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1. Introduction

This paper presents results that were jointly obtained with Dale Peterson; here most of

the details for our original 1997 proofs are belatedly presented, since the completion of [Pr9]

has been long delayed. After three sections of definitions, the full statements ofthese results

are given in Section 5:

Theorem 1. $d$-Complete posets are hook length posets.

Corollary 1. There is a hook length enumeration formula for the number of extensions of

$d$-complete posets that generalizes the FRT hook formula for the number of standard Young

tableaux.

Theorem 2. Colored $d$-complete posets are colored hook length posets.

Corollary 2. There is a product ofroot heights enumeration formula for the number of

reduced decompositions ofa $\lambda$-minuscule element of a simply laced Kac-Moody Weyl group.

Peterson already obtained Corollary 2 (without the’ simply laced assumption) by 1989

using adifferent approach [Car]. The’forget the colors’ specialization produces the right hand

side for Theorem 1 from the right hand side for Theorem 2 once our two definitions ofhook

length are reconciled. But it is not the case that Theorem 1 is a quick consequence ofTheorem

2: it took significant effort in [Pr5] to see that each $d$-complete poset can be colored to produce

a colored $d$-complete poset. Given this fact, the left hand side for Theorem 1 can be

transformed to the left hand side for Theorem 2. Then Theorem 1 can be deduced from

Theorem 2.

Section 6 prepares for the proofs ofTheorems 1 and2. Presentations ofthe four parts

of these proofs are given in Sections 7-10 in varying levels ofdetail; the two corollaries are

proved in Section 11. Sections 12 and 13 contain mathematical and developmental remarks.

2. General Combinatorial Definitions

Fix some $n\geq 1$ throughout the paper and set $[n]:=\{1,2,\ldots,n\}$ . The elements of $[n]$

are colors. Here $\mathbb{N}$ $:=\{0,1,2,\ldots\}$ and $P$ $:=\{1,2,3,\ldots\}$ . For $(g_{1},\ldots,g_{n})$ $:=\gamma\in \mathbb{N}^{n}$ , set

$x^{\gamma}:=x_{l}^{g1}\ldots x_{n}^{g_{n}}.$

数理解析研究所講究録

第 1913巻 2014年 120-140 120



Let $P$ be a poset and $x,y\in$ P. Set $p:=|P|$ . Consult [St4] for the following common

concepts: (Hasse) diagram of $P$ , dual poset $p*$ of $P$ , connected $P,$ $x$ covers $y$, filter,

ideal, interval, chain, and (linear) extension of P. For $b\in P$ , define theprincipal ideal

(b) $:=\{c\in P:c\leq b\}$ and theprincipalfilter $\langle b\rangle:=\{c\in P:c\geq b\}$ . A subset $S\subseteq P$ is

convex ifwhenever $x,y\in S$ , then $x\leq z\leq y$ implies $z\in$ S. A multiset $M$ based upon $P$ is

a multichain if its underlying set is a chain in P.

A $P$-partition on $P$ is a function $\psi:Parrow \mathbb{N}$ such that $b\leq c$ implies $\psi(b)\geq\psi(c)$ .

Set $| \psi|:=\sum_{b\in P}\psi(b)$ . The $P$-partition generatingfunction for $P$ is $F_{P}(x):=\sum_{\psi}x^{|\psi|},$

summation over $P$-partitions $\psi$ of P. We say $P$ is a hook length poset ifthere exists some

function $h:Parrow P$ such that $F_{P}(x)=\prod_{b\in P}(1-x^{h(b)})^{-1}$ . Given a fixed $m\geq 1$ , an

$m$-bounded $P$-partition is $a$ $P$-partition $\psi$ satisfying $\psi(b)\leq m$, for $b\in$ P.

The poset $J(P)$ is the set of ideals of $P$ ordered by inclusion. It is a distributive

lattice. If $L$ is a distributive lattice, let $P_{L}$ be the subposet ofits elements that each cover

exactly one element. Then it is known [\S 3.4, St4] that $J(P_{L})\cong L$ and $P_{J(P)}\cong P.$

We say $P$ is colored ifit has been equipped with a surjective function $\kappa:Parrow[n].$

Let $\psi$ be a $P$-partition for P. For each $i\in[n]$ , set $m_{i}:=\sum_{\kappa(b)=i}\psi(b)$ . The $n$-variate

weight of $\psi$ is $x^{\psi 1}:=x_{1^{m}}\ldots x_{n}^{m_{n}}$ . The colored $P$-partition generatingfunctionfor $P$ is

$F_{P}(x):=\Sigma_{\psi}x^{\psi}$ . We say $P$ is a colored hook length poset ifthere exists some function

$h:Parrow \mathbb{N}^{n}$ such that $F_{P}(x)=\prod_{b\in P}(1-x^{h(b)})^{-1}$ Denote the specialization $x_{i}\vdash\Rightarrow x$ for

$1\leq i\leq n$ by $x\}\Rightarrow x$ . Note that $F_{P}(x\vdash*x)=F_{P}(x)$ . The colored $m$-bounded $P$-partition

generatingfunction for $P$ is $F_{P}(m;x):=\sum_{\psi}x^{|\psi|}$ , sum over all $m$-bounded $P$-partitions $\psi.$

3. $d$-Complete Poset and Hook Definitions

Let $k\geq 3$ . The double-tailed diamondposet $d_{k}(1)$ is the poset with $2k-2$ elements

that has exactly two elements that are incomparable and that has k-2 elements greater than each

of those two elements. The poset $d_{k}(1)^{-}$ is the poset produced by removing the maximum

element from $d_{k}(1)$ . It has one maximal element when $k\geq 4$ , but has two maximal elements

when $k=3.$

Let $P$ be a poset. Let $k\geq 3$ . A convex subset $S\subseteq P$ is a $d_{k^{-}}$-convex set ifis

isomorphic to $d_{k}(1)^{-}.$

Definition. A poset $P$ is $d$-complete iffor every $d_{k}^{-}$-convex set $S,$ $k\geq 3$ , there exists an

element of $P$ which covers exactly the maximal element(s) of $S$ and which does not cover the

maximal element(s) of any other $d_{k}^{-}$-convex set.
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Let $P$ be a $d$-complete poset. An element $c\in P$ is a neck element ifthere exists
$b\in P$ such that the closed interval $[b,c]\cong d_{k}(1)$ for some $k\geq 3$ . Since such an element $b$

must be unique, to each neck element $c$ there corresponds a tail element $b_{c}$ $:=b$ and two

elbow elements $d_{c}$ and $e_{c}$ of $[b_{c},c]$ that are the only two incomparable elements of [b,c].

The hookfunction $h:Parrow P$ for $P$ is recursively determined by:

(i) If $c\in P$ is not a neck element, set $h(c):=|(c)|.$

(ii) If $c\in P$ is a neck element, set $h(c):=h(d_{c})+h(e_{c})-h(b_{c})$ .

Let $P$ be a poset. The topforest $\Gamma$ of $P$ is both a subposet and a simple graph: The

nodes of $\Gamma$ are the $b\in P$ such that $\langle b\rangle$ is a chain in $P$, and the edges of $\Gamma$ are the

unordered pairs {b,c} such that $b$ covers $c$ in the poset $\Gamma$ . If $P$ is connected, then $\Gamma$ is a

tree. Nodes $b$ and $c$ of $\Gamma$ are adjacent if {b,c} is an edge for $\Gamma$; they are weakly adjacent

ifthey are adjacent or $b=c$ . Suppose $P$ is colored by some $\kappa$ . Suppose all ofthe

occurences ofa color $\gamma$ in $P$ are comparable. Here $b,c\in P$ such that $b<c$ are consecutive

occurences of $\gamma$ if there does not exist $b<d<c$ such that $\kappa(d)=\gamma$. Within the following

definition, Axiom (1) is to be used to identify the nodes in the top forest graph $\Gamma$ with the

colors from $[n]$ :

Definition. A colored poset $P$ is colored $d$-complete ifthe following are satisfied:

(1) Every color from $[n]$ occurs once in the top forest $\Gamma$ of P.

(2) If $b$ is coveredby $c$ in $P$, then $\kappa(c)$ is adjacent to $\kappa(b)$ in $\Gamma.$

(3) Ifthe colors $\kappa(b)$ and $\kappa(c)$ of $b,c\in P$ are weakly adjacent in $\Gamma$, then $b$ and $c$ are
comparable in P.

(4) If $b<c$ are consecutive occurences in $P$ ofsome color $k$, then in the open interval

(b,c) there are exactly two elements whose colors are adjacent to $k$ in $\Gamma.$

If $b<c$ are consecutive occurences ofsome color in a colored $d$-complete poset, then it can
be seen that there are exactly two elements in (b,c) whose colors occur only once there.

Denote these $d_{b,c}$ and $e_{b,c}$ . The axis basis vectors $\epsilon_{i},$

$1\leq i\leq n$ , for $\mathbb{N}^{n}$ are indexed by the

colors ffom $[n]$ . The multi-hookfunction $h:Parrow \mathbb{N}^{n}$ for $P$ is recursively determined by:

(i) If $b\in P$ is the minimal element in $P$ of its color, set $h(b)$ $:=\Sigma_{c\leq b}\epsilon_{\kappa(c)}.$

(ii) If $b<c$ are consecutive occurences of some color, require $h(b)+h(c)=$

$h(d_{b,c})+h(e_{b,c})$ .

