible with eigenvalues $\lambda_{i}^{[0,k]}(g, a)=g^{2_{l}}(1+O(g^{2}))$ for $i=0$ , 1, $k.$

3 Enumerating ASMs

3.1 ASMs, $6V$ model and the IK deteminant

As discovered by Kuperberg [18], ASMs of size $n\cross n$ are in bijection with the so-called
Domain-Wall Boundary Condition Six Vertex ($6V$-DWBC) model on a square grid of size
$n\cross n$ . The latter configurations are choices of orientations of the edges of a $n\cross n$ grid
of the $(tw(\succ$dimensional) square lattice, in such a way that at each vertex exactly two
edges point $tx$ and two point from- the vertex. Moreover oriented external horizontal
(resp. vertical) edges are attached to the boundary vertices, in such a way that external
horizontal edges point towards the grid and vertical ones from the grid. We display below
the 6 possible vertex configurations $a_{1},$ $a_{2},$

$b_{1},$ $b_{2},$ $c_{1},$ $c_{2}$ obeying the above rules, as well as
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a sample grid showing the external edge boundary condition:

We have also indicated the dictionary between the vertex configurations and the ASM
entries. It is easy to understand the bijection as follows. The $\pm 1$ entries correspond
to vertices where both the horizontal and vertical flows (indicated by the direction of
the edges) are reflected. The alternation of 1 and $-1$ entries corresponds to odd and
even order flips along each row or column of the grid. The DWBC boundary condition
ensures that the first and last encountered non-zero elements in the ASM along rows and
columns must be 1, as one needs an odd total number of flips to reverse the external edge
orientation, when going along a row or a column.

The $6V$ model had been extensively studied in the physics literature. With a suitable
parameterization of the Boltzmann weights $a_{i},$

$b_{i},$
$c_{\tau}$ , the model forms the archetypical

example of an integrable lattice model, as it admits an infinite family of commuting
transfer matrices, that can be diagonalized for various types of bopundary conditions
using the Bethe Ansatz techniques. These integrable weights aredefined as follows. Each
row (resp. column) of the grid carries a complex number $z_{i},$ $i=1$ , 2, $n$ (resp. $w_{i},$

$i=1$ , 2, n $)$ called spectral parameter. Moreover the weights depend on a “quantum
parameter $q\in \mathbb{C}^{*}$ . We have the following parametrization of the weights:

$a(z, w)=qz-q^{-1}w b(z, w)=q^{-1}z-qw c(z, w)=(q^{2}-q^{-2})\sqrt{zw}$

where $a(z, w)$ is the weight for a vertex of type $a_{1}$ or $a_{2}$ at the intersection of a line with
parameter $z$ and column with parameter $w$ , etc. With this parameterization, the model
has an infinite family of commuting row-to-row transfer matrices, and can be exactly
solved by Bethe Ansatz techniques. Using recursion relations of Korepin [17], Izergin [15]
obtained a compact determinantal formula for the partition function of this $6V$-DWBC
model, defined as the sum over edge configurations of the product of local vertex weights,
divided by the normalization factor $\prod_{i=1}^{n}c(z_{i}, w_{i})$ (to make the answer polynomial in the
$z$ ’s and $w’ s$). It reads:

$Z_{6V}^{(n)}(q; \{z_{i}\}, \{w_{j}\})=\frac{\prod_{i,j}a(z_{i},w_{j})b(z_{i},w_{j})}{\Delta(z)\triangle(w)}det1\leq i,j\leq n(\frac{1}{a(z_{i},w_{j})b(z_{i},w_{j})})$ (3.1)

where $\triangle(z)=\prod_{1\leq i<j\leq n}(z_{i}-z_{j})$ stands for the Vandermonde determinant of the $z’ s.$

3.2 Homogeneous limit and computation of $Z_{ASM}^{(n)}(x, y, 1)$

In the above bijection between $6V$ configurations and ASMs, it is easy to track both
quantities $N(B)$ and $Inv(B)$ in terms of $6V$ weights. We find that

$N(B)=N_{c_{2}}= \frac{N_{c}-n}{2} Inv(B)-N(B)=N_{a_{1}}=N_{a_{2}}=\frac{N_{a}}{2}$
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where $N_{a}.,$ $N_{b}.,$ $N_{c_{1}}$ stand for the total numbers of vertex configurations of each type. The
determinant result above can therefore be used to compute the refined partition function
$Z_{ASM}^{(n)}(x, y, 1)$ for ASMs, which counts ASMs with a weight $x/y$ per entry $-1$ and a weight
$y$ for each inversion. Setting

$x=( \frac{c}{b})^{2} y=(\frac{a}{b})^{2}$ (3.2)

we have:
$Z_{ASM}^{(n)}(x, y, 1)= \sum_{ASMB}x^{N(B)}y^{Inv(B)-N(b)}=b^{-n(n-1)}Z_{6V}^{(n)}(a, b, c)$

(3.3)

where $Z_{6V}^{(n)}(a, b, c)$ refers to the homogeneous limit of the partition function (3.1) of the $6V$

model in which all $a(z_{i}, w_{j})$ tend to $a$ , etc. This is obtained by letting all $z_{1}arrow r$ and all
$w_{i}arrow r^{-1}$ , with $a=a(r, r^{-1})$ , $b=b(r, r^{-1})$ and $c=c(r, r^{-1})$ . This and more refinements

were worked out in [4]. We have the following remarkable result:

Theorem 3.1. [4] The partition function for refined ASMs reads:

