On (B_N, A_{N-1}) parabolic Kazhdan–Lusztig Polynomials

Keiichi Shigechi

Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan

1 Introduction

Kazhdan and Lusztig introduced Kazhdan–Lusztig polynomials $P_{x,y}$ indexed by two elements x and y of an arbitrary Coxeter group [4]. These polynomials are the coefficients of the change of basis from the standard basis of the Hecke algebra to Kazhdan-Lusztig basis. In [3], Deodhar introduced the concept of parabolic Kazhdan–Lusztig polynomials $P_{\alpha,\beta}^{\pm}$ for a Coxeter group. They are associated to the induced representation of the Hecke algebra by the one-dimensional representations of parabolic subgroups. Lascoux and Schützenberger gave an algorithm to compute $P^+_{\alpha,\beta}$ by using the binary tree (recall this is for Grassmannian permutations) [5]. Brenti gave a description of $P_{\alpha,\beta}^{-}$ via the concept of (shifted) "Dyck partition" through the analysis of R-polynomials and the poset structure of the Bruhat order [2]. Boe gave a binary tree algorithm to compute $P^+_{\alpha,\beta}$ for all Hermitian symmetric pairs [1]. In this paper, we study the Kazhdan–Lusztig polynomials in the case of unequal Hecke parameters for the Hermitian symmetric pair (B_N, A_{N-1}) . Our analysis has the flavour of the concept of tangles and link patterns used in statistical mechanics and that of Temperley–Lieb algebra [7]. The plan of the paper is as follows. In Section 2, we introduce Kazhdan–Lusztig polynomials and their parabolic analogues. In Section 3, we introduce a concept of Ballot strips and new diagrammatic rules 0, I and II to stack these strips in a skew Ferrers diagram. After defining generating functions $Q^{\pm}_{\alpha\beta}$ for stacking of strips, we provide the inversion relations for $Q_{\alpha,\beta}^{\pm}$. Section 4 is devoted to the analysis of Kazhdan–Lusztig polynomials $P_{\alpha,\beta}^{-}$. The point is that we are able to compute $P^{-}_{\alpha,\beta}$ directly through link patterns. Together with the inversion formula for \tilde{Q}^{\pm} , we show $Q^{\pm} = P^{\pm}$. In Section 5, we generalize the binary tree algorithm introduced in [1, 5]. This gives an alternative combinatorial algorithm for the computation of P^+ . Further, the generating

function Q^+ introduced in Section 3 is shown to be equal to the generating function of a generalized binary tree.

$\mathbf{2}$

Let S_N, S_N^C be the finite Weyl groups associated with the Dynkin diagram of type A and C. Let $w = s_{i_1} \dots s_{i_r}$ be a reduced word in S_N^C . The length functions $l, l', l_N : S_N^C \to \mathbb{N}$ are defined by $l'(w) = \operatorname{Card}\{i_j : 1 \leq i_j \leq N-1\}, l_N(w) = \operatorname{Card}\{i_j : i_j = N\}$ and $l(w) := l'(w) + l_N(w) = r$. The symmetric group S_N of N letters is a subgroup of S_N^C . The restriction of lon S_N is the standard length function of S_N . We use a natural partial order in S_N^C , known as the (strong) *Bruhat* order. We write $w' \leq w$ if and only if w' can be obtained as a subexpression of a reduced expression of w.

The Iwahori-Hecke algebra \mathcal{H} of type B_N is an unital, associative algebra over $\mathbb{C}[t, t^{-1}, t_N, t_N^{-1}]$ satisfying

$$(T_i - t)(T_i + t^{-1}) = 0, \qquad 1 \le i \le N - 1,$$

$$(T_N - t_N)(T_N + t_N^{-1}) = 0,$$

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1},$$

$$T_{N-1} T_N T_{N-1} T_N = T_N T_{N-1} T_N T_{N-1},$$

$$T_i T_j = T_j T_i, \qquad |i - j| > 1.$$

The set $\{T_w\}_{w\in S_N^C}$ is the standard monomial basis of \mathcal{H} .