It can be seen that each colored $d$-complete poset is a $d$-complete poset, and the elements ofa
$d$-complete poset can be colored in essentially only one way to produce a colored $d$-complete

poset [Prop. $8.6_{y}$ Pr5].
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4. Lie Theoretic Definitions and Constructions

Let $\Gamma$ be a simple graph whose nodes are bijectively colored with $[n]$ . Use $\Gamma$ as a

Dynkin diagram and create the co1Tesponding simply laced generalized Cartan matrix $A$ : Here

for $ij\in[n]$ we have $a_{ii}=2$ and when $j\neq i$ we also have $a_{ij}=a_{ji}\in\{0,-1\}$ . Set

$t:=$ nultity ($A)$ . Create [Kac] a co1Tesponding complex vector space $h$ ofdimension $n+t$

and sets of simple roots $\{\alpha_{i}\}_{i\in[n]}\subseteq h^{*}$ and simple coroots $\{\alpha_{j}^{v}\}_{j\in\{Ir\}}\subseteq h$ such that

$\alpha_{i}(\alpha_{j^{V}})=a_{ij}$ . Let $W$ denote the corresponding Kac-Moody Weyl group; its generating

reflections on $h^{*}$ are $s_{i}.\gamma:=\gamma-\gamma(\alpha_{i^{V}})\alpha_{i}$ for $i\in[n]$ and $\gamma\in h^{*}$ . The tength of $w\in W$

is denoted $t(w)$ . For $i\in[n]$ , in $h^{*}$ choose $(0_{i}$ such that $\omega_{i}(\alpha_{j^{V}})=\delta_{ij}$ for all $j\in[n]$ . Let

$h^{r}$ denote $\mathbb{C}\{\alpha_{i^{V}}\}_{i\in\{n\}}\subseteq h$. Let $h^{\prime 1}\subseteq h^{*}$ denote the annihilator of $h’$ . For $\gamma,6\in h^{*}$ we

write $\gamma\equiv\delta$ to indicate $\gamma+h^{\prime\perp}=\delta+h^{\prime\perp}$ in $h^{*}lh^{\prime\perp}$ . For $i\in[n]$ note that $\alpha_{i}\equiv$

$2\omega_{i}-\Sigma_{j}\omega_{j}$ , sum over $i\in[n]$ that are adjacent to $i$ in G. ${\rm Re}$-using the symbols $s_{i}$ , the

induced reflections on $h^{*}lh^{\prime\perp}$ are such that $s_{i}.\omega_{j}\equiv\omega_{j}$ when $i\neq j$ and $s_{i}.\omega_{j}\equiv-\omega_{j}+\Sigma_{k}\omega_{k}$

when $i=j$ , sum over $k\in[n]$ adjacent to $j.$

$Set\Delta:=\{\alpha_{i}\}_{i\in[n]}$ and construct the real roots $\Phi:=W\Delta$ . Split these into positives

and negatives, $\Phi=:\Phi^{+}\cup\Phi^{-}$ For $w\in W$ define $\Phi(w):=\Phi^{+}\cap w\Phi^{-}$ ; this is $\Phi_{w}$ in

[Lemma 1.3.14, Ku2]. Set $p:=p_{w}:=[(w)=|\Phi(w)|$ . Set $\Lambda:=\{\lambda\in h^{*}:\lambda(\alpha_{i^{V}})\in \mathbb{Z}$ for

$1\leq i\leq n\}$ and $\Lambda^{+}:=\{\lambda\in h^{*}:\lambda(\alpha_{i^{V}})\in \mathbb{N}$ for $1\leq i\leq n\}$ . Fix $\lambda\in\Lambda^{+}$ . Set $W_{\lambda}:=$

$\{w\in W:w\lambda=\lambda\}$ and let $W^{\lambda}\subseteq W$ denote the set ofthe minimal length representatives ofthe

cosets in $W/W_{\lambda}$ . Following Peterson [Car], an element $w\in W$ is $\lambda$-minuscule ifthere

exists an expression
$s_{i_{p}}s_{i_{p-1}}\ldots s_{i_{1}}$

for $w$ such that $s_{i_{j}}.[(s_{i_{j-1}}\ldots s_{i_{1}}).\lambda]=(s_{i_{j-1}}\ldots s_{i_{1}}).\lambda-\alpha_{i_{j}}$

for $1\leq j\leq p$ . Such an element is in $W^{\lambda}.$

For each $\gamma\in\Lambda$ create a formal exponential $e^{\gamma}$. Let $Q^{+}$ denote the set ofnonnegative

sums of simple roots. For $\gamma\in Q^{+}$ , and write $\gamma=:\sum c_{i}\alpha_{i}$ for some $c_{i}\in \mathbb{N}$ . Define

$ht(\gamma)$ $:= \sum c_{i}.$
${\rm Re}$-use the variables $x_{1},$ $x_{n}$ from Section 2. Defme the coordinatized

formal exponential $x^{Y1}:=x_{1^{C}}\ldots x_{n}^{c_{n}}$ . Under the principa$l’$ specialization $x$ }$\Rightarrow x$, note that

$x^{\gamma}\vdash\Rightarrow x^{ht(\gamma\rangle}.$

Construct the symmetrizable Kac-Moody algebra 4? and Borel subalgebra 6

corresponding to $A,$ $h$, and $\Delta$ . Let $V(\theta)$ denote the universal enveloping algebra of $b.$

Denote the maximal integrable highest weight ffmodule $L^{\max}(\lambda)$ with highest weight $\lambda$ of

[Dffi. $2_{\sim}1_{arrow}5$ , Ku2] by $V_{\^{A}}$ . Let $w\in W^{\lambda}$ . Moving-down the page by $w$, let $v_{w\lambda}\neq 0$ be a

weight vector in $V_{\lambda}$ ofweight $w\lambda$ . Denote the Demazure module $L^{\max}\emptyset)_{w}$ of

123



[Lemma 8.1.23, Ku2] by $V_{\lambda}(w)$ ; this is the ksubmodule $V(\mathfrak{h}.v_{w\lambda}$ of $V_{\lambda}$ created by

moving up the page from $v_{w\lambda}$ . The lowest weight ofthis module is $w\lambda$ . Its weight spaces

are subspaces ofthe weight spaces of $V_{\lambda}$ . For $\mu\in\Lambda$ , let $d_{\lambda}(w,\mu\rangle$ denote the dimension of

the weight space of $V_{\lambda}(w)$ ofweight $\mu$ . The formal character $\chi_{\lambda}(w)$ of $V_{\lambda}(w)$ is

$\sum d_{\lambda}(w,\mu)e^{\mu}$ , summation over the $\mu\in$ A for which $d_{\lambda}(w,\mu)\neq 0$ . Defme its adjusted

character by $\xi_{\lambda}(w)$ $:=e^{-w\lambda}\chi_{\lambda}(w)$ . If $\mu$ is a weight of $V_{\lambda}(w)$ , then $\mu-w\lambda\in Q^{+}$ The

coordinatized adjusted character is denoted $\xi_{\lambda}(w;x)$ ; it is a polynomial in $x_{1},$ $x_{lJ}.$

5. Fully Detailed Main Results

Theorem 1. Let $P$ be a $d$-complete poset. Then $h(b)>0$ for every $b\in P$ and

$F_{P}(x)=\Pi_{b\in P}(1-x^{h(b)})^{-1}.$

Corollary 1. The number of extensions of $P$ is $p!/[ \prod_{b\in P}h(b))].$

Theorem 2. Let $P$ be a colored $d$-complete poset. Then $h(b)\in \mathbb{N}^{n}$ for every $b\in P$ and

$F_{P}(x)=\prod_{b\in P}(1-x^{h(b)})^{-1}$

Corolary 2. Let $w$ be a $\lambda$-minuscule element oflength $p$ in a simply laced Kac-Moody

Weyl group. The number of reduced decompositions of $w$ is $p!/[\Pi_{\alpha\in\Phi(w)}ht(\alpha)].$

6. 0rdering and Viewing Conventions, Connected Reduction

Several ordering and up/down viewing conventions need to be established. For

various reasons, it is impossible to establish an entirely satisfying sequence of choices. For

example, when creating the orbit $W\lambda$, the Bruhat order convention ofviewing the minimal $e$

$\in W$ at the bottom conflicts with the Lie convention ofviewing the maximal $\lambda$ at the top.

The definition of $d$-complete poset used in [Pr5] is the order dual of the definition used
elsewhere; here we assume that the reader will dualize quotes ofthose statements as needed.
Thernost fundamental conflict is: Both the highest weight $\lambda$ and the lowest weight $w\lambda$ for a
Demazure module are important, and both the processes ofworking dow$n’from4he$ top’ when
creating $w$ and ofworking u$p^{}$ ffom the bottom’ when acting with 6 are important.

Here we use the more-common up/down convention for $d$-complete posets (as in
[Pr6]), and we do not reverse any other existing order definitions. However, we ask that
some posets be viewed upside-down to respect the Lie tradition ofviewing the highest weight at

the top ofthe page. Here connected $d$-complete posets have unique maximal elements, Bruhat

orders are to be drawn upside-down, in Case A the Young/Ferrers diagrams need to be rotated

by only $45^{\circ}$ , and there the identity element of $W^{J}$ corresponds to the empty Young diagram.

