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1 Introduction

In this note, we study the random power series

$f(z)= \sum_{k=0}^{\infty}a_{k}z^{k},$

where the coefficients $a_{k}$ are independent identically distributed $(i.i.d.)$ standard real
Gaussian random variables. In probability one, the radius of convergence of $f$ is 1, and
hence $f$ defines a holomorphic function on the open unit disc $\mathbb{D}=\{z\in \mathbb{C}||z|<1\}$ . Our
main purpose is to describe the distribution of zeros of $f$ . A distribution of that kind forms
a point process and can be described by its correlation functions. Our main results are to
show that the correlation functions for zero distributions are given by Pfaffians, i.e., the
zero distributions form Pfaffian point processes. These facts are showed independently in
[5] via random matrix theory but we obtain them with a direct proof by using a Pfaffian-
Hafnian identity ((2.5) below) due to Ishikawa-Kawamuko-Okada [7].

Moreover, we study the real Gaussian process $\{f(t)\}_{-1<t<1}$ . We obtain the facts that
the mixed moments of absolute values and those of signs

$\mathbb{E}[|f(t_{1})f(t_{2})\cdots f(t_{n})|],$ $\mathbb{E}[sgnf(t_{1})$ sgn $f(t_{2})$ $\cdots$ sgn $f(t_{n})]$

can be also given by Pfaffians.
This literature is written for mathematicians other than experts on probability. In

fact, we first review the fundamental knowledge for Gaussian distributions and Pfaffians
in Section 2. Next, in Section 3, we see a small portion of works related to our theme:
Kac’s random polynomials, random power series with complex coefficients, and random
matrices. Finally, our results for the random power series $f$ are given in Section 4. We
do not give the proofs of theorems in this short note. The proofs are available in the full
version of the paper [12].
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2 Preliminaries

2.1 Real Gaussian variables

Let $\mu_{\mathbb{R}}$ be the Lebesgue measure on the real line $\mathbb{R}$ . An $\mathbb{R}$-valued random variable $X$ is

said to be standard real Gaussian if it has density

$\frac{1}{\sqrt{2\pi}}e^{-x^{2}/2} (x\in \mathbb{R})$ .

The mean (or expected value) of $X$ is equal to $0$ and the variance of $X$ is equal to 1:

$\mathbb{E}[X]=\int_{\mathbb{R}}x\frac{1}{\sqrt{2\pi}}e^{-x^{2}/2}\mu_{R}(dx)=0,$ $Var[X]=\int_{\mathbb{R}}x^{2}\frac{1}{\sqrt{2\pi}}e^{-x^{2}/2}\mu_{\mathbb{R}}(dx)=1.$

Let $m,$
$\sigma\in \mathbb{R}$ with $\sigma>0$ . An $\mathbb{R}$-valued random variable $X$ is said to be a real Gaussian

with mean $m$ and variance $\sigma^{2}$ if it has density

$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-m)^{2}}{2\sigma^{2}}}$

Then we write as $X\sim N_{\mathbb{R}}(m, \sigma^{2})$ . It is easy to confirm $\mathbb{E}[X]=m$ and Var[X] $=$

$\mathbb{E}[(X-m)^{2}]=\sigma^{2}$ . If $X\sim N_{R}(0,1)$ , then $X$ is standard.
The characteristic function for $X\sim N_{R}(m, \sigma^{2})$ is given by

$\varphi_{X}(\xi) :=\mathbb{E}[e^{\sqrt{-1}\xi X}]=e^{\sqrt{-1}m\xi-\frac{\sigma^{2}\xi^{2}}{2}} (\xi\in \mathbb{R})$ . (2.1)

In particular, $\varphi_{X}(\xi)=e^{-\xi^{2}/2}$ if $X$ is standard. It is well known that a distribution
is uniquely determined by its characteristic function. Hence, the formula (2.1) can be

regarded as a “definition of a real Gaussian random variable.

2.2 Real Gaussian vectors

Let $m=(m_{1}, \ldots, m_{n})^{T}\in \mathbb{R}^{n}$ be a column vector and let $\Sigma=(\sigma_{ij})_{1\leq i,j\leq n}$ be a non-
negative definite $n\cross n$ real symmetric matrix. An $\mathbb{R}^{n}$-valued random vector $X=$
$(X_{1}, \ldots, X_{n})^{T}$ is said to be real Gaussian with parameters $(m, \Sigma)$ if its characteristic

function is given by

$\varphi_{X}(\xi):=\mathbb{E}[e^{\sqrt{-1}\langle\xi,X\rangle}]=\exp(\sqrt{-1}\langle m, \xi\rangle-\frac{1}{2}\langle\xi, \Sigma\xi\rangle) (\xi\in \mathbb{R}^{n})$ .