$Z_{ASM}^{(n)}(x, y, 1)=0\leq i_{1}j\leq n-1\det((1-\nu)I+\nu G)$ (3.4)

where $\nu$ is any solution to the equation

$x\nu(1-\nu)=\nu+y(1-\nu)$ (3.5)

and the $n\cross n$ determinant is the principal minor for the $n$ first rows and columns of the
infinite matrix $M_{ASM}=(1-\nu)I+vG$ whose entries are generated by

$f_{M_{ASM}}(u, v)= \frac{1-\nu}{1-uv}+\frac{\nu}{1-xu-v-(y-x)uv}$ (3.6)

Note the remarkable similarity between the generating function for the matrix elements

of $G$ and the that of the transfer matrix for $1+1D$ Lorentzian triangulations (2.3). The

two actually match up to a rescaling $uarrow u/\sqrt{x}$ and $varrow v\sqrt{x}$ (which amounts to a
conjugation by the diagonal matrix $\sqrt{x}I$) and upon identifying $x=g^{2}a^{2}$ and $y=g^{2}.$

Note also that $G=T(x, 1, y-x)$ in the notations of Appendix A.2.
Let us now give a sketch of the proof of Theorem 3.1. The determinant (3.1) is

singular in the homogeneous limit, but we may Taylor-expand the matrix entries within

the determinant around the homogeneous point. For $a=a(r, r^{-1})$ , $b=b(r, r^{-1})$ and
$c=c(r, r^{-1})$ this reads:

$Z_{6V}^{(n)}(a, b, c)= \frac{(ab)^{n^{2}}}{c^{n}}\det 0\leq i,j\leq n-1(\{(\frac{1}{i!}\frac{\dot{\theta}}{du})(\frac{1}{j!}\frac{d^{j}}{dv^{j}})\frac{c(u^{-1},v)}{a(u^{-1},v)b(u^{-1},v)}\}|_{u=v=r^{-1}})$

Noting further that

$\frac{c(u^{-1},v)}{a(u^{-1},v)b(u^{-1},v)}=\frac{1}{uv-q^{-2}}-\frac{1}{uv-q^{2}}$

and introducing the infinite matrices $A_{\pm}$ with elements:

$(A_{\pm})_{i,j}= \{(\frac{1}{i!}\frac{d^{i}}{du^{i}})(\frac{1}{j!}\frac{d^{j}}{dv^{j}})\frac{1}{uv-q^{\pm 2}}\}|_{u=v=r^{-1}} (i,j\in \mathbb{Z}_{+})$ (3.7)

we have the following straightforward:
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Lemma 3.2. We have

$A \pm=\frac{1}{r^{-2}-q^{\pm 2}}(U(\alpha_{\pm}, \beta_{\pm})^{t})^{-1}U(\alpha_{\pm}’,\beta_{\pm}’)$ (3.8)

for $U(\alpha, \beta)$ the infinite upper triangular matrix with entries $U(\alpha, \beta)_{i,j}=(\begin{array}{l}ji\end{array})\alpha^{i}\beta^{j}$ (see
Appendix A.2), and where the parameters read:

$\alpha_{+}=\frac{1-q^{2}r^{2}}{r}, \beta_{+}=\frac{q^{2}-q^{-2}}{r^{2}-q^{2}},\alpha_{+}’=-q^{2}r^{2}\beta_{+}, \beta_{+}’=-\frac{1}{\alpha+}$

and the parameters with –index are obtained form those with $+by$ the substitution
$qarrow(\Gamma^{1}.$

Proof. The statement of the lemma is an immediate consequence of the fact that the
Taylor-expansion expression (3.7) around $(u, v)=(r^{-1}, r^{-1})$ turns into the following dou-
ble generating functions for the matrix elements of $A_{\pm}$ :

$f_{A\pm}(u, v)= \sum_{i,j\in Z_{+}}(A_{\pm})_{i,j}u^{i}v^{j}=\frac{1}{(r^{-1}+u)(r^{-1}+v)-q^{\pm 2}}$

Moreover, using the generating function for the matrix elements of $U(\alpha, \beta)$ of Appendix
A.2:

$f_{U(\alpha,\beta)}(u, v)= \frac{1}{1-\beta v(1+\alpha u)},$

and for $\alpha\beta\neq 0,$ $U(\alpha, \beta)^{-1}=U(-1/\beta, -1/\alpha)$ , we finally compute by convolution product:

$f_{U^{t}(\alpha,\beta)^{-1}U(\alpha_{)}’\beta’)}(u, v) = f_{U(-1/\beta,-1/\alpha)}(v, u)*f_{U(\alpha’,\beta’)}(u, v)$

$= \oint_{C}\frac{dt}{2i\pi t}\frac{1}{1+\frac{1}{\alpha}u(1-\frac{1}{\beta}t^{-1})}\frac{1}{1-\beta^{J}v(1+\alpha^{J}t)}$

1
$= \overline{(1+\frac{1}{\alpha}u)(1-\beta^{J}v)-uv\frac{\alpha’\beta’}{\alpha\beta}}$

The lemma follows from comparing this with the expressions for $f_{A\pm}(u, v)$ . $\square$

The Lemma is easily extended to finite truncations of the infinite matrices $A_{\pm}$ and
$U$ , as $U$ is upper triangular and $(U^{t})^{-1}$ is lower triangular. Therefore we may write
$A_{\pm}^{[0,n-1]}= \frac{1}{r^{-2}-q^{\pm 2}}(U_{\pm}^{[0,n-1]t})^{-1}U_{\pm}^{[0,n-1]’}$ with the obvious shorthand notations. Going back
to our original determinant, we find that