Ifthe $d$-complete poset given in Theorem 1 $or2is$ not connected, express it as a direct

sum ofits connected components. All ofthe structures considered and all ofthe methods used
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in the proofs ofTheorems 1 and 2 are well-behaved under direct sums/direct products. For
example, $J(P_{1}\oplus P_{2})\cong J(P_{1})\cross J(P_{2})$ . Here are a few more of these aspects: the $P$-partition
generating function of a direct sum ofposets is the product of the $P$-partition generating
functions, the notion of‘ top tree’ of a poset is replaced by that of‘ top forest and the
representation constructed is replaced by the tensor product ofthe representations correspond-
ing to the connected components. To avoid added verbiage and length, for the sake ofbrevity
and clanly we will henceforth assume that $P$ is conmected and we will omit the details for
passing from and back to the non-connected case.

In each of Parts I, II, III, and IV ofthe proofofTheorem 2, the foremost result from
an extemal perspective is called $a”Proposition’$ and its application to the proof ofthe theorem is
called $a”Lemma’$‘.

7. Part I: Combinatorial Front End

The claims made in this section come from [Pr5] or may be confirmed using it. The

order duals ofthe $d$-complete definitions in that paper are equivalent via stnctural arguments to

the $d$-complete definitions in this paper.

To launch the proofofTheorem 1, consider a connected $d$-complete poset $P$ whose

top tree $\Gamma$ has $n$ elements. Fix a coloring of $\Gamma$ with $[n]$ . Let $z$ be the color ofthe unique

maximal element of $\Gamma$ . As in [Prop. 8.6, Pr5], color $P-\Gamma$ with $[n]$ so that $P$ becomes

colored $d$-complete.

The proof ofTheorem 2 begins here. Construct the dual poset $p*$ , but view it upside-

down to re-use the diagram of P. Ideals $I\subseteq P^{*}$ bijectively correspond to ideals $H\subseteq P$ via
$H:=P^{*}-I$ . Construct the lattice $L^{*}:=J(P^{*})$ . Also view it upside-down, since it will

become a Bruhat order.

Now use $\Gamma$ as a Dynkin diagram and create the co1Tesponding Kac-Moody algebra $g.$

Note that this set-up is equivalent to the set-up in Section 10 of [Pr5]. Set $\lambda:=\omega_{z}$ . Fix an
extension of $p*$ , from the top of the page. Using the sequence of colors determined by this

extension, construct an element $w:=w_{P}$ ofthe Weyl group $W$ of $\mathscr{J}$ by composing the

corresponding simplereflections from right to left. This is a reduce(Ldecomposition of $w,$

which is $\lambda$-minuscule, and all ofthe reduced decompositions of $w$ correspond to the

extensions of $p*$ in this manner [Cor. 5.5, Pr5]. Combining Proposition 9.1 of [Pr5] with

remarks in Section 10 of [Pr5] yields the transition from the given colored $d$-complete poset $P$

to the Kac-Moody Weyl group element $w$ defined in the Kac-Moody context established

above; this is essentially one direction of [Thm. $B$ , Pr5]:

Proposition I. The lattice $L^{*}$ is isomorphic to the principal ideal (w) in the Bruhat order

on $W^{\lambda}$ : Given $\ddagger\in L^{*}$ , the corresponding $u\in\{w$) can be formed by choosing any

extension of I.
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To any ideal $H\subseteq P$ there corresponds the indicator $P$-partition $\psi_{H}$ such that $\psi_{H}(b)$

is 1 or $0$ depending upon whether $b\in H$ or $b\not\in$ H. Fix an ideal $I\subseteq p*$ and set

$H:=P^{*}-I$ . We are considering six versions of essentially the same entity: $I\subseteq p*,$ $I\in L^{*},$

$u\in W^{\lambda},$ $u\lambda\in W\lambda,$ $H\subseteq P$ , and $\psi_{H}$ . If $u\in(w)$ corresponds to I in Proposition I, in its

proofthe difference $\lambda-u.\lambda$ ofweights is $\Sigma_{b\in I}\alpha_{\kappa(b)}$ . Therefore the difference $u\lambda-w\lambda$ of

weights is $\sum_{b\in H}\alpha_{\kappa(b)}$ . For each $i\in[n]$ , let $m_{i}$ be the number ofelements of $H$ ofcolor $i.$

Then the contribution to the colored $P$-partition generating function for $P$ for $\psi_{H}$ is

$x_{1}^{m1}\ldots x_{n}^{m_{n}}=:x^{H}$ , the weight monomial for H. Hence the coordinatization ofthe formal

exponential $e^{-w\lambda+u\lambda}$ is equal to this combinatorial weight monomial $x^{H}.$

Fix $m\geq 1$ . There are bijections such that: An $m$-bounded $P$-partition $\psi$ is taken to

a weakly decreasing sequence $H_{1}\supseteq$ $\supseteq H_{m}$ of ideals of P. This is taken to a weakly

increasing sequence $I_{1}\subseteq$ $\subseteq I_{m}$ ofideals in $p*$ , which is also a multichain in $L^{*}$ . This is

taken to a multichain $u_{1}\leq$ $\leq u_{m}$ in (w). By summing the color censuses in the $m$ layers

$H_{k}$ , it can be seen that the coordinatization of $e^{-mw\lambda}e^{mu_{1}\lambda}\ldots e^{mu_{m}\lambda}$ is $x^{\psi}.$

Summarizing Part I:

Lemma I. The top tree ofthe colored $d$-complete poset $P$ has been denoted $\Gamma$ . The Kac-

Moody entities $W,$ $\lambda$, and $w$ determined by $\Gamma$ and $P$ have been constructed and $m\geq 1$ has

been fixed. Here the colored $m$-bounded $P$-partition generating function $F_{P}(m;x)$ is equal to

the sum ofthe coordinatizations of $e^{-mw\^{A}}e^{u_{1}\lambda}\ldots e^{u_{m}\lambda}$ over all multichains $u_{1}\leq$ $\leq u_{m}$ in the

ideal (w) of $p*$ ofthe Bruhat order $W^{J}.$

8. Part II: Lakshmibai-Seshadri-Littelmann Character Description

In Part I we fixed $\lambda=\omega_{z}$ , a $\lambda$-minuscule $w=w_{P}$ oflength $p$ , and $m\geq 1$ . Via

Proposition I, extensions of $p*$ correspond to maximal chains $e=v_{0}<v_{1}<$ $<v_{p}=w$ in

(w).

To describe the weights of the Demazure module $V_{m\lambda}(w)$ , $w\epsilon$ adapt the material of

[\S 3, La2] to this special caser Take her $r$ to be our $p$ . Our maximal chains $e=v_{0}<v_{1}<$

$<v_{p}=w$ are he$r”\lambda$-chains’. Presumably her $m_{i}=(\mu_{i},\beta_{i^{*}})"$ should rea$d^{\prime\uparrow}m_{i}=(\mu_{i}\lambda,\beta_{i^{*}})^{\uparrow/}.$

At each reflection stage here one has $[v_{k-1}.m\lambda](\alpha_{i_{k}}^{v})=m$ . To obtain an’ admissible weighted
$\lambda$-chain” here one must associate some sequence $m\geq n_{1}\geq$ $\geq n_{p}\geq 0$ to such a chain.

Tracking the strict descents in this sequence leads to her $D_{c,n}$ . Once she imposes her $\phi(\pi)\leq$

$w$ condition, using reasoning as in Section 7 above it can be seen that the $D_{c,n}$ bijectively

correspond to the $m$-bounded $P$-partitions of $p*$ . Such $D_{c,n}$ also exactly index the

$equ\dot{r}$zaValence classes that are collected in herset $I_{w}(\lambda)$ . These $m$-bounded $P$-partitions of $p*$

can be viewed as sequences $I_{1}\subseteq I_{2}\subseteq$ $\subseteq I_{m}$ of ideals of $p*$ . These correspond to
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$m$-multichains $e\leq u_{1}\leq$ $\leq u_{m}\leq w$ . Understanding $a_{0}=m$ and $a_{s+1}=0$ , her definition of
$v(\pi)$ yields the product of formal exponentials $e^{u_{1}\lambda}\ldots e^{u_{m}\lambda}$ for the summand in [Eqn. 3.6.2,

La2]. The sum in that equation runs over $I_{w}(\lambda)$ .

Here is our version of [Eqn. 3.6.3, La2] for our case:

Proposition II. Since $w$ is $\lambda$-minuscule, the Demazure character $\chi_{m\lambda}(w)$ is
$\sum e^{u_{1}\lambda}\ldots e^{u_{m}\lambda}$, sum over the $m$-multichains $e\leq u_{1}\leq$ $\leq u_{m}\leq w$ in the Bmhat ideal (w).

Adjust and coordinatize these characters and apply this to Lemma I:

Lemma II. The colored $m$-bounded $P$-partition generating function $F_{P}(m;x)$ is equal to the

coordinatized adjusted Demazure character $\xi_{m\lambda}(w;x)$ .