Here $\rangle$ is the Euclidean scalar product on $\mathbb{R}^{n}$ . Then we write as $X\sim N_{\mathbb{R}}(m, \Sigma)$ . It is

immediate to verify

$\mathbb{E}[X_{i}]=m_{i}(1\leq i\leq n) , \mathbb{E}[(X_{i}-m_{i})(X_{j}-m_{j})]=\sigma_{ij}(1\leq i,j\leq n)$ .
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When $\Sigma$ is positive definite, the distribution of $X$ has the density

$\frac{1}{(2\pi)^{n/2\sqrt{\det\Sigma}}}\exp(-\frac{1}{2}\langle x, \Sigma^{-1}x\rangle) (x\in \mathbb{R}^{n})$ .

It is well known that a random vector $X=(X_{1}, \ldots, X_{n})$ is real Gaussian if and only if
linear combinations $\sum_{k=1}^{n}c_{k}X_{k}$ is real Gaussian for any $c_{1}$ , . . . , $c_{n}\in \mathbb{R}.$

Let $\Lambda$ be a set. A family of random variables $\{X_{\lambda}\}_{\lambda\in\Lambda}$ is called a real Gaussian
process if, for each $n\geq 1$ and any $\lambda_{1}$ , . . . , $\lambda_{n}\in\Lambda$ , the random vector $(X_{\lambda_{1}}, \ldots, X_{\lambda_{n}})$ is
real Gaussian.

2.3 Hafnians and Pfaffians

Let $S_{2n}$ be the symmetric group acting on $\{$ 1, 2, . . . , $2n\}$ and let $F_{n}$ be the subset of $S_{2n}$

given by

$F_{n}=\{\eta\in S_{2n}|\eta(2i-1)<\eta(2i)(1\leq i\leq n)$ , $\eta(1)<\eta(3)<\cdots<\eta(2n-1$

Note that $|F_{n}|=(2n-1)!!=(2n-1)(2n-3)\cdots 3\cdot 1.$

For a $2n\cross 2n$ symmetric matrix $A=(a_{ij})_{1\leq i,j\leq 2n}$ , the Hafnian of $A$ is defined by

Hf
$A= \sum_{\eta\in F_{n}}a_{\eta(1)\eta(2)}a_{\eta(3)\eta(4)}\cdots a_{\eta(2n-1)\eta(2n)}.$

For a $2n\cross 2n$ skew-symmetric matrix $B=(b_{ij})_{1\leq i,j\leq 2n}$ , the Pfaffian of $B$ is defined by

Pf
$B= \sum_{\eta\in F_{n}}\epsilon(\eta)b_{\eta(1)\eta(2)}b_{\eta(3)\eta(4)}\cdotsb_{\eta(2n-1)\eta(2n)},$

where $\epsilon(\eta)$ is the signature of permutation $\eta.$

Example 2.1. We see the Hafnian and Pfaffian for a $4\cross 4$ symmetric matrix $A$ and
skew-symmetric matrix $B$ . Since

$F_{2}=\{(\begin{array}{llll}1 2 3 41 2 3 4\end{array}), (\begin{array}{llll}1 2 3 41 3 2 4\end{array}), (\begin{array}{llll}1 2 3 41 4 2 3\end{array})\},$

we have

$HfA=a_{12}a_{34}+a_{13}a_{24}+a_{14}a_{23}, PfB=b_{12}b_{34}-b_{13}b_{24}+b_{14}b_{23}.$
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2.4 Cauchy’s determinants and Schur’s Pfaffians

Recall important identities for determinants, Pfaffians, permanents, and Hafnian. For
any $n\cross n$ matrix $A=(a_{ij})_{1\leq i,j\leq n}$ , the permanent of $A$ is defined by

per
$A= \sum_{\eta\in S_{n}}a_{1\eta(1)}a_{2\eta(2)}\cdots a_{n\eta(n)}.$

Lemma 2.1. Let $x_{1},$ $x_{2}$ , . . . , $y_{1},$ $y_{2}$ , . . . be indeterminates.