$Z_{6V}^{(n)}(a, b, c)= \frac{(ab)^{n^{2}}}{c^{n}}\det(A_{-}^{[0,n-1]}-A_{+}^{[0,n-1]})$

$=$ $\frac{(ab)^{n^{2}}}{c^{n}}\det(A_{-}^{[0,n-1]})\det(\mathbb{I}-\frac{r^{-2}-q^{-2}}{r^{-2}-q^{2}}U_{-}^{[0,n-1]}t(U_{+}^{[0,n-1]t})^{-1}U_{+}^{[0,n-1]’}(U_{-}^{[0,n-1]’})^{-1})$

where $\mathbb{I}$ stands for the $n\cross n$ identity matrix. The last product of 4 matrices is finally
identified with the matrix $G$ of Theorem 3.1 and computed by use of generating functions,
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Figure 2: Non-intersecting lattice path configuration for a sample DPP of order $n\geq 8$ . We have indicated the

domains in which horizontal steps correspond to $special/non$-special parts.

whereas the determinant of $A_{-}^{[0,n-1]}$ follows from its expression as a product of triangular
matrices. Collecting all the factors finally yields (3.4-3.6), with the following identification
of parameters:

$x=( \frac{q^{2}-q^{-2}}{q^{-1}r-qr^{-1}})^{2}$ $y=( \frac{qr-q^{-1}r^{-1}}{q^{-1}r-qr^{-1}})^{2}$ $\nu=\frac{r^{-2}-q^{-2}}{q^{2}-q^{-2}},$ $1- \nu=\frac{q^{2}-r^{-2}}{q^{2}-q^{-2}}.$

4 Enumerating DPPs

4.1 Lattice path formulation of DPPs

The DPPs are in bijection with configurations of non-intersecting lattice paths illustrated
in Fig.2 and defined as follows. Like in Sect. 2.5, the paths take place in the positive
quadrant $(\mathbb{Z}_{+})^{2}$ , with the same steps but different weights and boundary conditions. The
paths start along the $x$ axis at positions of the form $(s_{i}, 0)(i=1,2,$ $r$ recorded from
right to left) and end along the $y$ axis at positions $(0, s_{i}+2)(i=1$ , 2, $r$ recorded from
top to bottom). We add a final horizontal left step at the end of each path. Reading
paths from left to right and top to bottom, we record the vertical positions $y=a_{1,j}$ of the
j-th horizontal step from the left taken on the i-th path from top (steps with $y=0$ are
not recorded). These form a DPP with $r$ rows, of order any $n\geq s_{1}+2$ . Conversely to
each DPP with $r$ rows we may associate such a path configuration. Note that the starting
points are such that $s_{i}=\lambda_{i}-1$ , where $\lambda_{i}=\mu_{i}-i+1$ the total number of parts in the
row $i.$

The special parts correspond to horizontal steps taken in the strict upper octant $y\geq$

$x+1$ of the plane, and the remaining parts correspond to the horizontal steps in the
domain $1\leq y\leq x+1$ , while horizontal steps along the $x$ axis do not count (weight 1).

34



4.2 Computation of $Z_{DPP}^{(n)(}(x, y, 1)$

The computation of $Z_{DPP}^{(n)}(x, y, 1)$ uses the Lindstr\"om-Gessel-Viennot [21, 14] determinant
formula expressing the partition function for non-intersecting lattice paths with fixed
atarting points and endpoints $Z$ as a determinant $\det(Z_{i,j})$ where $Z_{i,j}$ is the partition
function for a single path from the i-th starting point to the j-th endpoint. This leads to
the following:

Theorem 4.1. [4] The partition function $Z_{DPP}^{(n)}(x, y)$ for DPPs of order $n$ with weight $x$

per special part and $y$ per other part reads:

$Z_{DPP}^{(n)}(x, y)=\det(\mathbb{I}+H^{[0,n-1]})$ (4.1)

where the determinant is that of the finite truncation to the $n$ first rows and columns of
the infinite matrix $(M_{DPP})_{i,j}=\delta i,$ $j+H_{i,j},$ $i,$ $j\in \mathbb{Z}_{+}$ , with generating function:

$f_{M_{DPP}}(u, v)= \sum_{i,j\in Z+}(M_{DPP})_{i,j}u^{i}v^{j}=\frac{1}{1-uv}+\frac{1}{1-u}\frac{yu}{1-xu-v-(y-x)uv}$ (4.2)

Again, note the close similarity between the matrix $H$ and the transfer matrix $T$

for $1+1D$ Lorentzian triangulations. Our proof of the ASM-DPP conjecture will be
based on this similarity. Note also that in the notations of Appendix A.2, we have
$H=yS(\mathbb{I}-S)^{-1}T(x, 1, y-x)$ .

