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Alpha determinants and symmetric polynomials

Kazufumi KIMOTO

Abstract
In the paper, we introduce a family of symmetric polynomials, which are anal-
ogous to the ordinary Schur polynomials, via wreath determinants and show that
they have a Giambelli-type determinantal formula.

1 Introduction

Schur polynomial sy(x1,...,x,) associated to a partition A = ()\y,...,\,), which is of
at most length n, in n variables z1,...,%, is a symmetric polynomial of degree |\ =
A1+ -+ + A, defined as a quotient of Vandermonde-type determinants by

det <x;-\"+"’i)
Sx(x1, ..., Ty) =

lSi,an. (1.1)
det (xj ) 1<i j<n

In the paper we define an analogous symmetric polynomial associated to each partition
A of certainly limited length, which will be called wreath Schur polynomials, via wreath
determinants (which will be introduced later) in place of ordinary determinants. We prove
that such symmetric polynomials have a Giambelli-type formula, that is, any wreath Schur
polynomial is expressed as a ‘determinant’ of the ones associated to hooks.

We first introduce the a-determinants, which are parametric deformation of the or-
dinary determinants (but different from the so called g-determinants), and give several
basic properties. Next we define the wreath determinant as a a-determinant of special
type. We show that the wreath determinants have nice properties such as right relative
invariance. In the last section, we give the definition of the wreath Schur polynomials and
prove a Giambelli-type formula for them.

2 Alpha determinant

2.1 Definition

For a given permutation o € G,,, we define

v(o) =3 0 = Dms(e) =n =3 _m;(0),
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where m; (o) denotes the number of j-cycles in the cycle decomposition of o. The function
v is, hence, a class function.
The a-determinant det, A of an n by n matrix A = (a;j)1<i,j<n is defined by

det, A = Z a”(”)aa(l)laa(z)g - Qg (n)n-
c€BGn
Namely, we simply replace the signature sgno by o(“) in the definition of the ordinary
determinant det A.
It is immediate to see that

det_; A =det A, det; A = per A, detg A = aj1ag3 . . . Gpy.

Thus the a-determinant is a parametric family of polynomial functions on square matrices
including the determinant and permanent. We note that () gives the sign character
when o = —1, the trivial character when a = 1, and a constant multiple of the character
for the regular representation when o = 0.

Example 2.1. For instance, 2 by 2 and 3 by 3 a-determinants are given as follows.

a1 a2
det, = a11a2; + G201,
as1 Qa2

a1 Q12 13
dety | @21 @22 ag3 | = anagass + o’ag1032013 + 0’ a31012093
asy as2 0as3
+ a21012a33 + @ 41132023 + ¥ A31022013-

Remark. It is well known that any permutation o can be expressed as a product of
transpositions. The minimum number of transpositions in such an expression of o is equal
to v(o). For instance, if o = (123)(456)(78)(9) € Sy, then we have v(s) =9 -4 = 5.
On the other hand, o = (12)(23)(45)(56)(78) is one of the shortest expression of o as a
product of transpositions, whose length is 5. :

Remark. The a-determinant is different from the so-called g-determinant

deth = Z (_(I)l(g) ﬁ Ao ()i
i=1

0€Gy

where /(o) denotes the inversion number of o, that is, the length of shortest expression
of o as a product of simple transpositions.

2.2 Basic properties

By definition, it is clear that the a-determinant det, A is multilinear with respect to rows
and columns of 4, and is invariant under transposition A — ‘A. It is also notable that the
a-determinant of block triangular matix equals the product of those of diagonal blocks:

Al * %
det,, . % | =dety A; - dety A,
Am



The a-determinant is not central (i.e. det, AB = det, BA is not true) in general, but we

have
dety AP(0) = det, P(0)A (0 €6,)

as a special case, where P(0) = (;5(;)) is the permutation matrix for o.