1. Cauchy’s determinant identity:

$\det(\frac{1}{1-x_{i}y_{j}})_{1\leq i,j\leq n}=\frac{\prod_{1\leq i<j\leq n}(x_{i}-x_{j})\cdot\prod_{1\leq i<j\leq n}(y_{i}-y_{j})}{\prod_{i=1}^{n}\prod_{j=1}^{n}(1-x_{i}y_{j})}$ . (2.2)

2. Schur’s Pfaffian identity:

Pf $( \frac{x_{i}-x_{j}}{1-x_{i}x_{j}})_{1\leq i,j\leq 2n}=\prod_{1\leq i<j\leq 2n}\frac{x_{i}-x_{j}}{1-x_{i}x_{j}}$ . (2.3)

3. Borchardt identity:

$\det(\frac{1}{1-x_{i}y_{j}})_{1\leq i,j\leq n}$ . per $( \frac{1}{1-x_{i}y_{j}})_{1\leq i,j\leq n}=\det(\frac{1}{(1-x_{i}y_{j})^{2}})_{1\leq i,j\leq n}$ (2.4)

4. Ishikawa-Kawamuko-Okada identity:

Pf $( \frac{x_{i}-x_{j}}{1-x_{i}x_{j}})_{1\leq i,j\leq 2n}$ . Hf $( \frac{1}{1-x_{i}x_{j}})_{1\leq i,j\leq 2n}=Pf(\frac{x_{i}-x_{j}}{(1-x_{i}x_{j})^{2}})_{1\leq i,j\leq 2n}$ (2.5)

Cauchy’s determinant (2.2) is well known in combinatorics, see e.g. [11, I.4 Example 6].

Schur’s Pfaffian (2.3) is a Pfaffian version of Cauchy’s determinant, see [11, III.8 Example

5]. Borchardt’s identity (2.4) is obtained in [1], and Carlitz and Levine [3] generalize it
as follows: For an $n\cross n$ matrix $A$ with non-zero entries $a_{ij}$ and rank $\leq 2,$

$\det(\frac{1}{a_{ij}})_{1\leq i,j\leq n}$ . per $( \frac{1}{a_{ij}})_{1\leq i,j\leq n}=\det(\frac{1}{a_{ij}^{2}})_{1\leq i,j\leqn}$

Ishikawa, Kawamuko, and Okada [7] obtains (2.5), which is a Pfaffian analogue of Bor-
chardt’s identity and is the key of our proofs of theorems in Section 4.
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2.5 Wick formula

Let $(X_{1}, \ldots, X_{n})\sim N_{\pi}(O, \Sigma)$ , where $\Sigma$ is an $n\cross n$ nonnegative definite real symmetric
matrix. If $n$ is odd, then we have $\mathbb{E}[X_{1}X_{2}\cdots X_{n}]=0$ . If $n$ is even, we have

$\mathbb{E}[X_{1}X_{2}\cdots X_{n}]=Hf\Sigma$ . (2.6)

This formula is known as the Wick formula. See an introductory survey [15].

Example 2.2. If $(X_{1}, X_{2}, X_{3}, X_{4})$ is mean-zero real Gaussian, then

$\mathbb{E}[X_{1}X_{2}X_{3}X_{4}]=\mathbb{E}[X_{1}X_{2}]\mathbb{E}[X_{3}X_{4}]+\mathbb{E}[X_{1}X_{3}]\mathbb{E}[X_{2}X_{4}]+\mathbb{E}[X_{1}X_{4}]\mathbb{E}[X_{2}X_{3}].$

Thus, mixed moments for real Gaussian variables can be computed in a combinatorial
way.

3 Random analytic functions

In this section, we shall observe a few examples of random analytic functions. General
theory and recent results for random analytic functions are seen in [6].

3.1 Real zeros for random polynomials

Proposition 3.1 (Edelman-Kostlan [4]). Let $v(t)=(f_{0}(t), f_{1}(t), \ldots, f_{n}(t))^{T}$ be any col-
lection of (deterministic) differentiable functions and $(a_{0}, a_{1}, \ldots, a_{n})$ be a real Gaussian
vector with mean zero and covariance matrix $\Sigma$ . Then the expected number of real solu-
tions on a measurable set $I\subset \mathbb{R}$ of the equation

$a_{0}f_{0}(t)+a_{1}f_{1}(t)+\cdots+a_{n}f_{n}(t)=0$

is given by

$\frac{1}{\pi}\int_{I}([\frac{\partial^{2}}{\partial x\partial y}\log(v(x)^{T}\Sigma v(y))]_{x=y=t})^{\frac{1}{2}}dt.$

Example 3.1 (Kac polynomials [8]). Let $a_{0},$ $a_{1}$ , . . . , $a_{n}$ be i.i. $d$ . standard real Gaussian
variables. A random polynomial