9. Part III: Kumar-Peterson Identity for a Limit of Demazure Characters

The following identity was independently obtained by Shrawan Kumar and Peterson; it

does not explicitly appear in a published source:

Proposition III. For any Kac-Moody algebra $g$, let $\lambda\in\Lambda^{+}$ and $w\in W^{\lambda}$ . Then in the

ring of formal power series on $Q^{+}$ the direct limit $\lim_{marrow\infty}\xi_{m\lambda}(w)$ of adjusted Demazure

characters is equal to the product $\Pi_{\alpha\in\Phi(w)}(1-e^{\alpha})^{-1}$ over the roots made positive by $w.$

An outline for deriving this result from statements in the book [Ku2] appears in Section 12

below.

For any colored poset $P$, in the ring of formal power series the direct limit

$\lim_{marrow\infty}F_{P}(m;x)$ of the generating functions for the $m$-bounded $P$-partitions is the generating

fUnction $F_{P}(x)$ for all $P$-partitions. Apply this observation to Lemma II to obtain $F_{P}(x)=$

$\lim_{marrow\infty}\xi_{m\lambda}(w;x)$ . Combine this statement with the coordinatization ofProposition III:

Lemma III. The colored $P$-partition generating function $F_{T}(x)$ is equal to the product
$\prod_{\alpha\in\Phi(w)}(1-x^{\alpha})^{-1}$ over the roots made pos tive by $w.$

10. Part IV: Combinatorial Back End

We return to the context ofPart Iand of [Pr5]: we are considering the colored
$d$-complete poset $P$ whose filters correspond to the elements ofthe ideal (w) in the Bruhat

order on the Kac-Moody group W. All ofthe claims below come from [Pr5] or can be

verified using the techniques of [Pr5], especially those used in the proof of Proposition 9.1.

To complete the proofofTheorem2, we needto show that the elements $c$ of $P$ can be

bijectively mapped to the roots $\alpha$ in $\Phi(w)$ in a way such that $x^{h\{c)}=x^{\alpha}$ . Although the
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recursive definition of $h(c)$ refers to the order on $P$ , the Weyl group facts are expressed in

terms of the order of $p*.$

Let $H\subseteq P^{*}$ be a convex set. Extensions of $H$ specify sequences ofsimple

reflections. To see that each ofthese is a reduced decomposition of a unique element $v$ of $W$

determined by $H$, use any ideal $I\subseteq P^{*}$ such that such that $I\cap H=\emptyset$ and I $\cup H$ is an ideal

and findthe elements of $W^{\lambda}$ corresponding to I and to I $\cup$ H.

Let $y\in$ P. Set $k:=\kappa(y)$ . View $y$ as an element of $p*$ and form $\langle y\rangle\subseteq p*$ . Let

$u\in(w)$ correspond to the ideal $p*-\langle y\rangle$ of $p*$ . Let $v\in W$ correspond to the filter

$\langle y\rangle-\{y\}$ of $p*$ . Set $\beta_{y}$
$:=u^{-1}.(-\alpha_{k})$ and $\alpha_{\supset}:=v.\alpha_{k}$ . (Here the not-necessarily-simple

root $\alpha_{\}}$ is indexed by an element of $P$ , while simple roots are indexed by colors from $[n].$)

Note that $w=vs_{k}u$ and $\alpha_{y}=w.\beta_{y}$ . As in the proofofLemma 1.3.14 of [Ku2], it can be

seen that $\beta_{y}\in\Phi^{-}$ and $\alpha_{y}\in\Phi^{+}$ Hence $\alpha_{y}\in\Phi(w)$ . Given any reduced decomposition of

any $w’\in W$ , the recipe in the proof of that lemma produces all of the roots in $\Phi(w’)$ . Using

properties for the coloring of $P$ from the definition ofcolored $d$-complete in this paper, by

manipulating reduced decompositions it can be seen that the root in $\Phi(w)$ that that recipe

associates to the simple reflection’ at $y”$ in the extension of $P$ corresponding to any reduced

decomposition of $w$ is always the root $\alpha_{)}$ we have associated to $y$ above. So the bijectivity

ofthat recipe implies that our assignment of $\alpha_{y}$ to $y$ describes a bijection from $P$ to $\Phi(w)$ .

It remains to show that $x^{h(y)}=x^{\alpha_{y}}$ . For the reflection calculations performed below,

it will be sufficient to work within $\Lambda^{+}$ modulo $h^{\prime\perp}$ : Any discrepancy within $h^{\prime 1}$ will

evaluate to zero on any coroot. By the equivalence between $d$-complete posets and colored

$d$-complete posets, we can use the properties listed in either definition. Keep in mind that the

graph $\Gamma$ ofcolors is acyclic.

Suppose $y$ is the minimal element in $P$ ofcolor $k$. We use the’ wave’ (numbers

game) viewpoint of [Pr5] for the succession of‘ node firings’ that arise during the computation

of $w.\lambda$ for reduced decompositions ofa $\lambda$-minuscule $w$ . Note that $u$ is $\lambda$-minuscule and $y$

is the unique minimal element in $p*$ of $\langle y\rangle$ . Since all ofthe firings corresponding to the

elements in $p*-\langle y\rangle$ have been executed, it can be seen that all of the firings arising in the

application of $v$ to $s_{k}u.\lambda$ are eventual consequences ofthe application of $s_{k}$ to $u.\lambda$ . It can

also be seen that $s_{k}u.\lambda\equiv\triangleleft 0_{k}+\Sigma_{j\neq k}b_{j}\omega_{j}$ with $b_{j}=+1$ implying that $j$ is adjacent to $k$ or

that the color $j$ is not present in $\langle y\rangle-\{y\}$ . So all ofthe firings arising in the application of $v$

to $s_{k}u.\lambda$ are eventual consequences offirings at some ofthe $h\in\Gamma$ adjacent to $k$ for which

$b_{h}=+1.$

Rather than computing $v.\alpha_{k}$, we first compute $v.(-\alpha_{k})$ . RecalI that $-\alpha_{k}\equiv$

$-2\omega_{k}+\Sigma_{j}\omega_{j}$ , sum over $j\in[n]$ that are adjacent to $i$ in $\Gamma$ . So each $j\in\Gamma$ that has a

coefficient of $+1$ in the expansion of $s_{k}u.\lambda$ and is present in $\langle y\rangle-\{y\}$ also appears in the
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expansion of $-\alpha_{k}$ with a coefficient of $+1$ . This similarity of the linear combination for
$s_{k}u\lambda$ to that for $-\alpha_{k}$ can be exploited by using the computation of $v.(s_{k}u.\lambda)$ to’ guide’ the

computation of $v.(-\alpha_{k})$ . (Since in this case the simple reflection $s_{k}$ does not appear in any

reduced decomposition for $v$, the difference between the contribution $-2_{\mathfrak{R}}$ and the

contribution $-\omega_{k}$ does not matter.) It can be seen that each ofthe firing sequences used to

produce $w.\lambda$ from $s_{k}u.\lambda$ can be analogously applied within the computation of $v.(-\alpha_{k})$ to

subtract the same sum $s_{k}u.\omega_{k}-w.0k$ of simple roots from $-\alpha_{k}$ as from $s_{k}u.\omega_{k}$ . Hence

$\alpha_{y}$
$:=-v.(-\alpha_{k})$ is the sum ofthe multiset of simple roots co1Tesponding to the colors in the

ideal (y) of $P$ , or $\alpha_{\supset}=\sum_{a\leq y}\alpha_{\kappa(a)}$ . This agrees with the multi-hook definition
$h(y):=\sum_{a\leq y}\epsilon_{\kappa(a)}.$

Otherwise, the element $y$ is not the minimal element ofcolor $k$ in P. Let $b$ denote

the element of $P$ ofcolor $k$ that is maximal with respect to $b<y$ and let $d$ and $e$ denote the

elements in the open interval (b,y) of $P$ whose colors occur only once. This is equivalent to
$y$ being a neck element with tail $b$ and elbows $d$ and $e$ . Here $\kappa(b)=k$ ; set $f:=\kappa(d)$ and
$g:=\kappa(e)$ . The interval [b,y] in $P$ is isomorphic to $d_{t+2}(1)$ for some $t\geq 1$ . Denote the

colors ofits $t$ neck elements by $k=:k_{1}$ and $k_{2},$ $k_{t}$ . Note that $k_{t}$ is adjacent to at least $f,$

$g$ , and $(if t\geq 2)k_{t-1}$ in $\Gamma$ . Let $q\in P$ be the unique element covered by $d$ and $e$ . If $H$ is

a convex subset of $p*$ with $v’\in W$ co1Tesponding to $H$ , rather than writing $v’.\gamma$ for $\gamma\in\Lambda$

we write $H.\gamma.$

Let $Y,$ $D,$ $E,$ $B$ respectively denote the filters $\langle y\succ\{y\},$ $\langle d\succ\{d\},$ $\langle e\succ\{e\}$ , and

$\langle b\succ\{b\}$ of $p*$ . Then $\alpha_{y}=Y.\alpha_{k},$ $\alpha_{d}=D.\alpha_{f},$ $\alpha_{e}=E.\alpha_{g}$ , and $\alpha_{b}=B.\alpha_{k}$ . Consider the

convex subsets $[b,y$) $=:M$ and [b,q] $=:Q$ in P. Here $[b,y$) $\cong d_{t+2}(1)^{-}$ and [b,q] is a

chain of $t$ elements. Construct the filters $Y’:=Y-M,$ $D’:=D-Q$, and $E’:=E-Q$ . So