Proposition 2.1 (Laplace expansion [1]). Let A = (aij)1<ij<n be a given n by n matriz.
For any integers p,q such that 1 < p,q < n, define ann — 1 by n — 1 matriz Ay, by
exchanging the p-th column and q-th column in A and then eliminating the p-th row and
p-th column of it. Then it follows that

deto A= andm, G =o' ™* dety Au. (2.1)
k=1
Similar expansion also holds for each rows. d

Example 2.2. Let 1, be the n by n all-one matrix, that is, n by n matrix whose entries
are all one. Since (1,,),, = 1,1 for any p and ¢, we have

dety, 1, = Z 1 x o % dety 1,1 = (1 4+ (n — 1)a)dety 1,1,
k=1

from which we obtain

deto 1, = (1+ a)(1+2a)...(1+ (n — o). (2.2)

2.3 Origin of the alpha determinant
Vere-Jones (7] proved the idenfity

Aipiy -0 Qypig

=i > EZ'I—E‘ﬁ'tﬁdeta P (2.3)

d=0 1<iy,....ig<n

2=

det(I, — aAT)"~

Qigiy -0 Qgyiy

for n by n matrices A = (a;;) and T' = diag(t4, ..., t,). This formula can be regarded as a
generalization (or parametric deformation) of Macmahon’s Master Theorem [3]. Indeed,
Macmahon’s Master Theorem is equivalent to (2.3) for o = 1. We also note that (2.3)
gives an expansion of the characteristic polynomial of A when o = —1 and 7' = 2/,. The
Vere-Jones formula (2.3) is used to study certain multivariate probability distributions
(8], as well as to construct certain point processes [6]. We also note that the notion of
a-Pfaffian is also introduced by Matsumoto [5].

2.4 A view from the representation theory

How far is it from the ordinary determinant/permanent to the a-determinant when the
value of the parameter « is apart from £17 We formulate this naive question as a problem
of representation theory as follows. Let .4 be the algebra of polynomials in n? variables
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z;; (1 < 4,5 < n). This becomes a U(gl,)-module by defining the action of the standard
basis E;; as

= 0
Eij . f(X) = Z.’Eik‘a—;{;(){),
k=1

where X = (z;;) and we write an element in A like f(X) as above.
Then we consider the cyclic module V,(a) := U(gl,,) - deto(X). Notice that

Vo(=1) = C-det X = A™(C"), Va(1) = S™(CH)

are both irreducible. We think that the complezity of the module V,(a) reflects the
distance from the ordinary determinant/permanent to the a-determinant.

The irreducible decomposition of V,,(«) is determined by Matsumoto and Wakayama
[4] as follows.

Theorem 2.2. Let us identify the highest weights for U(gl,,) and partitions whose length
is at most n. For each partition \ with £(\) < n, E) denotes the irreducible U(gl,,)-module
with highest weight \. The cyclic module V,,(c) is decomposed as

@ B a= (sk<n)

AFn
LN)<k

1
@z @ (B = D B a=-1 (<k<n),
falaj#o0 3
@(E;‘)@f otherwise,

\ \Fn

(

where f* denotes the number of standard tableauz with shape X, and fa(x) = [ jea(1 =
(j — 9)z) is the modified content polynomial for X. O

Example 2.3. The irreducible decomposition of V3(«) is given as

(3

A a=1
e (B)® o=}
e = { (B =B a=-},
Eélll) a=—1
k E® o ( ESN® @ B otherwise,

since the modified content polynomials are given by

fo@) =1+2)1+22), fen@=>0A+2)1-2), fayle)=>1-2)(1-22)

The result suggests that the a-determinant may acquire some special properties when
the value of « is a root of a certain modified content polynomial, that is, « = £1/k
for some k (1 < k < n). In fact, in the next chapter, we utilize the o-determinant for
a = —1/k to define a determinant-like function on rectangular matrices.
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3 Wreath determinant