We consider the two cases for the Hecke parameters (t, t_N) :

Case A t and t_N are algebraically independent with the lexicographic order $t > t_N$,

Case B $t_N = t^m$ with some positive integer m.

We denote $t^{l'(w)}t_N^{l_N(w)}$ for Case A, and $t^{l'(w)+ml_N(w)}$ for Case B by $t^{l(w)}$.

We define the bar involution of \mathcal{H} , $\mathcal{H} \ni a \mapsto \bar{a}$ by $T_i \mapsto T_i^{-1}$, $1 \leq i \leq N$ together with $t^p \mapsto t^{-p}$ for $p \in \mathbb{N}_+$ (for Case A and B) and $t_N \mapsto t_N^{-1}$.

We consider the abelian group $\Gamma^A = \{t^i t_N^j | i, j \in \mathbb{Z}\}$ and $\Gamma^B = \{t^i | i \in \mathbb{Z}\}$. Introduce the lexicographic order $\Gamma^X = \Gamma^X_+ \cup \{1\} \cup \Gamma^X_- (X = A, B)$ where

$$\begin{split} \Gamma^A_+ &:= \ \{t^i t^j_N | i > 0, j \in \mathbb{Z}\} \cup \{t^i_N | i > 0\}, \\ \Gamma^B_+ &:= \ \{t^i | i > 0\}. \end{split}$$

Theorem 1 ([6]). There exists a unique basis $\{C_w : w \in S_N^C\}$ and a unique polynomial $P_{v,w}$ such that $\overline{C_w} = C_w$ and

$$C_w = \sum_{v \le w} \mathbf{t}^{l(v) - l(w)} P_{v,w} T_v$$

where $\mathbf{t}^{l(v)-l(w)}P_{v,w} \in \mathbb{Z}(\Gamma_{-}^{X})$.

2.1 The coset space

Let W^N be the left coset space S_N^C/S_N . The following objects are bijective to each other:

- (i) A minimal (maximal) representative of the coset W^N .
- (ii) A binary string $\{1,2\}^N$. Let \mathcal{P}_N be the set of binary strings in $\{1,2\}^N$.
- (iii) A path from (0,0) to (N,n) with $|n| \le N$ and $N n \in 2\mathbb{Z}$ where each step is in the direction $(1, \pm 1)$.
- (iv) A shifted Ferrers diagram specified by a path.

We introduce the sign $\epsilon = \pm$. The maximal (resp. minimal) representatives in W^N corresponds to $\epsilon = +$ (resp. $\epsilon = -$).

Example 1. Let $\alpha = 221121$ and $\epsilon = +$. The path α is the lowest path from O to B and the path 111111 is the up-right one from O to A. As a maximal representation in W^N , $w^+(\alpha) = s_5 s_6 s_2 s_3 s_4 s_5 s_6 s_1 s_2 s_3 s_4 s_5 s_6$. The boxes with * are called anchor boxes.

2.2 Parabolic Kazhdan–Lusztig polynomials

An element $w \in S_N^C$ is uniquely written as w = xw' such that $x \in W^N$ and $w' \in S_N$. The projection $\varphi : S_N^C \to W^N$ induces two natural projections $\varphi^{\pm} : \mathcal{H} \cong \mathbb{C}[S_N^C] \to \mathbb{C}[W^N], T_w \mapsto (\pm t^{\pm 1})^{l(w')} m_{\varphi(w)}$, where $\{m_w\}_{w \in W^N}$ is the standard basis of $\mathbb{C}[W^N]$.