$p_{n}(t)=a_{0}+a_{1}t+a_{2}t^{2}+\cdots+a_{n}t^{n}$

is called the Kac polynomial of degree $n$ . We apply Proposition 3.1 with $v(t)=(1, t, t^{2}, \ldots, t^{n})$

and $\Sigma=the$ identity matrix. Since

$v(x)^{T} \Sigma v(y)=1+xy+(xy)^{2}+\cdots+(xy)^{n}=\frac{1-(xy)^{n+1}}{1-xy},$
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the expected number of real zeros of $p_{n}(t)$ on a measurable set $I\subset \mathbb{R}$ is

$\frac{1}{\pi}l\sqrt{[\frac{\partial^{2}}{\partial x\partial y}\log\frac{1-(xy)^{n+1}}{1-xy}]_{x=y=t}}dt=\frac{1}{\pi}l\sqrt{\frac{1}{(t^{2}-1)^{2}}-\frac{(n+1)^{2}t^{2n}}{(t^{2n+2}-1)^{2}}}dt.$

In particular, this integral with $I=\mathbb{R}$ gives the expected number $E_{n}$ of real zeros of $p_{n}.$

It is known that

$E_{n}= \frac{2}{\pi}\log n+C_{1}+\frac{2}{n\pi}+O(n^{-2}) (narrow\infty)$

with constant $C_{1}=0.6257358072\ldots.$

3.2 A random power series with random complex coefficients

If $X$ and $Y$ are independent standard real Gaussian variables, then we call the complex-

valued random variable Z $=$

density o$fZ$ with respect t
$o\frac{1}{th}(X+\sqrt{-1}Y)as$

tandardcomplexeLebesgue measure $\mu c\circ n\mathbb{C}is$

Gaussian variable. The

$\frac{1}{\pi}e^{-|z|^{2}} (z\in \mathbb{C})$ .

Note that $\mathbb{E}[Z]=0$ and $\mathbb{E}[Z\overline{Z}]=1.$

Consider the random power series

$f_{\mathbb{C}}(z)= \sum_{k=0}^{\infty}\zeta_{k}z^{k},$

where the coefficients $\zeta_{k}$ are i.i. $d$ . standard complex Gaussian. The radius of convergence

is almost surely 1, and hence $f_{\mathbb{C}}$ defines a holomorphic function on the open unit disc
$\mathbb{D}=\{z\in \mathbb{C}||z|<1\}$ in probability one.

We consider correlation functions for zeros of $f_{\mathbb{C}}$ with respect to the Lebesgue measure
$\mu_{\mathbb{C}}$ . For any $n\geq 1$ and $z_{1}$ , . . . , $z_{n}\in \mathbb{D}$ , we define the n-th correlation function for zeros of
$f_{\mathbb{C}}$ by

$\rho_{n}(z_{1}, \ldots, z_{n})=\lim_{\epsilonarrow 0}\frac{Prob\{f_{\mathbb{C}}hasazeroinB_{\epsilon}(z_{j})foreach1\leq j\leq n\}}{(\mu_{\mathbb{C}}(B_{\epsilon}))^{n}}.$

Here $B_{\epsilon}(z)$ is the $\epsilon$-neighborhood in $\mathbb{D}$ around $z$ and $\mu_{\mathbb{C}}(B_{\epsilon})=\mu_{\mathbb{C}}(B_{\epsilon}(z))=\pi\epsilon^{2}$ is its

volume.
Peres and Vir\’ag [14] show that the correlation functions are given in terms of deter-

minants with the Bergman kernel:

$\rho_{n}(z_{1}, \ldots, z_{n})=\det(\frac{1}{(1-z_{i}\overline{z_{j}})^{2}})_{1\leq i,j\leq n}$ (3.1)

98



Remark that they employed Borchardt’s identity (2.4) in their proof.
Equation (3.1) says that the zero distribution of $f_{C}$ forms a determinantal point pro-

cess. As one of corollaries of the determinantal formula $\rho_{n}(z_{1}, \ldots, z_{n})=\det(K(z_{i}, z_{j}))_{1\leq i,j\leq n},$

we can obtain the following statement: The probability such that $f_{\mathbb{C}}$ has no zeros in a
measurable set $C\subset \mathbb{D}$ is equal to the Fredholm determinant $\det(I-K_{C})$ , where $K_{C}$ is
the trace class operator on $L^{2}$-functions obtained by restricting $K$ to $C$ . Refer to the
introductory survey due to Borodin [2] for determinantal point processes.