3.1 Definition
Let k,n be positive integers, A be a kn by n matrix, 1,, is the p by ¢ all-one matrix.

- Define

wrdety A = det_1/5(A ® 11 %)
=det_i/k(@1,...,a1,...,8n,...,a,) (A= (ay,...,a,)),
N—— S——

k-times k-times

which we call the k-wreath determinant of A. We also use the notation

Al, = wrdet; A
k
for convenience.
Example 3.1.
a
a ... M
QAo k!
=det_y | ¢ . = kG Ok
ag ... Qg
a
kg
Example 3.2.
a11r a2
@21 G2 laaaa laa, 1aaaa
= 011021032042 — 5011031022042 — Q11041022032
a3y as2 4 8 8
Qa1 G2y 1 1 1
— 2021031012042 — 021041012032 + — 031041012022
8 8 4
1 (@11 Q12| (|G21 G22 1 (@11 @Gi12||G21 a2
= g + -
31 Qa32| |G41 (42 a41 Qg2| Q31 032

3.2 Basic properties

We summarize the basic properties of the wreath determinants. See [1] for their proofs.

Proposition 3.1. (1) wrdety(A) is multilinear with respect to the row vectors in A.
(2) wrdetix(AP) = wrdety(A) x (det P)* for any n by n matriz P.
(3) wrdety(P(g9)A) = (sgn7)* wrdety(A) holds for any g = (01,...,0,;7) € G 16, =
6: X 6n C 6]m
a

We notice that Proposition 3.1 (2) says that we can calculate the wreath determinants
by utilizing the elementary column operations.
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Proposition 3.2. The three conditions in Proposition 3.1 characterize the k-wreath de-

terminant up to constant multiple.

Proposition 3.3. Put
k

'D(A) = H det (ak(i—1)+r,j) 1<i,j<n

r=1

for kn by n matriz A. Then

an

a2

1
m@mm=ga§:mmmm.
geGE
Example 3.3. The case where k =n = 2:
a11 Q12
an G| 1 [611 G12])d21 Q22 1 (@11 G12]|G21 Q22
as1 @32 16 laz as2||au ase| 16 |asn as||as s
Q41 G421,
1 |@21 G22]|G11 Q12 1 |G21 Q22
+ = + =
16 |ag as||asa as 16 |ag; ag
4 Wreath Schur polynomials
We refer to [2] for basic facts on symmetric functions.
4.1 Vandermonde-type wreath determinant
For a = (ay,...,ak,) € N** (N={0,1,2,...}), put
ozt r
o A o
ao(z) = wrdete (23*) 1<i<kn = )
I<g<n
.,L.?kn mgkn .’L‘gkn .

where = (z1,...,2,). In particular, we have

%@=(%fm@ﬁ An(x)

1<i<j<n
for
k k k
r”~ - N f-'/\_\
§=(m-1,..n-1,...,1,...1,0,...

H (z: — ;)

,0).

agz; as2

O

In general, a,(z) is divisible by as(x) due to Proposition 3.1 (2) (see also §4.4), and the
quotient a,(z)/as(x) is a symmetric polynomial in n variables.
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4.2 Definition
For a partition A = (Ay,..., ), define

where

X=(A1,0,...,0,23,0,...,0,...,\,0,...,0) € N,
k—1 k—1 k-1

We call S)(x) the k-wreath Schur polynomial. Notice that Sy(z) = sx(z) when &k = 1.
Example 4.1. When k£ =n = 2, we have

A1+1

) ot T Ty
Ty I Ty X9
S (T1,T2) =
(A1, 2)( , T2) xiq x%"’ 1 1
1 1, 1 1,
1

= 5{8(,\1,)\2)(3?1, Tg) — 3(,\1,0)(351,$2)3(A2—1,1)($1,$2)}~

4.3 Giambelli-type formulas

The wreath Schur polynomials have the Giambelli-type formula as follows.