Let us now sketch the proof of Theorem 4.1. The sought after partition function is
a sum over all configurations of $r$ non-intersecting paths $(0\leq r\leq n-1)$ with fixed
$r$ starting points $(s_{i}, 0)$ , $i=1,$ $r$ and endpoints $(0, s_{i}+2)$ , $i=1,$ $r$ . According
to the Lindstr\"om-Gessel-Viennot theorem, this is the sum over minors $|D|_{s_{1}^{1},\ldots,s_{r}^{\tau}}^{s,\ldots,s}$ of the
$n\cross n$ matrix $D$ whose entries $D_{i,j}$ is the partition function for a single path from $(i, 0)$ to
$(0,j+2)$ . It also has the simple expression:

$\sum_{r=0}^{n-1}\sum_{0\leq s_{1}<\ldots<s_{r}\leq n-1}|D|_{s_{1},\ldots,s_{r}^{r}}^{s_{1},\ldots,s}=\det(\mathbb{I}+D)$

Such a path is split into three pieces: (i) between the $x=0$ axis and the first hit on
the $x=1$ axis (ii) between the $x=1$ axis and the diagonal line $y=x+1$ (iii) between
the diagonal line $y=x+1$ and the vertical axis $y=$ O. Each piece receives a specific
weight, with total contribution:

$D_{i,j}= \sum_{k=0}^{i}\sum_{\ell=0}^{{\rm Min}(k,j+1)}(\begin{array}{l}k\ell\end{array})x^{k-\ell}(\begin{array}{ll}j +1 \ell\end{array})y^{\ell+1}$ (4.3)

where we have first summed over (i) paths from $(i, 0)to(k, 1)$ with $i-k$ horizontal steps
along the $x=0$ axis and one final vertical step (ii) paths from $(k, 1)$ to $(\ell, \ell+1)$ on the
diagonal $y=x+1$ , for which $k-\ell$ horizontal steps must be chosen among a total of
$k$ , each weighted by $x$ as these correspond to special parts (iiii) paths from $(\ell,\ell+1)$ to
$(0,j+2)$ for which $P$ horizontal steps must be chosen among a total $j+1$ , each weighted
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by $y$ as they correspond to non-special parts with one extra $y$ factor for the additional
final horizontal step.

Note that the matrix elements of $D$ are independent of $n$ . We may therefore consider
the extension of $D$ to an infinite matrix $\tilde{D}$ with matrix elements given by $D_{i,j}$ of eqn.(4.3),
for $i,j\in \mathbb{Z}_{+}$ . The theorem follows by identifying the infinite matrix $H$ with $\tilde{D}$ , and
therefore $H^{[0,n-1]}$ with $D.$

5 Proof of the ASM-DPP conjecture

5.1 Proof of $Z_{ASM}^{(n)}(x, y, 1)=Z_{DPP}^{(n)}(x, y, 1)$

The expressions (3.4) and (4.1) for respectively the partition functions $Z_{ASM}^{(n)}(x, y, 1)$ and
$Z_{DPP}^{(n)}(x, y, 1)$ are determinants of the principal minor of size $n$ of some infinite matrix,
in other words, these are the determinants of a finite truncation to the $n$ first rows and
columns of infinite matrices.

There is a very simple relation (independent of n) between the generating functions of
the two infinite matrices $M_{ASM}$ and $M_{DPP}$ , namely:

$(1- \frac{u}{1-\nu})(1-v)f_{M_{ASM}}(u, v)=(1-u)(1-(1-\nu)v)f_{M_{DPP}}(u, v)$ (5.1)

as a direct consequence of (3.5).
Let us translate this back into a finite matrix relation upon truncation. First, for

any matrix $A$ with generating function $f_{A}(u, v)$ the function $f_{M}(u, v)=(1-au)(1-$

$bv)f_{A}(u, v)$ is actually the generating function of the infinite matrix $M=(I-aS)A(\mathbb{I}-$

$bS^{t})$ where $S$ is the strictly lower triangular shift matrix with elements $S_{i,j}=\delta_{i-j,1}$ for
$i,j\in \mathbb{Z}_{+}$ , and $S^{t}$ its strictly upper triangular transpose. Upon truncation to indices in
$[0, n-1]$ , we have the obvious relation (see Lemma A.2 in Appendix A): $M^{[0,n-1]}=(\mathbb{I}-$

$aS)^{[0,n-1]}A^{[0,n-1]}(\mathbb{I}-bS^{t})^{[0,n-1]}$ , due to lower triangularity of $\mathbb{I}-aS$ and upper triangularity
of $I-bS^{t}$ . Note that both matrix truncations are unitriangular, hence have determinant
1 so that $\det(M^{[0,n-1]})=\det(A^{[0,n-1]})$ for all $n\geq 1$ . By the identity (5.1), we therefore

conclude that the truncations $M_{ASM}^{[0,n-1]}$ and $M_{DPP}^{[0,n-1]}$ have the same determinant, and the
$z=1$ version of Theorem 1.1 follows.

5.2 Refinement: proof of the MRR conjecture

The observable $t(B)$ for ASMs $B$ may be included by slightly modifying the homogeneous
limit of the IK determinant. We simply have to consider vertex weights with homogeneous
limits in $\{a(r, r^{-1}), b(r, r^{-1}), c(r, r^{-1})\}$ at points $(i,j)$ , $i=1$ , 2, $n$ and $j=1$ , 2, $n-1$

of the square grid, and different weights $\{a(s, s^{-1}), b(s, s^{-1}), c(s, s^{-1})\}$ for the last column
$i=1$ , 2, $n$ and $j=n$ . Defining further

$z= \frac{a(s,s^{-1})b(r,r^{-1})}{b(s,s^{-1})a(r,r^{-1})}$

gives an extra contribution $z^{t(B)}$ to the ASM enumeration.
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Adapting the method of enumeration described above, one finds that we simply have
to change the definition of the last column of $M_{ASM}^{[0,n-1]}$ to include the $z$ dependence. This
in turn is obtained by modifying all columns of index $j\geq n-1$ in the infinite matrix
$M_{ASM}$ (we refer the reader to [4] for the technical details). The result is the following:

Theorem 5.1. The quantity $(1+\nu(z-1))Z_{ASM}(x, y, z)$ is the $dete7$minant of the trun-
cation to the $n$ first rows and columns of the modified infinite matrix $M_{ASM}’$ , with double
generating function

$f_{M_{4SM}’}.(u, v)$ $=$ $\frac{1-\nu}{1-uv}+\overline{1-xu-vx)uv}$

$+ \frac{\nu(z-1)}{1-(y(z-1)+x)u}(1+\frac{yu}{1-xu})^{n}v^{n-1}(1+\frac{v}{x}\frac{y(\nu-1)+\nu(xu-1)}{\nu+(y-\nu x)u})$

The prefactor $(1+\nu(z-1))$ is ad-hoc and comes from a modification of the columns
$n$ and higher in the infinite matrix to make it simpler. Note that the new infinite matrix
$M_{ASM}’$ has an explicit dependence on $n.$

Likewise, keeping track of the observable $M(A)$ in a DPP $A$ is easy. The lattice path
formulation still holds and yields a LGV-like determinant as well, but for a modified $n\cross n$

matrix $D_{i,j}’$ , identical to $D_{i,j}$ of (4.3) for $i=1$ , 2, $n$ and $j=1$ , 2, $n-1$ and with a
different last column, explicitly depending on $z.$

The latter dependence is the result of decomposing further the piece (iii) of the DPP
(see Sect.4.2), when $j=n$, into $(iii-a)$ and $(iii-b)$ and attaching weights as follows:
(iii-a) the piece of the path from $(\ell, \ell+1)$ to its first vertex on the $y=n$ line at $(m, n)$ with
a total of $(\begin{array}{l}n-m-1\ell-m\end{array})$ paths all with weight $y^{\ell-m}$ and (iii-b) the straight path from $(m, n)$ to
$(0, n)$ with an extra weight of $(yz)^{m+1}$ . This gives:

$D_{i,j}’= \sum_{k=0}^{i}\sum_{\ell=0}^{k}(\begin{array}{l}kp\end{array})x^{k-\ell}(\begin{array}{l}-n-m1\ell-m\end{array})y^{\ell+1_{Z}m+1}$ (5.2)

This leads to the following:

Theorem 5.2. The quantity $(1+\nu(z-1))Z_{DPP}(x, y, z)$ is the determinant of the trun-
cation to the $n$ first rows and columns of the modified infinite matrix $M_{ASM}’$ , with double
generating function:

$f_{M_{DPP}’}(u, v) = \frac{1}{1-zw}+\frac{1}{1-z}\frac{yz}{1-xz-w-(y-x)zw}$

$+( z-1)\frac{1-vyu+\nu(1-xu)}{1-u1-(y(z-1)+x)u}(1+\frac{yu}{1-xu})^{n}v^{n-1}$

Like $M_{ASM}’$ , the infinite matrix $M_{DPP}’$ has an explicit dependence on $n.$

The proof of the complete Mills-Robbins-Rumsey conjecture follows from the following
elementary lemma, easily proved by direct computation:

Lemma 5.3. We have the relation:

$(1+(y-x\nu-1)u)(1-v)f_{M_{ASM}’}(u, v)=(1-u)(1+(\nu-1)v)f_{M_{DPP}’}(u, v)$
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As explained above, such a relation between the two infinite matrices $M_{ASM}’$ and $M_{DPP}’$

guarantees that the determinant of their truncation to their first $m$ rows and columns
coincide, for any $m\geq 1$ , so it holds in particular for $m=n$ and Theorem 1.1 follows.

5.3 More refinements

In [5] a further observable was considered for ASMs and DPPs. For any ASM $B$ let $b(B)$

be the number of $0$ entries to the right of the unique 1 in the bottom row of $B$ . For any
DPP $A$ of order $n$ , let $P(A)$ be the number of parts equal to $n-1$ plus the number of
rows of length $n-1$ . Defining the two following partition functions:

$Z_{ASM}^{(n)}(x, y, z, w) = \sum_{nxnASMB}x^{N(B)}y^{Inv(B)-N(B)}z^{t(B)}w^{b(B)}$

$Z_{DPP}^{(n)}(x, y, z,w) = \sum_{DPPAofordern}x^{S(A)}y^{NS(A)}z^{M(A)}w^{P(A)}$

for respectively ASMs of size $n$ and DPPs of order $n$ , we have:

Theorem 5.4. [5] We have the identity:

$Z_{ASM}^{(n)}(x, y, z,w)=Z_{DPP}^{(n)}(x, y, z, w)$

This was proved in [5] by showing that both functions $Z_{ASM}^{(n)}(x, y, z, w)$ and $Z_{DPP}^{(n)}(x, y, z, w)$

obey the following relation as functions of $z,$ $w,$ $n$ :

$(z-w)Z^{(n)}(z, w)Z^{(n-1)}(1,1)=(z-1)wZ^{(n)}(z, 1)Z^{(n-1)}(1, w)-(w-1)zZ^{(n-1)}(z, 1)Z^{(n)}(1, w)$

in both cases as a consequence of the Desnanot-Jacobi identity (1.1).

6 Conclusion

6.1 ASM,DPP,TSSCPP, FPL,DPL, etc.

In these notes, we have detailed the refined enumeration of ASMs and DPPs and estab-
lished an identity between them.