Let $\alpha \in \{1,2\}^N$ be a binary string and $\mathcal{M}^{\pm} := \mathbb{C}[W^N]$. The action of \mathcal{H} on the module \mathcal{M}^{ϵ} with $\epsilon \in \{+,-\}$ is given by

$$T_{i}m_{\alpha} = \begin{cases} \epsilon t^{\epsilon}m_{\alpha} & \alpha_{i} = \alpha_{i+1}, \\ m_{s_{i}.\alpha} & \alpha_{i} < \alpha_{i+1}, \\ m_{s_{i}.\alpha} + (t - t^{-1})m_{\alpha} & \alpha_{i+1} < \alpha_{i}, \end{cases} \text{ for } 1 \leq i \leq N-1,$$

$$T_{N}m_{\alpha} = \begin{cases} m_{s_{N}.\alpha} & \alpha_{N} = 1, \\ m_{s_{N}.\alpha} + (t_{N} - t_{N}^{-1})m_{\alpha} & \alpha_{N} = 2, \end{cases}$$

for both Case A and B.

We introduce parabolic Kazhdan-Lusztig basis:

Theorem 2 (Deodhar). There exists a unique basis $\{C_x^{\pm}\}_{x \in W^N}$ of \mathcal{M}^{\pm} and a unique polynomial $P_{x,y}^{X,\pm}$ such that $\overline{C_x^{\pm}} = C_x^{\pm}$ and

$$C_y^{\pm} = \sum_{x \le y} \mathbf{t}^{l(x) - l(y)} P_{x,y}^{X,\pm} m_x,$$

where $X \in \{A, B\}$, $P_{y,y}^{\pm} = 1$ and $\mathbf{t}^{l(x)-l(y)}P_{x,y}^{X,\pm} \in \mathbb{Z}(\Gamma_{-}^{X})$.

The Kazhdan–Lusztig polynomials satisfy

Theorem 3 (Inversion formula). Let $X \in \{A, B\}$. We have the inversion formula for $P^{X,\pm}$:

$$\sum_{\alpha} (-1)^{|\alpha|+|\beta|} P^{X,-}_{\alpha,\beta} P^{X,+}_{\alpha,\gamma} = \delta_{\beta,\gamma}$$

3 Combinatorics

3.1 Ballot strips

A Ballot path of length $(l, l') \in \mathbb{N}^2$ is a path from $(x, y) \in \mathbb{Z}^2$ to (x + 2l + l', y + l') and over the horizontal line y.

A Ballot strip of length $(l, l') \in \mathbb{N}^2$ is obtained by putting unit boxes (45 degree rotated) whose center are at the vertices of a Ballot path of length (l, l').

The length is (1,0), (3,0), (0,2), (1,2) and (2,2) from left. We name boxes around a box as follows:

For example, the box \bigotimes is said to be just above the box \bigotimes

Recall the definition of an anchor box in the skew Ferrers diagram. We put a constraint for a Ballot strip as follows.

Rule 0: Case A and B: The rightmost box of a Ballot strip of length (l, l') with $l' \ge 1$ is on an anchor box.

Let $\mathcal{D}, \mathcal{D}'$ be Ballot strips. We define two rules to pile \mathcal{D}' on top of \mathcal{D} in addition to Rule 0.

- **Rule I:** (a) Case A & B: If there exists a box of \mathcal{D} just below a box of \mathcal{D}' , then all boxes just below a box of \mathcal{D}' belong to \mathcal{D} .
 - (b) Case B: Suppose $l' \ge m$. The number of Ballot strips of length (l, l') is even for $l' m \in 2\mathbb{Z}$, and zero for otherwise.
- **Rule II:** (a) Case A& B: If there exists a box of \mathcal{D}' just above, NW or NE of a box of \mathcal{D} , then all boxes just above, NW and NE of a box of \mathcal{D} belong to \mathcal{D} or \mathcal{D}' .
 - (b) Case B: Suppose $l' \ge m$. If there exists a Ballot strip \mathcal{D} of length (l, l') with $l' m \in 2\mathbb{Z}$, then there is a strip of length $(l'', l' + 1), l'' \ge l$ just above \mathcal{D} .

Example 2.

Examples of stacks of Ballot strips satisfying Rule I (left) and Rule II (right).

Roughly speaking, Rule I (resp. Rule II) means that we are allowed to pile Ballot strips of smaller or equal (resp. longer) length on top of a Ballot strip. Further, there is at most one configuration satisfying Rule II.