$\alpha_{y}=Y’.M.\alpha_{k},$ $\alpha_{d}=D’.Q.\alpha_{f}$, and $\alpha_{e}=E’.Q.\alpha_{g}$ . Computing within the simply laced $\Gamma$

yields $M.\alpha_{k}=\alpha_{k}+2\Sigma_{2\leq i\leq t}\alpha_{k_{i}}+\alpha_{f}+\alpha_{g}$ . Also one computes $Q.\alpha_{f}=\alpha_{f}+\Sigma_{t\geq i\geq 1}\alpha_{k_{i}}$ and

$Q.\alpha_{g}=\alpha_{g}+\Sigma_{\llcorner>i\geq 1}\alpha_{k_{i}}$ . Hence $M.\alpha_{k}+\alpha_{k}=Q.\alpha_{f}+Q.\alpha_{g}$ . Applying $Y’$ to both sides

produces $\alpha_{y}+Y’.\alpha_{k}=Y^{r}.Q.\alpha_{f}+Y’.Q.\alpha_{g}$ . Note that $Y’-D’$ is an ideal in $Y’\subseteq p*$ . So

we can write $Y’.Q.\alpha_{f}=D’.(Y’-D’).Q.\alpha_{f}$. Within the simply laced diagram $\Gamma$ one has $\alpha_{f}+$

$\sum_{t\geq i\geq 1}\alpha_{k_{i}}\equiv\omega_{f}+\omega_{k}-\omega_{g}-\sum_{r\in R}\omega_{r}$, where $R$ is the set ofnodes in $\Gamma$ adjacent to $f$ or $k$

other than $q$ and $k_{2}$ . So $Q.\alpha_{f}\equiv\omega_{f}+\omega_{k}-\omega_{g}-\sum_{r\in R}0)_{f}$ . Using $d$-complete properties, it

can be seen that no color in $\{f,k,g\}uR$ appears in $Y’-D’$ . So $(Y’-D’).(\omega_{f}+\omega_{k}-\omega_{g}-$

$\Sigma_{r\in R}\omega_{r})=\omega_{f}+\omega_{k}-\omega_{g}-\sum_{r\in R}\omega_{r}$, which implies that $(Y’-D’).Q.\alpha_{f}=Q.\alpha_{f}$. Hence $Y’.Q.\alpha_{f}$

$=D’.Q.\alpha_{f}=\alpha_{d}$ . S\’imilarly one obtains $Y’.Q.\alpha_{g}=E’.Q.\alpha_{g}=\alpha_{e}$ . We have $Y’.\alpha_{k}=B.(Y^{r}-$

$B)-\alpha_{k}$ . Using $d$-complete properties, it can be seen that none ofthe colors appearing in $Y’-$

$B$ are weakly adjacent to the color $k$ . Hence $(Y’-B).\alpha_{k}=\alpha_{k}$, and so $Y’.\alpha_{k}=B.\alpha_{k}=\alpha_{b}.$
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We have obtained:

Proposition IV. Iftwo elements $y$ and $b$ in a colored $d$-complete poset $P$ are such that

$[b,y]\cong d_{k}(1)$ for some $k\geq 3$ and $d$ and $e$ are the elbow elements of [b,y], then in $\Phi(w)$

the associated roots satisfy $\alpha_{\supset}=\alpha_{d}+\alpha_{e}-\alpha_{b}.$

This root fact agrees with the multi-hook recursion $h(y)=h(d)+h(e)-h(b)$ . Since $\alpha_{\supset}$ and

$h(y)$ agree on the initializing color-minimal elements of $P$ and satisfy the same recurrence that

effectively and uniquely determines these two quantities for the other elements of $P$ , we can

conclude:

Lemma IV. The mapping $y$ }$\Rightarrow\alpha_{y}$ is a bijection from $P$ to $\Phi(w)$ such that $x^{h(y)}=x^{\alpha_{y}}.$

Hence $h(y)\in \mathbb{N}^{n}$ for all $y\in$ P.

Combining this lemma with Lemma III completes the proof ofTheorem 2.

Since it is known that the notion of’ neck element’ becomes equivalent to the notion of
‘ non-minimal element of a given color“ when a $d$-complete poset is colored, it can be seen that

the weight monomial $x^{h(c)}$ for a colored $d$-complete poset becomes the weight $x^{h(c)}$ for a
$d$-complete poset under the specialization $x-x$. Hence $h(y)>0$ for all $y\in$ P. So as the

coloring ofthe elements of $P$ is forgotten, specializing $x->x$ converts the right side of

Theorem 2 to the right side ofTheorem 1 and completes its proof.

11. Proofs of Corollaries

For Corollary 1, combine Theorem 1 with Theorem 3.15.7 of [St4] for a natural

labelling $\omega$ to produce $W_{P,\omega}(x)=[\prod_{1\leq i\leq p}(1-x^{i})]/[\prod_{y\in P}(1-x^{h(y)})]$ . Here $W_{P,\omega}(x)$ is a

polynomial such that $W_{P,\omega}(1)$ is the number of extensions of P. Divide top and bottom by

$(1-x)^{p}$ and set $x=1.$

For Corollary 2, specialize $x$ }$\Rightarrow x$ in Lemma III to obtain $F_{P}(x)=$

$\prod_{\alpha\in\Phi(w)}(1-x^{ht(\alpha)})^{-1}$ . Apply the proof of Corollary 1 to see that the number of extensions of

$P$ is $p!/[\prod_{\alpha\in\Phi(w)}ht(\alpha)]$ . By [Cor. 5.5, Pr5] the number ofextensions of $p*$ is the number

ofreduced decompositions of $w.$

12. Mathematical Remarks

Filters of (colored) $d$-complete posets are (colored) $d$-complete posets A poset is

(colored) $d$-complete if and only its connected components are (colored) $d$-complete.

Connected $d$-complete posets were classified [Pr6] using their top trees These posets

are tree-like’ slant sums’ formed from 15 classes of‘ slant irreducibles’ whose top trees are
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$Y$-shaped’ (most often ofType $E_{n}$ for $n\geq 6$) Rooted trees are slant sums ofone element

posets, and conversely. The first two slant $i_{IT}$educible classes consist of shapes and of shifted

shapes Since the (colored) $d$-complete posets form a tightly constrained Dynkin diagram-

indexed class ofposets, it should not be surprising that there are varying axiomatic

formulations of the (colored) $d$-complete property Further comments on $d$-complete posets

appear in [Pr7], Sections 1 and 10 of [Pr5], Sections 1 and 15 of [Pr6], and Section 1 of [Pr8]

It can be seen that our two hook length definitions subsume the historic hook length definitions

for rooted trees, shapes, and shifted shapes Hence Theorems 1 and2 and Corollary 1

generalize the hook product identities for the (colored) $P$-partition generating functions and the

counts of standard Young tableaux for such posets.

A converse [Thm. $B$ , Pr5] to Proposition I is: Let $\lambda\in\Lambda^{+}$ for a simply laced Kac-

Moody algebra $g$. If $w\in W$ is $\lambda$-minuscule, then the ideal (w) in the Bruhat order is a

distributive lattice $L’$ and there is a colored $d$-complete poset $P$ such that $J(P^{*})\cong L’.$

The prototypical $d$-complete posets were th$e^{}$ minuscul$e’$ posets; these arose in the

more familiar context of [Hum] (rather than of [Kac]) as follows: Let $X_{n}$ denote the simple

Lie algebra oftype X and rank $n$ For $\lambda\in\Lambda^{+}$, let $X_{n}(\lambda)$ denote its i1reducible highest

weight representation $V_{\lambda}$ Let $\lambda:=\omega_{j}$ be one ofthe’ minuscule’ dominant integral weights

for $X_{n}$ , as listed in [Exer. 13.13, Hum] Here the longest element $w^{\lambda_{0}}$ of $W^{\lambda}$ is $\lambda-$

minuscule It was shown [Prl] that the Bruhat poset $W^{\lambda}=(w^{\lambda_{0}})$ is a distributive lattice; then

it was denoted as the irreducible minuscule lattice $X_{n}(i)$ The corresponding poset $P$ ofjoin

irreducible elements was denoted $x_{n}(|)$ Applying this convention to the list ofminuscule

representations led to the following list ofirreducible minuscule posets: $a_{n}(|)$ for $1\leq j\leq n$

(rectangular shapes); $b_{n}(n)$ , $d_{n}(n-1)$ , and $d_{T}(n)$ (staircases); $d_{n}(1)$ (double-tailed

diamonds); $c_{n}(1)$ (chains); and $e_{6}(1)$ , $e_{6}(6)$ , $e_{7}(1)$ (exceptionals) The elements ofthese

posets were colored in Section 11 of [Prl]; for the cases with $X\in$ {A,D,E} they are now

known to be colored $d$-complete A precise translation ofthe work of [Prl] to the setting of

this paper would actually state that it is the order duals ofthese posets that are $d$-complete But

ignoring this detail is harmless, since each minuscule poset is self-dual In fact, the irreducible

minuscule posets constitute [\S 14, Pr6] all self-dual connected $d$-complete posets. Filters of

the minuscule posets $a_{n}(n)$ and $d_{n}(n)$ are respectively shapes and shifted shapes, and

conversely.