One could think of further refinements, leading eventually to a bijection between these
objects. This is however only the tip of a much larger iceberg (see Fig.3), which on the
pure combinatorics side involves other objects: the $s(\succ$called TSSCPPs (Totally Symmetric
Self-Complementary Plane Partitions) which are yet another kind of plane partitions, with
a formulation in terms of different configurations of non-intersecting lattice paths (see for
instance [6] for a detailed account). There is also a statistical physics side, involving the
so-called Fully Packed Loop (FPL) model on a square grid, whose configurations are in
bijection with those of the $6V$-DWBC model. The latter plays a central role in the so-
called Razumov-Stroganov (RS) conjecture [23] proved by Cantini-Sportiello [7], relating
its refined enumeration according to link patterns of connections of the loops around the
grid to the asymptotic probabilities of connections of the Densely Packed Loop (DPL)
model on a semi-infinite cylinder of finite perimeter. The latter is yet another integrable
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$\underline{RS}$
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dense loop gas
FPL

$qKZ$

Figure 3: From left to right: ASM, $6V$-DWBC and FPL, all in bijection; dense loop gas (DPL): its ground-
state/limiting probability vector satisfies the $qKZ$ equation, the components measure FPL correlations (RS con-
jecture), their sum matches the $6V$-DWBC partition function with inhomogeneous spectral parameters $z.,$ $w_{j}$ and
$q^{3}=1$ ; DPPs: their refined evaluation matches that of ASMs (MRR conjecture); TSSCPPs: their refined enu-
meration matches a sum rule for $qKZ$ solutions at generic $q$ and $z_{i}=1$ ; Variety $M^{2}=0$ : its degree/multidegree
matches solutions of $qKZ$ for $q=1.$

lattice model based on some pictorial representation of the Temperley-Lieb algebra, whose
groundstate vector is a solution to the quantum Knizhnik-Zamolodchikov $(qKZ)$ equation
[9, 10]. Finally, there is an algebraic geometry side of the iceberg. For instance, the degree
of the variety of upper triangular complex matrices with vanishing square corresponds to
a refined enumeration of TSSCPPs, and the (equivariant cohomology) multidegree is
obtained via a specialization of the solution to the $qKZ$ equation [11].

Many of the known enumerations of the above objects involve determinants,. In a
number of cases, these can be obtained through some application of the Lindstr\"om-Gessel-
Viennot theorem. This applies to all the “free fermion”’ cases that are in bijection with
non-intersecting lattice path configurations. However, both the $6V$ model and the DPL
model are models of interacting fermions, in which even if there is some kind of lattice
path formulation, the latter are no longer just non-intersecting. For instance, in the case
of the $6V$ model, one can define paths going from the left border of the grid to the top
border, by going right and up along the oriented edges as much as possible (i.e. when there
is a choice, always go up). Such paths are now “osculating” in that two paths can bounce
against each other at a vertex (the first going right, then up; the second going up then
right; this corresponds to the vertex $a_{1}$ of the $6V$ model), and this configuration receives a
different weight, interpreted as the exponential of some interaction energy. Yet, somehow,
our formula for the refined enumeration has magically disentangled this interaction, to
make it look like a free fermion model, via our determinant evaluation. This mechanism
deserves to be better understood.
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6.2 Integrabilities

The $6V$ model is the archetype of $2D$ integrable lattice model, related to the $1D$ quantum
XXZ spin chain for $sl_{2}$ . It is know to have an infinite family of transfer matrices $T(a, b, c)$

provided the Boltzmann weights $a,$ $b,$ $c$ satisfy the following relation:

$\Delta(a, b, c)=\frac{a^{2}+b^{2}-c^{2}}{2ab}=$ const.

This constant is the anisotropy of the associated quantum spin chain. Alternatively, in
terms of the $x,$ $y$ variables of (3.2), this turns into the following $(6V$’ variety:

$\psi(x, y)=\frac{1+y-x}{\sqrt{y}}=$ const. (6.1)

as $x,$ $y>0.$

On the other hand, the infinite matrix $M_{ASM}$ , whose finitely truncated determinant
gives the DWBC homogeneous $6V$ partition function on a grid of same size, also involves a
transfer matrix $\theta$ of a form analogous to that of $1+1D$ Lorentzian triangulations, generated
by:

$f_{\theta}(u, v)=\overline{1-xu-vx)uv}$

The transfer matrices $\theta$ commute for different values of the parameters $x,$ $y$ provided they
belong to the following “Lorentzian” variety:

$\varphi(x, y)=\frac{1+x-y}{\sqrt{x}}=$ const. (6.2)

obtained by rephrasing (2.4) above.
Comparing (6.1) and (6.2), we see that $\varphi(x, y)=\psi(y, x)$ , hence the two varieties are

distinct! However, they do intersect. Solving for $\varphi(x, y)=q+q^{-1}$ and $\psi(x, y)=p+p^{-1}$

with say $q,p>1$ , we find that

$\sqrt{x}=\frac{p(q^{2}-1)}{p^{2}q^{2}-1} \sqrt{y}=\frac{q(p^{2}-1)}{p^{2}q^{2}-1}$

Conversely, any such point for $p,$ $q>1$ lies at the intersection of two “integrable varieties
of the form (6.1) and (6.2). This intriguing fact deserves a better understanding. In
particular, the $6V$ variety involves commutation of finite size transfer matrices, whereas
the Lorentzian one concern matrices of infinite size.

A Infinite matrices and truncated determinants

Throughout these notes, we make extensive use of generating functions for infinite matri-
ces. Let us summarize here the main definitions and properties we use.