3.2 Generating functions

Let \mathcal{B} be a Ballot strip of length $(l, l') \in \mathbb{N}^2$. The weight $\mathrm{wt}^X(\mathcal{B})$ for a Ballot strip \mathcal{B} is given by

$$\begin{split} \mathrm{wt}^{A}(\mathcal{B}) &:= \begin{cases} t^{2l+l'}, & l' \text{ is even,} \\ -\sigma t^{2l} t_{N}^{2} & l' \text{ is odd.} \end{cases} & for \ Case \ A. \\ \mathrm{wt}^{B}(\mathcal{B}) &:= \begin{cases} \sigma^{l'} t^{2l+l'}, & 0 \leq l' \leq m-1 \\ t^{m+2l+l'} & l' \geq m, l'-m \in 2\mathbb{Z}, \\ t^{m+2l+l'-1} & l' \geq m, l'-m-1 \in 2\mathbb{Z}, \end{cases} & for \ Case \ B \end{cases}$$

where $\sigma = +$ (resp. -) in case of Rule I (resp. Rule II).

Definition 1. The generating function of Ballot strips for the paths $\alpha < \beta$ with the sign ϵ is defined by

$$Q^{X,Y,\epsilon}_{\alpha,\beta} = \sum_{\mathcal{C}\in \operatorname{Conf}^{Y}(\alpha,\beta)} \prod_{\mathcal{B}\in\mathcal{C}} \operatorname{wt}^{X}(\mathcal{B}).$$

where $X \in \{A, B\}, Y \in \{I, II\}$ and $\epsilon \in \{+, -\}$. Define $Q_{\alpha, \alpha}^{X, Y, \epsilon} = 1$.

Example 3. Let $(\alpha, \beta) = (111111, 211212)$. The possible configurations of Ballot strips for Case A and Case B $(m \ge 2)$ are

The generating functions are

$$\begin{aligned} Q^{A,I,+}_{\alpha,\beta} &= 1+2t^2+2t^4+t^6-s^2t^4-s^2t^6,\\ Q^{B,I,+}_{\alpha,\beta} &= (1+t^2)^2(1+t^4), \quad m\geq 2,\\ Q^{B,I,+}_{\alpha,\beta} &= 1+2t^2+2t^4+t^6, \quad m=1. \end{aligned}$$

Theorem 4 (Inversion Formula). The generating functions $Q^{X,Y,\epsilon}_{\alpha,\beta}$ satisfy

$$\sum_{\beta} Q_{\alpha,\beta}^{X,I,-} Q_{\beta,\gamma}^{X,II,-} (-1)^{|\beta|+|\gamma|} = \delta_{\alpha,\gamma}$$

The outline of the proof. Let us fix a configuration of Ballot strips in the region delimited by paths α and γ . This region is divided into two by a path β . The region delimited by paths α (resp. γ) and β satisfies Rule I (resp. Rule II). Note that β depends on the configuration and there may be several possible choices of β . β is specified by choices of "boundary" strips, which can belong to the region governed either by Rule I or Rule II. We have

$$\sum_{\beta} Q^{X,I,-}_{\alpha,\beta} Q^{X,II,-}_{\beta,\gamma}(-1)^{|\beta|+|\gamma|} = \sum_{\mathcal{C}} |\mathrm{wt}(\mathcal{C})| \sum_{\beta \in \mathcal{P}(\mathcal{C})} \mathrm{sign}(\mathcal{C})(-1)^{|\beta|+|\gamma|},$$

where $\mathcal{P}(\mathcal{C})$ is the set of paths β between α and γ such that the region below β satisfy Rule I and the one above β satisfy Rule II. By taking the sum over all possible β 's for the fixed configuration, we have $\sum_{\beta \in \mathcal{P}(\mathcal{C})} \operatorname{sign}(\mathcal{C})(-1)^{|\beta|+|\gamma|} = 0$. Here, We take care about the sign $\sigma = \pm$.