3.3 Random matrix theory

For an $N\cross N$ random matrix $M$ , its characteristic polynomial $\phi_{M}(\lambda)=\det(\lambda I-M)$ de-
fines a random polynomial. Then, of course, the zeros of $\phi_{M}$ coincide with the eigenvalues
of $M.$

We consider two kinds of random matrices. The first is a Gaussian Orthogonal Ensem-
ble $(GOE)$ matrix $M_{N}^{(1)}$ , whose diagonal entries are $m_{ii}\sim N\pi(0,1)$ and off-diagonal entries
are $m_{ij}=m_{ji} \sim N_{\pi}(O, \frac{1}{2})(i<j)$ . The GOE matrix $M_{N}^{(1)}$ is an $N\cross N$ real symmetric

random matrix. The second is a Gaussian Unitary Ensemble $(GUE)$ matrix $M_{N}^{(2)}$ , whose
diagonal entries are $m_{ii}\sim N_{\mathbb{R}}(O, 1)$ and off-diagonal entries are $m_{ij}=\overline{m_{ji}}\sim N_{\mathbb{C}}(O, 1)$

$(i<j)$ . The GUE matrix $M_{N}^{(2)}$ is an $N\cross N$ complex Hermitian random matrix. Matrix
entries $\{m_{ij}\}_{1\leq i\leq j\leq N}$ for each case are jointly independent.

The eigenvalues of both $M_{N}^{(1)}$ and $M_{N}^{(2)}$ are real. The eigenvalue density for $M_{N}^{(\beta)}$

$(\beta=1,2)$ is

$P_{N}^{(\beta)}(x_{1}, \ldots, x_{N})=C_{N}^{(\beta)}e^{-\frac{1}{2}\Sigma_{j=1}^{N}x_{j}^{2}}\prod_{1\leq i<j\leq N}|x_{i}-x_{j}|^{\beta} ((x_{1}, \ldots, x_{N})\in \mathbb{R}^{N})$

with normalization constant $C_{N}^{(\beta)}$ , respectively.
The n-th correlation functions for eigenvalues (with respect to the Lebesgue measure

$\mu_{\mathbb{R}})$ are

$\rho_{n,N}^{(\beta)}(x_{1}, \ldots,x_{n})=\lim_{\epsilonarrow 0}\frac{Prob\{M_{N}^{(\beta)}hasaneigenvaluein(x_{j}-\epsilon,x_{j}+\epsilon)foreach1\leq j\leq n\}}{(2\epsilon)^{n}}.$

Here $2\epsilon$ in the denominator means the length of the interval $(x_{j}-\epsilon, x_{j}+\epsilon)$ . Using the
eigenvalue density, we have

$\rho_{n,N}^{(\beta)}(x_{1}, \ldots, x_{n})=\frac{N!}{(N-n)!}\int_{\pi}N-nP_{N}^{(\beta)}(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{N})dx_{n+1}\cdots dx_{N}$

for each $n–1$ , 2, . . . , $N$ , and $\rho_{n,N}^{(\beta)}\equiv 0$ for $n>N.$
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It is well known that $\rho_{n,N}^{(1)}$ and $\rho_{n,N}^{(2)}$ can be given by a Pfaffian and a determinant involv-

ing Hermite polynomials, respectively. In fact, $\rho_{n,N}^{(2)}(x_{1}, \ldots, x_{n})=\det(K_{N}^{(2)}(x_{i}, x_{j}))_{1\leq i,j\leq n}$

with

$K_{N}^{(2)}(x, y)= \sum_{j=0}^{N-1}\phi_{j}(x)\phi_{j}(y) , \phi_{j}(x)=(2^{j}j!\sqrt{\pi})^{-1/2}e^{x^{2}/2}(-1)^{j}\frac{d^{j}}{dx^{j}}e^{-x^{2}}$

The Pfaffian expression for $\rho_{n,N}^{(1)}(x_{1}, \ldots, x_{n})$ is more complicated. See [13] for details.

4 Pfaffian expressions for correlation functions

4.1 A random power series with real coefficients

As mentioned at the beginning of the article, we consider the random power series

$f(z)= \sum_{k=0}^{\infty}a_{k}z^{k},$

where the coefficients $a_{k}$ are standard real Gaussian. The random power series $f$ is a
limiting version of Kac polynomials in Example 3.1 and a real version of random power
series $f_{\mathbb{C}}(z)= \sum_{k=0}^{\infty}\zeta_{k}z^{k}$ in \S 3.2.