40



A.l Infinite matrices

We consider infinite matrices $A=(a_{i,j})_{i,j\in z_{+}}$ . The very concept of an infinite matrix is
a bit delicate to work with, for instance the product of two such matrices might not be
well defined. This may be repaired by introducing a formal expansion parameter $\epsilon$ , and
associating to $A$ the matrix $A(\epsilon)=(\epsilon^{i+j}a_{i,j})_{i,j\in \mathbb{Z}+}$ . The product of any two such matrices
now makes sense in the sense of formal power series of $\epsilon$ . Moreover, even the notion of
eigenvector and eigenvalue make sense in this setting, provided one can show that the
latter have formal power or Laurent series expansions in $\epsilon.$

Such a construction will always be implicit (when not explicit) throughout these notes.
For instance, the parameter $g$ in $T(g, a)$ of (2.2-2.3) plays the role of $\epsilon$ . The (diagonaliza-

tion” of $T(g, a)$ along the integrable variety $\varphi(g, a)=q+q^{-1}$ (see Sect.2.3) is an example
of such extended notions of eigenvectors and eigenvalues.

A.2 Generating functions for infinite matrices

For an infinite matrix $A=(a_{i,j})_{i,j\in z_{+}}$ and a vector $w=(w_{i})_{i\in z_{+}}$ we define the formal
generating functions

$f_{A}(u, v)= \sum_{i,j\in \mathbb{Z}+}a_{i,j}u^{i}v^{j} f_{w}(u)=\sum_{i\in z_{+}}w_{i}u^{i}$

with the following properties for matrices $A,$ $B$ and a vector $w$ :

$fi(u, v) = \frac{1}{1-uv}$

$f_{A^{t}}(u, v) = f_{A}(v, u)$

$f_{Aw}(u) = \oint\frac{dt}{2i\pi t}f_{A}(u, t^{-1})f_{w}(t)$

$f_{AB}(uv) = (f_{A}*f_{B})(u, v)= \oint\frac{dt}{2i\pi t}f_{A}(u, t^{-1})f_{B}(t, v)$

where the contour integral picks the constant term in $t.$

We consider the lower and upper triangular matrices $L(\alpha, \beta)$ and $U(\alpha, \beta)$ with gener-
ating functions

$f_{L(\alpha,\beta)}(u, v)= \frac{1}{1-\beta u(1+\alpha v)}$ $f_{U(\alpha,\beta)}(u, v)= \frac{1}{1-\beta v(1+\alpha u)}$ (A.1)

with $U(\alpha, \beta)=L(\alpha, \beta)^{t}$ . Let us also introduce the shift matrix $S=(\delta_{i,j+1})_{i,j\in \mathbb{Z}+}$ and the
transfer matrix $T(\alpha, \beta, \gamma)$ generated respectively by:

$f_{S}(u, v)= \frac{u}{1-uv}$ $f_{T(\alpha,\beta,\gamma)}(u, v)= \frac{1}{1-\alpha u-\beta v-\gamma uv}$ (A.2)

In particular, we have

$L(\alpha, \beta)=T(\beta, 0, \alpha\beta) U(\alpha, \beta)=T(0, \beta, \alpha\beta) I=T(0,0,1)$
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The case of the infinite transfer matrix $T(g, a)$ for Lorentzian triangulations corresponds
to the identification:

$T(g, a)=T(ga, ga,9^{2}(1-a^{2})$

We have the following properties easily derived by contour integrals for the correspond-
ing generating functions:

$L(\alpha, \beta)L(\alpha’, \beta’)$ $=$ $L( \frac{\alpha\beta’\alpha’}{1+\alpha\beta}, \beta(1+\alpha\beta’))$ (A.3)

$U(\alpha, \beta)U(\alpha’, \beta’)$ $=$ $U( \frac{\alpha\beta\alpha’}{1+\alpha\beta},\beta(1+\alpha’\beta))$ (A.4)

$L( \alpha, \beta)^{-1}=L(-\frac{1}{\beta}, -\frac{1}{\alpha})$ $U( \alpha, \beta)^{-1}=U(-\frac{1}{\beta}, -\frac{1}{\alpha})$ (A.5)

$L(\alpha, \beta)U(\alpha’, \beta’)$ $=T(\beta, \beta’, \beta\beta’(\alpha\alpha’-1))$ (A.6)

$U(\alpha’, \beta’)L(\alpha, \beta)$ $=$ $\frac{1}{1-\beta\beta’}T(\frac{\alpha’\beta\beta’}{1-\beta\beta’}, \frac{\alpha\beta\beta’}{1-\beta\beta’}, \frac{\alpha\alpha’\beta\beta’}{1-\beta\beta’})$ (A.7)

$T(\alpha, \beta, \gamma)T(\alpha’,\beta’, \gamma’)$ $=$ $\frac{1}{1-\beta\alpha}T(\frac{\alpha+\gamma\alpha’}{1-\beta\alpha’}, \frac{\beta’+\gamma’\beta}{1-\beta\alpha}, \frac{\gamma\gamma’-\alpha\beta’}{1-\beta\alpha})$ (A.8)

$T(\alpha, \beta,\gamma)^{-1}$ $=$ $\frac{\gamma}{\alpha\beta+\gamma}T(-\frac{\alpha}{\gamma}, -\frac{\beta}{\gamma}, \frac{1}{\gamma})$ (A.9)

These hold whenever the denominators are non-vanishing.