4 Kazhdan–Lusztig polynomials $P_{\alpha,\beta}^{\pm}$

The relations among the Kazhdan–Lusztig polynomials $P_{\alpha,\beta}^{\pm}$ and the generating functions $Q_{\alpha,\beta}^{X,\epsilon}$ that we shall establish in subsequent sections are summarized as:

4.1 Module \mathcal{M}^- : link pattern for Case A

Let $\alpha \in \mathcal{P}_N$ be a binary string of length N. We make a pair between adjacent 2 and 1 (in this order) in the string α and remove it from α . We continue this procedure until it becomes a sequence $1 \dots 12 \dots 2$. We call these remaining 1's (resp. 2's) as unpaired 1's (resp. 2's). The (2i - 1)-th (resp. 2*i*-th) unpaired 2 from the right is called as an o-unpaired (resp. e-unpaired) 2.

We introduce a graphical notation for these pairs, an unpaired 1, an eand o-unpaired 2. Consider a line with N points. If α_i and α_j make a pair, then we connect *i* and *j* via an arch. If α_i is an unpaired 1, we put a vertical line with a circled 1. If α_i is an e-unpaired (resp. o-unpaired) 2, we put a vertical line with a mark e (resp. o). We call this graphical notation as a link pattern for Case A. **Example 4.** Let $\alpha = 1221222112$. The link pattern is

Recall that the module \mathcal{M}^- is spanned by the set of basis $\{m_{\alpha}\}_{\alpha\in\mathcal{P}_N}$. The space is isomorphic to V^N where $V \cong \mathbb{C}^2$ has the standard basis $\{|1\rangle, |2\rangle\}$. When *i*-th component of the tensor product is $x \in \{1, 2\}$, we denote it by $|x\rangle_i$. We simply write $|xx'\rangle_{ij}$ for the tensor product $|x\rangle_i \otimes |x'\rangle_j$ and sometimes denoted by $|xx'\rangle$ if the components are obvious. Hereafter, we identify a base $m_{\alpha}, \alpha \in \{1, 2\}^N$ with $|\alpha_1 \dots \alpha_N\rangle$.

An arch, vertical line with e,o and a circled 1 are building blocks of a link pattern corresponding to a string $\alpha \in \{1,2\}^N$. We introduce a map ϖ^A from these building blocks to a vector in V^2 or V:

$$\begin{array}{ccc} & \mapsto & |21\rangle + t^{-1}|12\rangle, \\ & & \downarrow & & |2\rangle + t_N^{-1}|1\rangle, \\ & & & \vdots & & |2\rangle + t^{-1}t_N|1\rangle, \\ & & & & \downarrow & & |2\rangle + t^{-1}t_N|1\rangle, \\ & & & & & \downarrow & & |1\rangle \end{array}$$

Then, we extend the map ϖ^A to a link pattern for a string α .

Example 5.

$$\varpi^{A}(1212) = \underbrace{10}_{0} \circ \\
= |1\rangle_{1} \otimes (|21\rangle_{23} + t^{-1}|12\rangle_{23}) \otimes (|2\rangle_{4} + t_{4}^{-1}|1\rangle_{4}) \\
= m_{1212} + t^{-1}m_{1122} + t_{4}^{-1}m_{1211} + t^{-1}t_{4}^{-1}m_{1121}$$

Theorem 5. An element $\varpi^A(\alpha)$ is Kazhdan–Lusztig basis $C^{A,-}_{\alpha}$.

Corollary 1.

$$Q^{A,II,-}_{\alpha,\beta} = P^{A,-}_{\alpha,\beta}$$

4.2 Module \mathcal{M}^- : link pattern for Case B

Let $\alpha \in \mathcal{P}_N$ be a binary string. We make pairs between 2's and 1's. Then, we have remaining unpaired 1's and 2's as Case A. If α_i is the *j*-th $(1 \le j \le m)$

unpaired 2 from the right, put a vertical line with the integer m+1-j. If α_i and $\alpha_{i'}$ with i < i' are the *j*-th and (j+1)-th unpaired 2's with $j \ge m+1$ and $j-m+1 \in 2\mathbb{Z}$, put vertical lines (on the *i*-th and *i'*-th point) whose endpoints are connected by a dotted line. If α_i is an unpaired 1 or a remaining unpaired 2 not classified above, then we put a vertical line with a circled 1 or a circled 2 respectively on the *i*-th point. We call this graph as a *link pattern* for Case B.