We have stated Proposition II in a way so that it generalizes the character description

that follows from Seshadri’s main theorem [Ses]; that theorem described the semisimple Lie

algebra character ofthe highest weight module $X_{n}(m\lambda)$ $:=V_{m\lambda}$ with’‘Bruhat $m-multichains”$

fer minuscuk weights $\lambda$ Lakshmibai and Seshadri proposed a vast generalization of that

prototypical theorem in Section 4 of [LS] by conjecturing a description ofthe character for the
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Demazure module $V_{\lambda}(w)$ of a symmetrizable Kac-Moody algebra Littelmann confirmed that

conjecture [Lit] after using paths to reformulate it: Combine the second statement ofhis

Theorem 5.2 with the Demazure character formula Lakshmibai reconverted Littelmann’s

“Lakshmibai-Seshadri paths” t$o^{}$ admissible weighted $\lambda-chains"[Eqn. 3.6.3, La2].$

To discuss Proposition $m$, first consider a connected simply connected semisimple

algebraic group $G$ over $\mathbb{C}$ with a torus $T$, a Borel subgroup $B\supseteq T$, and Weyl group W.

Let $\lambda\in\Lambda^{+}$ . Form the stabilizer $W_{\lambda}$ and then $W^{\lambda}$ . Let $m\geq 1$ . Let $V_{m\lambda}$ be a highest

weight irreducible representation of G. Let $P$ be the parabolic subgroup $BW_{\lambda}B$ . To warm

up, we start with the torus characters of the homogeneous coordinate rings of someprojective

varieties: Let $\mathcal{L}_{m\lambda}$ denote the homogeneous line bundle ofweight $-m\lambda$ over the flag

manifold $G/P$ . Let $\Gamma(G/P,\mathcal{L}_{m\lambda})$ denote the space ofglobal sections ofthis line bundle.

Denoting the dualization of a module with $*$ , the Borel-Weil theorem may be combined with a

rewritten Weyl character fonnula to obtain $a”BWW”$ character identity:

$char[\Gamma(G/P,\mathcal{L}_{m\lambda})^{*}]=[\Sigma_{w\in W}(-1)^{t(w)}e^{wwo(m\lambda+\delta)-w0^{\delta}}]/\Pi_{a\in\Phi}+(1-x^{\alpha})$ .

Let $w\in W^{\lambda}$ . Let $X_{v}$ denote the Schubert variety that is the Zariski closure ofthe Bruhat cell

$BwP/P$ . The generalization ofthe Borel-Weil theorem to Schubert varieties may similarly be

combined with the Demazure character formula to obtain a more genera$l”BWD”$ identity

[Thm. 8.2.9, Ku2] for the torus character of $\Gamma(X_{v},\mathcal{L}_{m\lambda})^{*}.$

Now consider $a$ (not necessarily symmetrizable) Kac-Moody group $\mathcal{G}$ over $\mathbb{C}$ with

$\mathcal{T}\mathcal{B},$ $W,$ $\lambda,$ $\mathcal{P}$ denoting the Kac-Moody analogs ofthe entities chosen or constmcted above.

Theorem 8.2.9 of [Ku2] is actually stated at this level of generality, for Schubert varieties in

the Kac-Moody flag manifold $\sigma/\mathcal{P}$ . The Kumar-Peterson identity, Proposition III above,

gives an analog ofthe BWD identity for the’ afine cousin$s^{}$ ofthe Schubert varieties: it

describes the duals ofthe characters ofthe coordinate rings ofthe Bruhat cells in $\sigma/\mathcal{P}$ when

they are viewed as $\mathcal{T}$-modules. By 1996 Kumar had discovered this identity when studying

singularities in Kac-Moody Schubert varieties [Kul]; hecould hava stated it in that paper (after

Proposition 2.9) with little fi rther work. In 1997 Peterson also developed this identity, but

instead with the motivation ofhelping this author prove Theorem 2 above. Theorem 12.1.3 of

[Ku2] fmds the torus character ofthe graded algebra ofthe local ring at any point of any

Schubert variety in $\sigma/\mathcal{B}$ . A proof ofProposition III can be based upon the first half of the

proof ofthat theorem. The setting ofhis Theorem 12.1.3 is both more general and less general

than the setting needed here: it is concerned with pairs $(v,w)\in W\cross W$ such that $v\leq w$, but

$E\pi\Phi\dot{T}ts$ attention to the case $\Psi=\mathcal{B}.$ $H\alpha ev\sigma\infty kev:=w$ . According to Kumar [personal

communication], this theorem could have readily been developed for any $\mathcal{P}\supseteq \mathcal{B}$ . Using
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Lemma 7.3.10 it can be shown that his $X_{w}\cap w\mathcal{B}^{e}$ is the Bruhat cell $\mathcal{B}w\mathcal{P}/\mathcal{P}$ . Let $\mathbb{C}_{mw\lambda}$

denote the one dimensional $\mathcal{T}$-module ofweight $mw\lambda$ for each $m\geq 1$ . The coordinate ring

for $\mathcal{B}w\mathcal{P}/\mathcal{P}$ arises as a $\mathcal{T}$-module from a direct limit [Eqn. 12.1.3.2, Ku2]:

$\lim_{marrow\infty}[\Gamma(X_{w},\mathcal{L}_{m\lambda})\otimes \mathbb{C}_{mw\lambda}]\cong \mathbb{C}[\mathcal{B}w\mathcal{P}/\mathcal{P}].$

But it is well known that $\mathcal{B}w\mathcal{P}/\mathcal{P}\cong\prod_{\alpha}U_{\alpha}$, product over $\alpha\in\Phi(w)$ , where $V_{\alpha}$ is the
unipotent subgroup for $\alpha\in\Phi^{+}$ It is easy to see that the torus character of $\mathbb{C}[tl1_{\alpha}]$ is
$(1-e^{-\alpha})^{-1}$ . The generalization ofthe Borel-Weil theorem to Schubert varieties appears as
Corollary 8.1.26 of [Ku2]:

$\Gamma(X_{v},\mathcal{L}_{m\lambda})\cong V_{m\lambda}(w)^{*}$

Substitute the two isomorphisms into the direct limit, form the $\mathcal{T}$-characters, and dualize to

obtain Proposition III.

In the geometric contextjust presented return to considering only the finite flag

manifolds $G/P$ , as above for the BWW identity. Take $w:=w_{0}^{\lambda}$ , the longest element in
$W^{\lambda}$ . Then $X_{w}=G/P$ . Multiply both sides ofthe BWW identity above by $e^{-wm\lambda}$ . Some

cancellation in the right hand side that occurs in the limit $marrow\infty$ may be routinely computed;

consequently the limit ofthat side is $\prod_{\alpha\in\Phi(w)}(1-e^{\alpha})^{-1}$ . This is the dual ofthe character of

the coordinate ring ofthe’ big’ Bruhat cell $Bw^{\lambda_{0}}P/P$ ofthe flag manifold $G/P$ . Here

Proposition III has been obtained from the Weyl character formula without using algebraic

geometric reasoning (as was used in the proof of Theorem 12.1.3).

Let $W$ be a Kac-Moody Weyl group. Let $w\in$ W. In addition to $\Phi(w):=$

$\Phi^{+}\cap w(\Phi^{-})$ , also define $\Psi(w)$
$:=\Phi^{+}\cap w^{-1}.\Phi^{-}$ Computing $\beta$ $:=w.\alpha$ for each $\alpha\in$

$\Psi(w)$ specifies a bijection from $\Psi(w)$ to $\Phi(w)$ . Here $\Psi(w)$ consists of some roots in their
$/origina1”$ positions and $-\Phi(w)$ consists ofthe’ flipped’ images of those roots. With respect

to a fixed reduced decomposition of $w$ , for each $\alpha\in\Psi(w)$ there is a unique $\alpha_{k}\in\Delta$ which

is the’ last’ positive image of $\alpha$ as that reduced decomposition is successively applied; then

the application ofthe next simple reflection in the decomposition, which is $s_{k}$, ‘flips’ that

image.

Let $P$ be a colored $d$-complete poset. Let $W,$ $\lambda,$ $w$ be the simply-laced Weyl

structure determined by $P$ as in Proposition I; this $w$ is $\lambda$-minuscule. To each element $y$ in
$P$ of color $k$, Part IV ofthe proof ofTheorem 2 associated three roots: $\alpha_{k}\in\Delta,$

$u^{-1}.\alpha_{k}\in\Psi(w)$ , and $v.\alpha_{k}\in-\Phi(w)$ . The last two ofthese associations are bijections from $P$

to sets ofroots. Here set $\alpha_{y}:=u^{-1}.\alpha_{k}$ and $\beta_{y}:=v.\alpha_{k}$ . So $\beta_{y}=vs_{k}u.\alpha_{y}=w.\alpha_{y}$ . As a
consequence of $w$ being $\lambda$-minuscule, the color $k$ at which $\alpha_{7}$ is’ flipped’ now does not

depend upon the choice ofa reduced decomposition. Let $v_{\Phi^{+}}$ be the set ofpositive corgots
$v\alpha$ and set $v_{\Psi(w):=^{V}\Phi^{+}}\cap w^{-1}(^{v}\Phi^{-}$). Each ofthe three theorems below respectively

emphasize one of $\alpha_{k},$
$\alpha_{y}$ (actually $v\alpha_{y}$), and $\beta_{y}$ (actually $-\beta_{y}$): First, Proposition I
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together with its converse is roughly Theorem $B$ of [Pr5]. The proof in [Pr5] of Theorem $B$

refers only to the $\alpha_{k}\in\Delta$, and not to the $\alpha_{y}$ or the $\beta_{y}$ . Stembridge’s Proposition 3.1 (c)

generalized Theorem $B$ by loosening the simply laced requirement on $W$ to requiring

symmetrizable instead [Ste]. The notion of‘ heap’ was used to state that result. Second,

Stembridge’s Theorem 5.5 then generalized Theorem 11 of [Prl]. It used the coroots

$V\alpha_{y}:=u^{-1.v}\alpha_{k}$ to represent $P$ as the set $v_{\Psi(w)}$ of coroots ordered by the simple coroots.