A.3 Commuting families and addition formulas

Using the formulas above, it is easy to derive the following:

Theorem A.l. The following family $\{T_{s,t}(\alpha)\}_{a\in C}$ of infinite matrices commute among
themselves for any fixed values of $s$ and $t$ :

$T_{s,t}(\alpha)=T(\alpha, s\alpha, 1-t\alpha)$

We also have the following “addition formula:

$T_{s,t}( \alpha)T_{s,t}(\alpha’)=\frac{1}{1-s\alpha\alpha’}T_{s,t}(\frac{\alpha+\alpha’-t\alpha\alpha’}{1-s\alpha\alpha’})$

For $s=0$ , we obtain a family of commuting lower triangular matrices

$L_{t}( \alpha)=T_{0,t}(\alpha)=L(\frac{1}{\alpha}-t, \alpha)$

with the (addition” formula:

$L_{t}(\alpha)L_{t}(\alpha’)=L_{t}(\alpha+\alpha’-t\alpha\alpha’)$

Changing variables from $\alpha$ to $a$ , with $\alpha=\frac{1-e^{-ta}}{t}$ , and writing $\ell_{t}(a)=L_{t}(\alpha)$ we finally get
the addition formula:

$\ell_{t}(a)\ell_{t}(a’)=\ell_{t}(a+a’)$ (A. 10)
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from which we deduce that $\ell_{t}(a)$ is an infinite matrix exponential. More precisely, let $M_{t}$

be the infinite matrix generated by

$f_{M_{t}}= \frac{(tv-1)u}{(1-uv)^{2}} M_{t}=(^{\frac{0}{00}1} \frac{0t}{0}2 -32t00 ..3t\cdots)$

then we have $\ell_{t}(a)=\exp(-aM_{t})$ , which by triangularity holds for any finite truncation
as well. A similar analysis holds for $T_{s,t}(\alpha)$ , but only for the infinite matrix. Assuming

that $t^{2}-4s>0$ , and introducing another parameter $r=\sqrt{1-4s}/t^{2}$ , the relevant change
of variables is:

$\alpha=\frac{2(e^{rta}-1)}{t(te^{rta}(r+1)+r-1)} \tau_{r,t}(a)=T_{s,t}(\alpha)$

in terms of which

$\tau_{r,t}(a)\tau_{r,t}(a’)=\frac{1}{1-\frac{(1-r^{2})(e^{rta}-1)(e^{rta’}-1)}{(te^{rta}(r+1)+r-1)(te^{rta’}(r+1)+r-1)}}\tau_{r,t}(a+a’)$

This reduces to (A.10) when $r=1$ (corresponding to $s=0$).

A.4 Truncated determinants

For any infinite matrix $A=(a_{i,j})_{i,j\in z_{+}}$ , we denote by $A^{[0,n-1]}$ the finite $n\cross n$ truncation of
$A$ to its $n$ first rows and columns, namely the matrix with entries: $A^{[0,n-1]}=(a_{i,j})_{i,j\in[0,n-1]}.$

In general, the matrix product does not respect truncation. However, if $L,$ $U$ are re-
spectively lower and upper triangular infinite matrices, then $(LU)^{[0,n-1]}=L^{[0,n-1]}U^{[0,n-1]}.$

Note that this does not hold for $(UL)$ (see the example below).
Let us now examine truncated determinants, namely the determinant of such finitely

truncated matrices. By triangularity it is immediate to compute:

$\det(L(\alpha, \beta)^{[0,k]})=(\alpha\beta)^{k(k+1)/2}=\det(U(\alpha, \beta)^{[0,k]})$ (A. 11)

and by the above property we deduce from (A.6) and (A.11) that:

$\det(T^{[0,k]}(\beta, \beta’, \beta\beta’(\alpha\alpha’-1 =\det(L(\alpha, \beta)^{[0,k]}U(\alpha’, \beta’)^{[0,k]})=(\alpha\beta\alpha’\beta’)^{k(k+1)/2}$

and more generally
$\det(T^{[0,k]}(\alpha, \beta, \gamma))=(\alpha\beta+\gamma)^{k(k+1)/2}$

whereas

$\det((U(\alpha’, \beta’)L(\alpha, \beta))^{[0,k]}) = \frac{\det(T^{[0,k]}(\frac{\alpha’\beta\beta’}{1-\beta\beta’},\frac{\alpha\beta\beta’}{1-\beta\beta},\frac{\alpha\alpha’\beta\beta’}{1-\beta\beta}))}{(1-\beta\beta’)^{k+1}}$

$= \frac{(\alpha\beta\alpha’\beta’)^{k(k+1)/2}}{(1-\beta\beta)^{k+1}}$

43



by use of (A.7). The discrepancy with the $LU$ result is because the matrix product now
involves all the elements of the $(k+1)\cross$ infinite and infinite $\cross(k+1)$ rectangular matrices
of the truncated product.

The main property allowing for proving truncated determinant identities from relations
between generating functions is the following:

Lemma A.2. Let $L,$ $U,$ $A$ be respectively lower triangular, upper triangular and arbitrary

infinite matrices, and let $M=LAU$ . Then:

$M^{[0,k]}=L^{[0,k]}A^{[0,k]}U^{[0,k]}$

Assuming further that both $L$ and $U$ are unitriangular, we then deduce that $\det(M^{[0,k]})=$

$\det(A^{[0,k]})$ for all $k\geq 0$ . So we will have identity between all truncated determinants of
two infinite matrices $M$ and $A$ if there is a relation $M=LAU$ for $L,$ $U$ lower and upper
unitriangular infinite matrices.
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