Example 6. Let $\alpha = 122212222112$ and m = 2. The link pattern is

We define the map ϖ^B from the building blocks to a vector in V or V^2 :

Together with the map from a binary string to a link pattern, we naturally extend the map ϖ^B from a binary string to a vector in \mathcal{M}^- , and denote it by ϖ^B .

Theorem 6. An element $\varpi^B(\alpha)$ is Kazhdan–Lusztig basis C_{α}^- .

Corollary 2.

$$Q^{B,II,-}_{\alpha,\beta} = P^{-}_{\alpha,\beta}.$$

4.3 Module \mathcal{M}^+ : Case A & B

We prove that the generating functions $Q_{\alpha,\beta}^{X,II,-}$, X = A, B are equal to the Kazhdan–Lusztig polynomials $P_{\alpha,\beta}^{-}$. The generating function $Q_{\alpha,\beta}^{\pm}$ satisfy the inversion relation which is exactly the same as the inversion formula (Theorem 3). Therefore, we have

Theorem 7.

$$Q_{\alpha,\beta}^{X,I,+} = P_{\alpha,\beta}^+.$$

5 Binary tree

Let \mathcal{Z} be a set such that $\emptyset \in \mathcal{Z}$, $z \in \mathcal{Z} \Rightarrow 1z2 \in \mathcal{Z}$ and if $z_1, z_2 \in \mathcal{Z}$ then the concatenation $z_1z_2 \in \mathcal{Z}$.

A binary string α is of the form $\underline{2}z_1\underline{2}z_2\ldots\underline{2}z_p\underline{1}z_{p+1}\underline{1}\ldots\underline{1}z_q$ for some integer $p, q \geq 0$ with $z_i \in \mathcal{Z}$. We call an underlined 1 (resp. 2) as an unpaired 1 (resp. 2).

We denote by $||\alpha||$ the length of a binary string α and by $||\alpha||_{\sigma}$ the number of σ in the string α . Let $\alpha = \alpha' v w \alpha''$ and $\beta = \beta' \underline{12}\beta''$ with $||\alpha'|| = ||\beta'||$, $v, w \in \{1, 2\}$. A capacity of the edge corresponding to the underlined 1 and 2 in β is defined by

$$\operatorname{cap}(12) := ||\alpha' v||_1 - ||\beta' 1||_1.$$

Let $\alpha = \alpha' v$ and $\beta = \beta' \underline{1}$. Similarly, the capacity of underlined 1 is defined by

$$cap(1) := ||\alpha||_1 - ||\beta||_1.$$

Note that the condition $\alpha \leq \beta$ implies a capacity is always non-negative.

The capacity of β with respect to α is the collection of capacities of pairs of adjacent 1 and 2 in α and that of the rightmost 1 in β if it exists.

5.1 Case A

We divide unpaired 1's into two classes. In α , the (2i - 1)-th (resp. 2i-th) unpaired 1 from the right is called o-unpaired (resp. e-unpaired) 1.

A binary tree $A(\alpha)$ satisfies

- $(\diamondsuit 1) A(\emptyset)$ is the empty tree.
- $(\diamondsuit 2) \ A(2w) = A(w).$
- (\diamond 3) $A(zw), z \in \mathbb{Z}$ is obtained by attaching the tree for A(z) and A(w) at their roots.
- (\$4) $A(1z2), z \in \mathbb{Z}$ is obtained by attaching an edge just above the tree A(z).
- (\diamond 5) If unpaired 1 in <u>1</u>w is e-unpaired (resp. o-unpaired) 1, A(1w) is obtained by attaching an edge just above the tree A(w) and mark the edge with "e" (resp. "o").