4.2 Correlations for zeros

As we did in \S 3.2 and \S 3.3, we consider correlation functions for zeros of $f.$

The n-th correlation function for real zeros (with respect to the Lebesgue measure $\mu_{R}$ )

is given by

$\rho_{n}^{r}(t_{1}, \ldots, t_{n})=\lim_{\epsilonarrow 0}\frac{Prob\{fhasazeroin(t_{j}-\epsilon,t_{j}+\epsilon)foreach1\leq j\leq n\}}{(2\epsilon)^{n}}$

for $t_{1},$ $t_{2}$ , . . . , $t_{n}\in(-1, +1)$ . The n-th correlation function for complex zeros (with respect
to the Lebesgue measure $\mu_{\mathbb{C}}$ ) is given by

$\rho_{n}^{c}(z_{1}, \ldots, z_{n})=\lim_{\epsilonarrow 0}\frac{Prob\{fhasazeroinB_{\epsilon}(z_{j})foreach1\leq j\leq n\}}{(\pi\epsilon^{2})^{n}}$

for $z_{1},$ $z_{2}$ , . . . , $z_{n}\in \mathbb{D}$ . We assume that imaginary parts of $z_{i}$ are positive since the distri-
bution of zeros of $f$ is invariant under complex conjugation.

Let
$\mathbb{K}(s, t)=(\begin{array}{ll}\mathbb{K}_{11}(s,t) \mathbb{K}_{12}(s,t)\mathbb{K}_{21}(s,t) \mathbb{K}_{22}(s,t)\end{array})$
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be the $2\cross 2$ matrix given by

$\mathbb{K}_{11}(s, t)=\frac{s-t}{\sqrt{(1-s^{2})(1-t^{2})}(1-st)^{2}},$
$\mathbb{K}_{12}(s, t)=\sqrt{\frac{1-t^{2}}{1-s^{2}}}\frac{1}{1-st},$

$\mathbb{K}_{21}(s, t)=-\sqrt{\frac{1-s^{2}}{1-t^{2}}}\frac{1}{1-st},$ $\mathbb{K}_{22}(s, t)=sgn(t-s)\arcsin\frac{\sqrt{(1-s^{2})(1-t^{2})}}{1-st}.$

Here sgn $t$ is

sgn $t=\{\begin{array}{ll}+1, for t>0,-1, for t<0,0, for t=0.\end{array}$

Our first result is to give explicit Pfaffian expressions for $\rho_{n}^{r}$ and $\rho_{n}^{c}.$

Theorem 1. The correlation function for real zeros of $f$ is

$\rho_{n}^{r}(t_{1}, \ldots, t_{n})=\pi^{-n}$ $Pf$ $(\mathbb{K}(t_{i}, t_{j}))_{1\leq i,j\leq n}.$

Here $(\mathbb{K}(t_{i}, t_{j}))_{1\leq i,j\leq n}$ stands for a $2n\cross 2n$ skew-symmetric matrix by arraying $2\cross 2$ blocks
$\mathbb{K}(t_{i}, t_{j})$ .

Note that entries $\mathbb{K}_{ij}(s, t)$ have the following relations

$\mathbb{K}_{11}(s, t)=\frac{\partial^{2}}{\partial s\partial t}\mathbb{K}_{22}(s, t) , \mathbb{K}_{12}(s, t)=-\mathbb{K}_{21}(t, s)=\frac{\partial}{\partial s}\mathbb{K}_{22}(s, t)$ .

Example 4.1 (one-point correlation).

$\rho_{1}^{r}(t)=\pi^{-1}\mathbb{K}_{12}(t, t)=\frac{1}{\pi(1-t^{2})}.$

Therefore the expected number of real zeros of $f$ in the interval $[a, b]\subset(-1,1)$ is

$\int_{a}^{b}\frac{1}{\pi(1-t^{2})}dt=\frac{1}{2\pi}\log\frac{(1+b)(1-a)}{(1-b)(1+a)},$

which coincides with the limit of the result in Example 3.1.

Theorem 2. The correlation function for complex zeros of $f$ is

$\rho_{n}^{c}(z_{1}, \ldots, z_{n})=\frac{1}{(\pi\sqrt{-1})^{n}}\prod_{j=1}^{n}\frac{1}{|1-z_{j}^{2}|}\cdot Pf(\mathbb{K}^{c}(z_{i}, z_{j}))_{1\leq i,j\leq n}$

with

$\mathbb{K}^{c}(z, w)=(\begin{array}{ll}K^{c}(z,w) K^{c}(z,\overline{w})K^{c}(\overline{z},w) K^{c}(\overline{z},\overline{w})\end{array}), K^{c}(z, w)=\frac{z-w}{(1-zw)^{2}}.$
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Example 4.2 (one-point correlation).