Third, Proposition IV above is stated in terms of the roots $-\beta_{y}:=-v.\alpha_{k}$ in $\Phi(w)$ .

Joseph Seaborn has recently developed [Sea] a combinatorial version ofProposition III

in Type A. To state this result he used Willis’ description [Wil] ofthe’right key’ to obtain a

notion of‘ limiting Demazure tableau’ for $marrow\infty$ . Applying this notion to the Lascoux-

Sch\"utzenberger description ofthe Demazure character [e.g. Thm. 3.1, PW] produced the left

hand side. The right hand side is a product over the inversions of the given permutation.

When $\lambda$ has $r$ different column lengths, his combinatorial proofofthe identity uses $r$

parallel invocations ofGansner’s colored Hillman-Grassl algorithm [Thm. 5.1, Gan] for

shapes.

13. Development of the Notion of $d$-Complete and of Theorems 1 and 2

The following classic results can now be viewed as the cases ofCorollary 1 and of

Theorems 1 and 2 for the filters ofthe minuscule posets $a_{n}(|)$ and $d_{n}(n)$ :

Frame-Robinson-Thrall and Knuth found hook product counting formulas for ordinary and

shifted standard Young tableaux. In his thesis[Stl]Stanley introduced the notion of
$P$-partition and posed [St2] the problem of finding’ hook length’ posets. (This terminology

was later introduced by Sagan.) Stanley and Gansner [Gan] obtained hook product identities

for (eventually colored) $P$-partition generating functions for shapes and shifted shapes. Here

the $P$-partitions were reverse (shifted) plane partitions on the given (shifted) shape, with the

entry of’O’ allowed. A detailed listing ofthe predescessor results to Theorems 1 and 2 will

appear in [Pr9]; for now consult [Pr7]. Here we describe the development of our viewpoints
and techniques for Theorems 1 and2 from 1978 through 1997, including the origins ofthe

notion of $d$-complete poset. Consideration ofthe generating function identities for the

(shifted) plane partitions bounded by $m$ in [Prl] can help to motivate the definition of
$P$-partition. That paper also provides an entree to the approach of this paper, by working in

the context of [Hum] (rather than of [Kac]).

This author began his doctoral research under Stanley in October 1978. The results

attributed here to $[PrO]$ later appeared in [Prl]. Interested in unimodal sequences, Stanley had

leamed about Dynkin’s unimodality result for the dimensions ofthe weight spaces ofthe

principal specialization ofan irreducible finite dimensional representation ofa semisimple Lie

algebra [St3]. He was aware ofthe quotient-of-products formula for these specializations, and

knew that for two families of characters these formulas gave the right hand sides ofknown

identities (MacMahon and Bender-Knuth-Gordon-Andrews) for the generating functions of the
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$m$-bounded $P$-partitions on the posets that this author later called the minuscule posets $a_{n}(|)$

and $b_{n}(n)$ . In Problem 3 of [St3] he posed the problem for any irreducible representation of
specifying a ranked poset whose rank generating function was the principal specialization ofthe
given representation. To this author he posed the finer problem of finding a basis for the
irreducible representation whose elements are indexed by the elements ofthe poset. For any
such representation ofType $A$, this could be done by forming a distributive lattice from the
semistandard tableaux for the Young symmetrizer basis. This author’s first thesis result was a
classification ofthe finite Bruhat orders $W^{J}$ that are (distributive) lattices $[PrO]$ . This result
was obtained with a computational method that was later named the’ numbers game’‘by Mozes.
Let $m\geq 1$ . Stanley knew that his problems could be solved for the irreducible representations
$A_{n}(m\omega_{j})$ and $B_{n}(m(0_{n})$ using the elements ofthe distributive lattices $J(m\cross a_{n}(\omega_{j}))$ and
$J(m\cross b_{n}((0_{n}))$ : To obtain these Type Acases the semistandard tableaux description could be
reformulated, and by 1978 Macdonald had found solutions [Exmps. I.5.16, I.5.19, Mac] for

these Type $B$ cases. This motivated a search for irreducible representations all ofwhose
weights appeared in $W\lambda$, as was true for $A_{nj}(0)$ ) and $B_{n}(\omega_{n})$ . This author recognized that
his classification of Bruhat lattices had also classified such representations, and soon found the
pre-existing list of irreducibl$e^{}$ minima$l’$ (minuscule) representations in [Exer. 13.13, Hum].

$(To$ reproduce this $hst$ here, replace each $x_{n}(j)$ in the list of Section 12 with $X_{n}(\omega_{j}).$ ) This
led to the introduction $[PrO]$ ofthe minuscule lattices $X_{n}(|)$ and the minuscule posets $x_{n}(j)$ .
By January 1979 we had arrived at the conjecture that when $\omega_{j}$ is a minuscule weight, for
each irreducible representation $X_{n}(m\omega_{j})$ there existed a basis that was indexed by

multivariately weighted $m$-multichains in the Bruhat lattice $W^{\lambda}\cong J(x_{n}0)$). The Hasse

diagrams $[PrO]$ for the minuscule posets $x_{n}(|)$ were first published in [Pr2].

Let $\nu$ be a highest weight vector for the minuscule representation $X_{n}(\omega\cdot)$ . This
author soon proposed constmcting a basis for $V_{m\lambda}=:X_{n}(m\omega_{j})$ by acting on $s^{f}\nu\in bS^{m}[V_{\lambda}]$

with sequences ofthe Lie algebra generators $y_{i},$
$1\leq i\leq n$ , that are indexed by $m$-multichains

in $W^{J}$ . But he was unable to prove that the results ofthese actions were linearly independent
and spanned. In March 1979 Stanley learned of Seshadri’s first’ standard monomial’ result
[Ses]. The Lie algebraic version ofthat result could be seen to confirm our basis conjecture for
the $X_{n}(m(0_{j})$ . (Two weeks later, this author met Dale Peterson.) In $[PrO]$ , Seshadri’s
theorem was used [Thm. 6, Prl] to re-prove some plane partition identities corresponding to

$A_{n}(1II\omega_{j})$ and $B_{n}(m\omega_{n})$ , to obtain such identities for $e_{6}(1)affi^{-}e_{7}(1)$ , and to thereby
uniformly show that all minuscule posets wer$e”Gaussian”$ . Sections 8, 9, 11, and 12 of [Prl]
were developed in 1981-82. A version ofTheorem 1 above for the minuscule cases was stated

[p. 347, Prl] as an immediate consequence ofthat thesis theorem. The precursor minuscule

poset cases of Corollaries 1 and 2 above were also derived $[pp.$ $345-348$ , Prl $]$ from Seshadri’s
theorem, without restriction to Type ADE.

Upon reading this author’s thesis in 1981, Robert Steinberg raised the question of
whether minuscule posets could be described as sets ofroots ordered by the simple roots. This

author answered this question unifomly in all types using negative coroots; see Theorem 11 of
[Prl] and its supporting lemmas. There the elements ofthe posets of coroots were colored
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with simple roots. To relate those results to the statements in Section 7 above, now order the

coroots in that $U_{j}^{-}$ by simple coroots (rather than by negative simple coroots). In Proposition

I above, the starting poset is an axiomatically defined colored $d$-complete poset, whereas the

$k=1$ case ofLemmas 11.2 and 11.3 of [Prl] start with a filter ofthe minuscule poset $U_{j}^{-}$ of

some negative coroots. Since those results in Section 11 of [Prl] pertain to filters ofminuscule

posets as well as to entire minuscule posets, they provide early examples of a hll$y^{}$ root-

explained“ $J$ process from some $d$-complete posets to Bruhat ideals (w) for $\lambda$-minuscule
$w’s$ : Consider the $k=1$ cases ofLemmas 11.2 and 11.3. There the coloring by simple roots

is used to explicitly describe an order isomorphism from $J(I_{1})$ to (w) when $I_{1}$ is a filter of a

minuscule poset P. As in Proposition I, this isomorphism is defined with the subtraction of

simple roots from $\lambda$ . These Section 11 statements were the semisimple precursor to

Stembridge’s Theorem 5.5 [Ste]; they held for any $\lambda$-minuscule element $w$ ofany finite Weyl

group when $\lambda$ is a minuscule weight.