The capacity of β with respect to α is written as integers on leaves of $A(\beta)$. Denote by $A(\beta/\alpha)$ a tree equipped with capacities.

A labelling of $A(\beta/\alpha)$ is a set of non-negative integers on edges of $A(\beta)$ satisfying

(\$1) An integer on an edge connecting to a leaf is less than or equal to its capacity.

 $(\clubsuit2)$ Integers on edges are non-increasing from leaves to the root.

Let $\sigma, \sigma_e, \sigma_o$ be the sum of labels on edges without "e" and "o", with "e", with "o".

Definition 2. The generating function $R^A_{\alpha,\beta}$ of labellings on $A(\beta/\alpha)$ is defined by $R^A_{\alpha,\beta} = \sum_{\nu} t^{2\sigma} (-t^2_N)^{\sigma_o} (-t^2/t^2_N)^{\sigma_e}$, where the sum runs over all labellings of $A(\beta/\alpha)$.

Example 7. Let $(\alpha, \beta) = (1111111, 2211211)$. The binary tree $A(\beta)$ and a labelling is

The capacities of a pair 12 and o-unpaired 2 are 2 and 3 respectively. The weight of the labelling is $t^4t_N^4$.

Theorem 8.

$$Q^{A,I,-}_{\alpha,\beta} = R^A_{\alpha,\beta}$$

5.2 Case B

If α_i is the (m + 1 - j)-th $(1 \le j \le m)$ unpaired 1 from the right, we call this as *j*-terminal 1. If α_i and $\alpha_{i'}$ with i < i' are the *j*-th and (j + 1)-th unpaired 1's with $j \ge m + 1$ and j - m odd, we make a pair these 1's and call it a 11-pair. If α_i is an unpaired 1 and not classified above, we call this as an *extra-unpair* 1.

 $A(\beta)$ is defined recursively by the following rules. The rules $(\Diamond 1)$ - $(\Diamond 4)$ are the same as Case A. We replace $(\Diamond 5)$ by the following four conditions:

- (\diamond 5') If underlined 1 in $\underline{1}w$ is the *j*-terminal with $1 \leq j \leq m$, $A(\underline{1}w)$ is obtained by putting an edge just above the tree A(w). Then mark this edge with a plus "+" only when j = 1.
- (\diamond 6) Suppose underlined 1 in $\underline{1}z\underline{1}w$ is a 11-pair. The tree A(1z1w) is obtained by attaching an edge above the root of A(zw). We mark the edge with a plus "+".
- (\Diamond 7) If the underlined 1 in <u>1</u>w is an extra-unpair 1, we have A(1w) = A(w).
- (\diamond 8) When an edge *e* immediately "precedes" an edge *e'* in the binary tree A(w), we put a dotted arrow from the edge *e* to the edge *e'*.

Further, we need an additional information on the tree. Suppose $w = w'z_{m+2r}1...z_11z_0$ with $z_i \in \mathbb{Z}$ and $r \geq 0$ $(z_{m+2r} \text{ is non-empty and maximal})$. Set $w'' = 1z_{m+2r-1}1...z_11z_0$ such that $w = w'z_{m+2r}w''$ and $z_{m+2r} = x_sx_{s-1}...x_1$ with $x_i \in \mathbb{Z}$. Here, all x_i 's can not be decomposed further into a product of non-empty elements in \mathbb{Z} . Then the tree $A(x_i)$ contains a unique maximal edge (the edge connecting to the root) corresponding to a pair 12. A(w'') contains a unique maximal edge corresponding to a 11-pair or a 1-terminal. Observe that $A(x_i) \subseteq A(w)$, $A(w'') \subseteq A(w)$ as binary trees. We say that the maximal edge of $A(x_i)$ (resp. A(w'')) immediately precedes the maximal edge of $A(x_{i+1})$ (resp. $A(x_1)$) for $1 \leq i \leq s$.