Theorem 4.1. It holds that

Si(@) = det-ayp((~17spapn (@) (4.1)

1<d,j<n

Here (A; —i|j — 1) represents the partition (A; — i+ 1,1971) when \; —i > 0 (Frobenius
notation). We also set
Sty = (—1)%6asp,-1 (4.2)

for a < 0. In particular, we have S5 (T) = k™%s(4(p).-

Theorem 4.2. For (a|f8) = (a1,...,0| b1, .,5:), there exists m € N and g € &, such
that

Sta) () = (=F)" detrse (St (@), _ - (43)
Remark. When k = 1, Theorem 4.2 gives the familiar formula
S(a|8) = det (3(a,- | ﬁj)) 1< j<r (4.4)
for Schur polynomials.
Remark. The theorems above also shows that the sequence {Sx(z1,...,Zn)}n>1 defines a

symmetric function for each partition )\, since the ordinary Schur polynomials do.
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Regarding each monomial z7* as a complete symmetric polynomial A, (z;) in one variable

z;, we have

aq(z) = wrdety (he, (z;)) 1<i<kn.
1<j<n

By using the relation
hm(ya ’LL) - hm(zv u) = (y - z)hm~l(y’ Z, ’LL),

where u = (u1,...,u,), we have

() = Ap(z)* wrdety (hai_n+j (@jy- s a:n)) 1<i<kn’
1<j<n

Especially we have

as(x) = Ap(z)* wrdet

*
1
1, = % x
1k * * k! n
= A() det-an D= (R) A
1

and it then follows that

K\ "
S\(z) = (Z'—) wrdety, (hxi+6¢—-n+j(xj7 e ’xn))lgigkn'

1<i<n

If we define f;;(z) by the conditions

F=(fy@),_  =HP,

H = (h/\,’—i+j($jv . ,:L‘n))

P = (h_,-ﬂ-(:cj, e xn))

b
1<i,j<n

?
1<i,j<n

(4.5)

(4.6)

then, by the relative invariance of the wreath determinant (Proposition 3.1 (2)), we have

wrdety, (h;\-ﬁéi_nﬂ(xj, . ,zn)) 115<i'5<k"
<j<n
Hy, Hp ... Hi, fu(x)  fra(z)
Pyl Pyl ... Pyl 1 0
Hyy Hy ... Hy, fa(z) fa(z)
= |Paul Pyl ... Py,l| — 0 1
Hnl Hn2 “e Hnn fnl(x) fn2(x)
P,1 Ppl ... Pl . 0 0

fin(T)
0




since det P = 1. Here 1 = 1;_;; and O is the k — 1 by 1 zero matrix, H;; and P;; are
(4,7)-entries of H and P respectively. Now the proof of Theorem 4.1 is reduced to the
following two lemmas.

Lemma 4.3. fi;(z) = (=1)" s, i) j-1)(2).

Proof. Put u = (z1,...,zj-1), v=(j,...,Zs). It is enough to show
J
P (V) = > (=17 s(mp-1) (4, )y (v) (4.7)
p=1

for any m > 0. The righthand side of (4.7) is
Z( 1P P s, (w)s, (v)hyp()

‘LU
= Z (Z( 1)? s(m|p_1)/#(v)hj_p(v)> Su(uw).

When p = 0, the coefficient of s,(u) in the sum above is
J

D (1P 5151y (0)s—p(0) = s (0)

p=1
by the Jacobi-Trudi formula s¢(v) = det(he,_i+j(v)) for & = (m|j —1). When p # 0,
S(m|p—1)/u(v) is zero if y is not contained in (m|p — 1), and s,(v) = 0 if £(u) > j since v
consists of j — 1 variables. Suppose that u = (r| g — 1) for some r and ¢ such that r <m
and ¢ < j. Then the coefficient of s,(u) in the sum above is

Z( 1P S(mlp 1/rla-1)(V)hj—p(v) = Z(_ ) ls(m—r)(U)S(lp—q)(v)hj—p(v)
= hm-r(v) Z(*l)p_lep—q(v)hj—p(v) = (=1)"18;4hmr(v) = 0.

p=q

Therefore it follows that the righthand side of (4.7) equals Am.;(v), which is the desired
conclusion. d

Lemma 4.4. For any n by n matriz A = (a;;), put

(an aiz ... aln\

1 o ... O
g1 Q99 ... Q9p

Afl=10 1 ... O

| Qn1 An2 ... Qpn
KO o ... 1

89
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Then
detq (A ® 11x) = (det, 1x)" det, A

holds.