$\rho_{1}^{c}(z)=\frac{1}{\pi\sqrt{-1}}\frac{1}{|1-z^{2}|}K^{c}(z, \overline{z})=\frac{2\Im(z)}{\pi|1-z^{2}|(1-|z|^{2})^{2}}.$

Remark that Theorems 1 and 2 are obtained by Forrester [5] independently. In his

proof, Forrester shows that the zero distribution of $f$ coincides with eigenvalue distribu-

tions of a truncated Haar orthogonal matrix and that the eigenvalue distribution forms a

Pfaffian point process. Our proof is quite different from his. In fact, in the process of our

proof of Theorem 1, we obtain two new results: Theorems 3 and 4 below.

4.3 New Pfaffian identities

We next regard $\{f(t)\}_{-1<t<1}$ as a real Gaussian process. For any sequence $t=(t_{1}, t_{2}, \ldots, t_{n})\in$

$(-1, +1)^{xn}$ , the random vector $(f(t_{1}), f(t_{2}), \ldots, f(t_{n}))$ is a real Gaussian vector with mean

zero and covariance matrix $\Sigma(t)=(\sigma(t_{i}, t_{j}))_{1\leq i,j\leq n}$ , where

$\sigma(s, t)=\mathbb{E}[f(s)f(t)]=\sum_{k,l=0}^{\infty}s^{k}t^{l}\mathbb{E}[a_{k}a_{l}]=\sum_{k,l=0}^{\infty}s^{k}t^{l}\delta_{kl}=\frac{1}{1-st}.$

For such a real Gaussian process, we obtain new Pfaffian identities.

Theorem 3. For distinct $t_{1}$ , . .. , $t_{n}\in(-1, +1)$ , we have

$\mathbb{E}[|f(t_{1})f(t_{2})\cdots f(t_{n})|]=(\frac{2}{\pi})^{n/2}(\det\Sigma(t))^{-1/2}Pf(\mathbb{K}(t_{i}, t_{j}))_{1\leq i,j\leq n}.$

Here $\mathbb{K}(s, t)$ is defined in the previous subsection.

Note that

$( \det\Sigma(t))^{1/2}=\prod_{i=1}^{n}\frac{1}{\sqrt{1-t_{i}^{2}}}\cdot\prod_{1\leq i\triangleleft\leq n}\frac{|t_{i}-t_{j}|}{1-t_{i}t_{j}},$

which follows from Cauchy’s determinant identity (2.2).

Theorem 4. $For-1<t_{1}<t_{2}<\cdots<t_{2n}<1$ , we have

$\mathbb{E}[sgnf(t_{1})$ sgn $f(t_{2})$ $\cdots$ sgn $f(t_{2n})]=( \frac{2}{\pi})^{n}Pf(\mathbb{K}_{22}(t_{i}, t_{j}))_{1\leq i,j\leq2n}$ . (4.1)

Here, $\mathbb{K}_{22}(s, t)=sgn(t-s)\arcsin\frac{\sqrt{(1-s^{2})(1-t^{2})}}{1-st}$ as before.

102



The formula (4.1) can be rewritten as

$\mathbb{E}[sgnf(t_{1})$ sgn $f(t_{2})$ $\cdots$ sgn $f(t_{2n})]=Pf(\mathbb{E}[sgnf(t_{i})$ sgn $f(t_{j})])_{1\leq i<j\leq 2n}$

with $\mathbb{E}[sgnf(t_{i})$ sgn $f(t_{j})]= \frac{2}{\pi}\arcsin\frac{\sqrt{(1-t_{l}^{2})(1-t_{j}^{2})}}{1-t_{i}t_{j}}.$

Example 4.3. For $-1<t_{1}<t_{2}<t_{3}<t_{4}<1$ , we have

$\mathbb{E}[sgnf(t_{1})$ sgn $f(t_{2})$ sgn $f(t_{3})$ sgn $f(t_{4})]$

$=\mathbb{E}[sgnf(t_{1})$ sgn $f(t_{2})]\cdot \mathbb{E}[sgnf(t_{3})$ sgn $f(t_{4})]$

$-\mathbb{E}[sgnf(t_{1})$ sgn $f(t_{3})]\cdot \mathbb{E}[sgnf(t_{2})$ sgn $f(t_{4})]$

$+\mathbb{E}[sgnf(t_{1})$ sgn $f(t_{4})]\cdot \mathbb{E}[sgnf(t_{2})$ sgn $f(t_{3})].$

We note that Theorem 4 implies Theorem 3 and that Theorem 3 implies Theorem 1.
The complete proofs of those are seen in our full paper [12]. In our proof of Theorem 4,
we show its preliminary version

$\frac{\partial^{2n}}{\partial t_{1}\cdots\partial t_{2n}}\mathbb{E}[sgnf(t_{1})$ sgn $f(t_{2})$ $\cdots$ sgn $f(t_{2n})]$

$=( \frac{2}{\pi})^{n}\prod_{i=1}^{2n}\frac{1}{\sqrt{1-t_{i}^{2}}}$ . Pf $( \frac{t_{i}-t_{j}}{(1-t_{i}t_{j})^{2}})_{1\leq i,j\leq 2n}$

which is proved by using some properties for Gaussian variables and the Pfaffian-Hafnian
formula (2.5).