(\diamond 8) When an edge *e* immediately precedes an edge *e'* in the binary tree A(w), we put a dotted arrow from the edge *e* to the edge *e'*.

In addition to $(\clubsuit1)$ and $(\clubsuit2)$ (the same as Case A), we require

- (\clubsuit 3) An integer attached to any edge with a plus "+" must be even.
- (\$4) If the label on an edge is less than or equal to the labels on all "preceding" edges, then the former must be even.

Example 8. Let $\alpha = 22111211$. The binary trees for α with m = 1, 2 and 3 from left to right.

Given a labelling ν , let $|\nu|$ be the sum of the labels on all edges $A(\beta/\alpha)$.

Definition 3. The generating function $R^B_{\alpha,\beta}$ of labellings on $A(\beta,\alpha)$ is defined by $R^B_{\alpha,\beta} = \sum_{\nu} t^{2|\nu|}$.

Theorem 9.

$$P^{B,+}_{\alpha,\beta} = Q^{B,I,+}_{\alpha,\beta} = R^B_{\alpha,\beta}.$$

5.3 Outline of the proof of Theorems 8 and 9

Theorem 10. There exists a bijection between labellings of $A(\beta/\alpha)$ and configurations of Ballot strips between paths α and β satisfying Rule I.

Figure 1: A bijection among a binary tree, a labelled link pattern and a configuration of Ballot strips.

We take a "dual" graph of a binary tree $A(\beta)$ to obtain a link pattern. In Case A, an edge without a mark (resp. with "o" or "e") in a binary tree corresponds to an arch (resp. a vertical line with "o" or "e") in the link pattern. In Case B, an edge without "+" in a binary tree corresponds to an arch (corresponding to a pair 12) or a vertical line with the integer pwith $2 \leq p \leq m$ in the link pattern. An edge with "+" in a binary tree corresponds to a vertical line with the integer 1 or to an arch for a paired 1's in the link pattern. Notice that the map from link patterns to trees is not one-to-one without fixing the string β : for some cases in Case B, we cannot distinguish an arch from a vertical line in a link pattern by looking at only the binary tree (see Figure 1).

An edge of the binary tree corresponds to an arch of the link pattern. We put a non-negative integer on an arch of the obtained link pattern in the following way: 1) For a given arch, we put the difference of integers on the corresponding and parent edges of $A(\beta)$. 2) On the smallest arch, the integer is less than or equal to the capacity of the corresponding leaf of $A(\beta)$. We call the link pattern with non-negative integers on arches as labelled link pattern. Note that we have a bijection between a labelling of $A(\beta/\alpha)$ and a labelled link pattern (for a given binary string β).

We stack Ballot strips according to the labelling of the link pattern. We put a corresponding Ballot strip starting from outer arches to inner ones. Then, we merge the overlapped boxes.

Example 9. A bijection for $(\alpha, \beta) = (11112222, 21121221)$.

References

- [1] B. D. Boe, Kazhdan-Lusztig polynomials for Hermitian symmetric spaces, Trans. Amer. Math. Soc. **309** (1988), 279–294.
- [2] F. Brenti, Kazhdan-Lusztig and R-polynomials, Young's lattice, and Dyck partitions, Pacific Journal of Mathematics **207** (2002), 257–286.
- [3] V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483–506.
- [4] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184.
- [5] A. Lascoux and M.-P. Schützenberger, Polynômes de Kazhdan & Lusztig pour les grassmanniennes, Young tableaux and Schur functions in algebra and geometry (Toruń 1980), Astérisque, vol. 87, Soc. Math. France, Paris, 1981, pp. 249–266.
- [6] G. Lusztig, *Hecke Algebra with Unequal Parameters*, CRM monograph series, vol. 18, American Mathematical Society, 2003.
- [7] H. Temperley and E. Lieb, Relations between the "percolation" and "colouring" problem and other graph-theoretical problems with regular lattices: some exact results for the "percolation" problem, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1549, 251–280.