Proof. Apply the Laplace expansion repeatedly to the rows in A* ® 1, contains only 1
and 0. O

To derive Theorem 4.2 from Theorem 4.1, we need the fact that
{,2,....n}\{i-N|r<i<n}={8;+1|1<j<r} (4.8)

for/\=(/\1,...,/\n)=(al,...,ar|ﬂl,...,,3,n).
If i > r, then \; — 7 < 0 so that we have

(1Y spmifjoy (&) = bin,j

by (4.2). In other words, in the matrix ((—=1)7~1s(x—i|j-1)(Z))1<ij<n, (8,5 — A;)-entry is
1 and other entries in the i-th row is 0. Hence, by using the Laplace expansion for each
row below the r-th row and use the fact S |p)(z) = k‘bs(a|b), we get the theorem.

Example 4.2. Let us look at the case where A = (4,3,3,3,1) = (3,1,0]4,2,1). We see
that
{i-XN|3<1<5}={1,4}, {ﬁj+1|13j§3}={5,3,2}.

We have Sy = det_y/x A, where

@10 TS@EI S@l2) TSEIY) 3@l
S(110) =Sy S|2) —8113) S(114)
A= | Solo) —SEln S0 —Sel3)  Seiy |,
8(-1]0) TS(-1]1) S(-1]2) TS5(-1]3) S5(-1]9)
5(-4]0) —S(-4]1) S(-4]2) —S5(-4]3) S5(-4]9)
8(-1]0) = —8(—4|3) = 1, and underlined ones are all zero. Thus, by using the Laplace

expansion formula twice, we have

1,2 S@B19) TSEI) SEl2)
det—l/kA=(—E) det_i/k | saje —sajy Saj2
S(019) —SI1) S0]2)

. Sia1e) Sy S@l2)
= (—k)>det_1/x { Saj9 Sainy Sajz
Sl S Se|2

In this case, the permutation g € &3 in the theorem is equal to the transposition (2 3).

4.5 Schur-positivity

A symmetric function f is called Schur-positive if all the expansion coefficient with respect
to Schur functions are non-negative. When is Sy Schur-positive? We give several examples
below.



Example 4.3. For a hook A = (a|b), we have S(4(5 = k™°S(a|5), which is Schur-positive
for any k£ > 1.

Example 4.4. For A\ = (m,2,2) (m > 2), we have

1 k-1
Sim2,2) = Es(m,2,2) + —‘kT{s(m+1,2,1) + S(m+1,18) T S(m,2,12) T S(m,14)}7

which is Schur-positive for any k£ > 1.
Example 4.5. For A = (m,2) (m > 2), we have

1-k 1
A {S(m+1,1) + S(m,l,l)} + 7 Sm2)

Sm2) =

which is Schur-positive only when k = 1.

Example 4.6.

1 2(k — 1 k—1)(k-3
S@33) = £5633 + L,;‘é—) (3(42,1) + 5(3,23)) - (‘“—',)g—g“—) (8(5,3,1) T 8(3,22,12>)

(k= 1)(k—2)
- 2 (5(6,2,1) + 8@4,15) T 83,214 T S(6,13) + 28(5,14))
(k—1)(k—4)
- L2 (3(5,22) + S(4,3,2) T S(32,2,1) + 8(32,13))
k—1)(2k -7 k—1)(3k -7
- )k(z ) (5(4,3,12) + 3(4,22,1)) . )kfg ) (3(5,2,12) + 8(4,2,13))

This is Schur-positive only when k =1,2. If k = 1, then S;333) = 5(33,3). If K =2, then

1 1 1
S(33) = 55633 T 5 (3(42,1) + 3(3,23)) T2 (5(5,3,1) + 5(3,22,12))
1
T3 (8(5,22) T 82 T 8@y T 8(32,13))

3 1
+ 1 <3(4,3,12) + 8(4,22,1)) + 1 (3(5,2,12) + 8(4,2,13))-

If £ > 3, then the coefficient of s(2 ), for instance, is negative.
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