4.4 Remarks for general covariances

Let $(X_{1}, \ldots, X_{n})$ be a real Gaussian vector with mean zero and covariance matrix $\Sigma_{n}=$

$(\sigma_{ij})_{1\leq i,j\leq n}$ . As we saw in \S 2.5, mixed moments of $X_{1}$ , . . . , $X_{n}$ is given by a Hafnian:

$\mathbb{E}[X_{1}X_{2}\cdots X_{n}]=\{\begin{array}{ll}Hf(E[XX_{j}])_{1\leq i,j\leq n}, if n is even,0, if n is odd.\end{array}$

Theorem 4 is reminiscent of the Wick formula. It is natural to ask whether we can extend
the formula in Theorem 4 to general cases with any covariance matrix. We first see that

$\mathbb{E}[sgnX_{1}$ sgn $X_{2}\cdots$ sgn $X_{n}]=0$ if $n$ is odd.

In fact, since $(X_{1}, \ldots, X_{n})$ and $(-X_{1}, \ldots, -X_{n})$ have the same distribution, we see that

$\mathbb{E}\{sgnX_{1}$ sgn $X_{2}\cdots$ sgn $X_{n}$ ] $=\mathbb{E}[sgn(-X_{1})$ sgn $(-X_{2})$ $\cdots$ sgn $(-X_{n})]$

$=(-1)^{n}\mathbb{E}[sgnX_{1}$ sgn $X_{2}\cdots$ sgn $X_{n}].$
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The next nontrivial case is $\mathbb{E}[sgnX_{1}$ sgn $X_{2}]$ . It is not difficult to see that

$\mathbb{E}[sgnX_{1}$ sgn $X_{2}]= \frac{2}{\pi}\arcsin\frac{\sigma_{12}}{\sqrt{\sigma_{11}\sigma_{22}}}$ . (4.2)

However, such neat formula for $\mathbb{E}[sgnX_{1}$ sgn $X_{2}\cdots$ sgn $X_{n}]$ with even $n\geq 4$ is not known.

Theorem 3 gives a Pfaffian expression for moments of absolute values. Nabeya [9, 10]

obtains the following formulas.

$\mathbb{E}[|X_{1}X_{2}|]=\frac{2}{\pi}(\sqrt{\det\Sigma_{2}}+\sigma_{12}\arcsin\frac{\sigma_{12}}{\sqrt{\sigma_{11}\sigma_{22}}})$ .

$\mathbb{E}[|X_{1}X_{2}X_{3}|]=(\frac{2}{\pi})^{\frac{3}{2}}(\det\Sigma_{3}+\sum_{(i,j,k)}\frac{\sigma_{ij}\sigma_{kk}+\sigma_{ik}\sigma_{jk}}{\sqrt{\sigma_{kk}}}\arcsin\frac{\sigma_{ij}\sigma_{kk}-\sigma_{ik}\sigma_{jk}}{\sqrt{(\sigma_{ii}\sigma_{kk}-\sigma_{ik}^{2})(\sigma_{jj}\sigma_{kk}-\sigma_{jk}^{2})}})$

summed over $(i,j, k)=(1,2,3)$ , $(2, 3, 1)$ , $(3, 1, 2)$ . However, any neat formula for moments
$\mathbb{E}[|X_{1}X_{2}\cdots X_{n}|]$ with $n\geq 4$ is not known.

Thus, Theorem 3 and Theorem 4 state that $\mathbb{E}[|X_{1}\cdots X_{n}|]$ and $\mathbb{E}[sgnX_{1}\cdots$ sgn $X_{n}]$

have surprising Pfaffian expressions if a mean-zero real Gaussian vector $(X_{1}, \ldots, X_{n})$ has

covariance matrix

$( \frac{1}{1-t_{i}t_{j}})_{1\leq i,j\leq n}$

This result suggests the following question: Determine covariance matrices $\Sigma_{n}$ such that
$\mathbb{E}[sgnX_{1}\cdots$ sgn $X_{n}]$ or $\mathbb{E}[|X_{1}X_{2}\cdots X_{n}|]$ has a Pfaffian expression.
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