The hook length assigned to an element of an iITeducible minuscule poset in [Prl] was

its rank, where the rank ofthe unique minimal element was 1. The proof ofthe Gaussian

poset result Theorem 6 verified case-by-case that the rank census of each minuscule poset

agreed with the data used to compute the product principal specialization ofthe Weyl character

formula. Summarizing, the following parts of [Prl] were precursors for the minuscule posets

to Parts I-IV ofthis paper: Theorem 11 and its lemmas were somewhat analogous to Part I,

reference to Seshadri’s [Ses] has been generalized by the reference here in Part II to

Lakshmibai’s Eqn. 3.6.3 of [La2], the production of the right hand side from the product

principal specialization ofWeyl’s character formula has been replaced by use ofthe Kumar-

Peterson limiting character identity in Part Ill, and the verification that the rank counts agree

with the Weyl product data has been replaced with the Part IV proof that our general recursive

definition ofhook length models an assignment of the roots in $\Phi(w)$ to the elements of P.

By 1989, Peterson had developed the notion ofa $\lambda$-minuscule element of a Kac-

Moody Weyl group. His more-general version [Sect. V.3, Car] ofCorollary 2 above was a

generalization ofthe hook length formula derived on pp. 345-348 of [Prl] for the number of

reduced decompositions ofthe minuscule elements $w_{0}^{J}$ ofall finite Weyl groups. This result

was a consequence oftwo more detailed identities that he had developed, his’ additive’ and
‘ product’ identities for each $\lambda$-minuscule element $w$ . The left hand side of each was a sum
over the reduced decompositions of $w$ and the right hand side of each was a product over
$\Phi(w)$ . (A general version of an identity related to the additive identity was later independently

discovered and proved by Nakada [Eqn. 1.4, Nak

Here is how the notion of $d$-complete poset arose: In 1993 we retumed to our 1979

proposal for producing bases of the representations $X_{n}(m\omega_{j})$ . Execution of that proposal

would imply Proposition II above when $g$ is semisimple and $w=w^{\lambda_{0}}$ . However, as

described in [Pr3], we soon began to work in the following non-Lie context of $\mathbb{Z}-$-modules

constructed from colored posets: Acoloredposet is properly colored ifany two elements of

the same color must be comparable, but one ca1mot cover the other. A colored poset is simply

colored if the colors within an interval that is a chain must be distinct. (Every colored
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$d$-complete poset is simply properly colored.) Fix a simply properly colored poset P. Let V

denote the Zmodule generated by the ideals of $P$ and let $v$ denote the generator for $\emptyset.$

Let $m\geq 1$ and scatter $m$ identical bins around a table. Place one copy of $P$ in each bin,

converting its elements to colored sockets. Suspend a pipe full ofcolored marbles above the

bins and then release the marbles. A landingpattern results if each marble lands in a socket of

its own color, and if at every intermediate time the filled sockets within each bin form in ideal

in P. (Consecutive marbles ofthe same color are to be released and to land simultaneously;

i.e. they are indistinguishable.) This is a muItiset of ideals of P. Emptying a pipe can be

viewed as a sequence ofactions on $S^{m}V$ according to the Leibniz rule, beginning with acting

upon $s^{m}v$. The result of a pipe is the sum of its landing pattems. Let denote the
$\mathbb{Z}$-submodule of $S^{m}V$ spanned by all pipe results. If one fixes an extension of $P$ , then there

is one’ stackwise’ pipe filling for each $m$-bounded $P$-partition. Using no extemal facts or
methods, by September 1993 we had proved [Thm. 4, Pr3] that the pipe results for the

stackwise fillings form bases for over $\mathbb{Z}$ for all extensions of $P$ ifand only if $P$ is

colored $d$-complete. (After this project was already underway, we learned of [Lal].)

The development ofthe axioms for colored $d$-complete posets was entirely driven by

the desire to characterize the existence ofbases in the marble pouring context. While doing so
we were empirically aware that a good way to form a distributive lattice $L$ whosejoin

irreducible poset $P$ ‘worke$d’$ for the marble pouring basis problem was to form the Bruhat

ideal (w) for an element $w$ ofa simply laced Kac-Moody Weyl group that acted on a
fimdamental weight $\lambda$ in a manner like acting on a minuscule weight of a simple Lie algebra.

Peterson visited Kumar in Chapel Hill in October 1993; then we leamed that he had already

formalized this notion with his definition of $/\lambda$-minuscule’ (without the simply laced

assumption). Thus arose the problem of characterizing the colored posets $P$ that arise as
posets ofjoin i1reducible elements of such Bruhat ideals. Theorem $B$ of [Pr5] stated that the

colored $d$-complete posets were exactly these posets, in the simply laced cases. So by early

1997 it had become easy to see that when working in the context of Section 7 above, the $m=1$

case ofmarble pouring describes a basis and $\beta^{\vdash}$-actions for any Demazure module $V_{w\lambda}$ ofthe

simply laced Kac-Moody algebra $g$ when $w$ is $\lambda$-minuscule. It then could be seen that the

1993 marble pouring theorem had constructed a weight basis for the Demazure module $V_{mw\lambda}$

that is indexed by the $m$-multichains $e\leq u_{1}\leq$ $\leq u_{m}\leq w$ in the Bruhat ideal (w).

Therefore the references to [Lit] and [La2] for Proposition II above could be replaced-by a
reference to [Pr3]. The spanning argument for the 1993 theorem could be viewed as giving
effectively (albeit recursively) specified descriptions of the actions of the generators of $F^{-}$ on

these modules in a uniform fashion that was independent ofthe’ type’ ofthe Dynkin diagram.

At that time it appeared that this was the first such uniform-across-type description ofnon-trivial

actions for semisimple or Kac-Moody algebras, and this author has not heard of any other such

descriptions since then.

Peterson informed this author in October 1993 ofhis additive identity; he also noted

that every minuscule poset has the jeu de taquin property. Thisjeu de taquin remark inspired

this author to conduct computer calculations to find that small $d$-complete posets also possessed
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thejeu de taquin property. This raised the question ofwhich other combinatorial properties
possessed by shapes, shifted shapes, and rooted trees might be possessed by $d$-complete

posets; calculations then showed that small $d$-complete posets were hook length posets. The

nam$e”d$-complete’ was chosen for these posets to indicate the foremost requirement that their

local shuctures had to satisfy: Any interval that was nearly isomorphic to the minuscule poset

$d_{n}(1)$ had to b$e^{}$ completabl$e’$ to an interval isomorphic to all of $d_{n}(1)$ . In June 1994 this

author conjectured that every $d$-complete poset is a hook length poset; this was announced in

November 1994 at the Richmond AMS meeting [Pr4], along with the conjecture that every
$d$-complete poset has thejeu de taquin property. By December 1996 this author had

conjectured Theorem $1’s$ recursive hook length rule: It appeared in David Behman’s Master’s

project [Beh], which extended the original calculations and checked the recursive rule. (These

computations were later confirmed and then published by Cheryl Gann and this author on the

intemet [GP].) Michael Kart observed that the statement ofthe hook recursion could be

simplified. By October 1995 this author had classified the $d$-complete posets [Pr6], and by

October 1996 he had proved [Thm. $B$ , Pr5] that the colored $d$-complete posets were exactly the

posets ofjoin irreducibles ofthe Bruhat lattices (w) for the $\lambda$-minuscule $w$ . in the simply

laced case.

By 1996 this author was aware of [La2] and suspected that there was a representation-
theoretic proof of the hook product conjecture that would refer to that paper, and that perhaps a
fmer colored version of the identity would result. In March 1997 Peterson visited Kumar in

Chapel Hill again. He reminded this author ofhis additive identity and additionally stated his

product identity. Once Peterson leamed ofthe hook length conjecture, within three days he

produced Proposition III and indicated how to connect that statement to Proposition I via
Proposition II. At the end of 1997 this author obtained Proposition IV, thereby finishing the

proof of the colored Theorem 2.

Theorem 1 and Corollary 1 above and the confirmation ofthejeu de taquin conjecture

were announced at the October 1998 RIMS conference on the interactions of combinatorics and

representation theory. At that time these results were described on this author’s website [Pr7],

which alluded to the existence ofTheorem 2. A proof of thejeu de taquin property for
$d$-complete posets was distributed in 2000 [Pr8].

The definition ofuncolored $d$-complete poset has evolved since 1994. Theorem 2 was
originally proved with respect to the definition of colored $d$-complete poset in [Pr5]; the
definition of’ colored $d$-complete pose$t’$ used here was inspired by Stembridge’s Conditions

HI-H4 of Proposition 3. 1 (c) of [Ste].

14. Subsequent Developments and Acknowledgments

Following the annoumcements ofTheorems 1 and 2 and Corollary 1 in 1998, many
intriguing related results have been obtained by the attendees ofthat conference and their

coworkers.
by-class proofs ofthose results, plus some completely new results for $d$-complete posets have

been developed by Noriaki Kawanaka, Shuji Okamura, Masao Ishikawa, Hiroyuki Tagawa,
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Bridget Tenner, Kento Nakada, and Soichi Okada.

I am indebted to Dale Peterson for developing the key steps needed for the confirmation

ofthe $d$-complete hook length conjecture; he has graciously waived co-authorship ofthis

paper. I would not have been able to understand Peterson’s contributions without the generous
assistance ofmy colleague Shrawan Kumar. I am grateful to RIMS for its hospitality in Kyoto

in 1998 and for funding this 2012 conference, and to Soichi Okada, Masao Ishikawa, and

Hiroyuki Tagawa for organizing this conference in Kizugawa.
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