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On (By, Ay—_1) parabolic Kazhdan—Lusztig
Polynomials

Keiichi Shigechi
Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan

1 Introduction

Kazhdan and Lusztig introduced Kazhdan-Lusztig polynomials P, , indexed
by two elements x and y of an arbitrary Coxeter group [4]. These polynomials
are the coeflicients of the change of basis from the standard basis of the
Hecke algebra to Kazhdan-Lusztig basis. In (3], Deodhar introduced the
concept of parabolic Kazhdan—Lusztig polynomials Piﬁ for a Coxeter group.

They are associated to the induced representation of the Hecke algebra by
the one-dimensional representations of parabolic subgroups. Lascoux and
Schiitzenberger gave an algorithm to compute P+ by using the binary tree
(recall this is for Grassmannian permutations) [5] Brentl gave a description
of P, via the concept of (shifted) “Dyck partition” through the analysis of
R—polynomlals and the poset structure of the Bruhat order [2]. Boe gave a
binary tree algorithm to compute PJr for all Hermitian symmetric pairs [1].

In this paper, we study the Kazhdan—Lusztlg polynomials in the case of
unequal Hecke parameters for the Hermitian symmetric pair (By, Ay-1)-
Our analysis has the flavour of the concept of tangles and link patterns used in
statistical mechanics and that of Temperley-Lieb algebra [7]. The plan of the
paper is as follows. In Section 2, we introduce Kazhdan—Lusztig polynomials
and their parabolic analogues. In Section 3, we introduce a concept of Ballot
strips and new diagrammatic rules 0, I and II to stack these strips in a
skew Ferrers diagram. After defining generating functions Qf, 5 for stacking
of strips, we provide the inversion relations for Qiﬂ. Section 4 is devoted
to the analysis of Kazhdan-Lusztig polynomials P, - The point is that we
are able to compute P, ; directly through link patterns. Together with the
inversion formula for Qi we show QT = P*. In Section 5, we generalize
the binary tree algorithm introduced in [1, 5]. This gives an alternative
combinatorial algorithm for the computation of P*. Further, the generating
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function Q™ introduced in Section 3 is shown to be equal to the generating
function of a generalized binary tree.

2

Let Sy, S$ be the finite Weyl groups associated with the Dynkin diagram
of type A and C. Let w = s;, ...s;, be a reduced word in S§. The length
functions 1,I',Iy : S§ — N are defined by I'(w) = Card{i; : 1 < i; <
N — 1}, In(w) = Card{i; : i; = N} and [(w) := I'(w) + Iy(w) = r. The
symmetric group Sy of N letters is a subgroup of S§. The restriction of [
on Sy is the standard length function of Syy. We use a natural partial order
in S§, known as the (strong) Bruhat order. We write w’ < w if and only if
w' can be obtained as a subexpression of a reduced expression of w.

The Iwahori-Hecke algebra H of type By is an unital, associative algebra
over C[t,t™1, ty, 5] satisfying

(T; —t)(T; +t1) =0, 1<i<N-1,
(Ty —tn)(Ty +t3') =0,

TTin Ty = T TiT,

TN ATNTN TN = TNTN 1\ TNTN-1,

I.T; = T;T,, t—Jl>1

The set {T}yesg is the standard monomial basis of H.
We consider the two cases for the Hecke parameters (¢,¢y):

Case A t and ty are algebraically independent with the lexicographic order
t>tn,

Case B iy = t™ with some positive integer m.

We denote tl'(“’)tﬂ{,"(w) for Case A, and t¥'(®)+min() for Case B by t'®).

We define the bar involution of H, H 2 a— a by T; — T[l,l <i<N
together with t? — ¢~2 for p € Ny (for Case A and B) and ty ~> tj'.

We consider the abelian group I'* = {tit};|i,j € Z} and I'B = {t!|i € Z}.
Introduce the lexicographic order I'* = T'¥ U {1} UT'X (X = A, B) where

4 = {t'thli >0,j € Z}U {ty]i > 0},
r? = {#li>0}.



Theorem 1 ([6]). There exists a unique basis {Cy, : w € S§} and a unique
polynomial P, ., such that C, = C,, and

Cw = Z tl(v)—l(w)Pv,wTvv

v<w

where t'@-®)p, € 7(I'X).

2.1 The coset space

Let W be the left coset space S§/Sy. The following objects are bijective
to each other:

(i) A minimal (maximal) representative of the coset W¥.
(ii) A binary string {1,2}". Let Py be the set of binary strings in {1,2}".

(iii) A path from (0,0) to (N,n) with |n| < N and N — n € 2Z where each
step is in the direction (1,+1).

(iv) A shifted Ferrers diagram specified by a path.

We introduce the sign ¢ = +. The maximal (resp. minimal) representa-
tives in WY corresponds to € = + (resp. ¢ = —).

Example 1. Let a = 221121 and € = +. The path « is the lowest path from
O to B and the path 111111 is the up-right one from O to A. As a mazimal
representation in W, wt(a) = s556525354555651525354555¢. The bozes with
x are called anchor bozes.

2.2 Parabolic Kazhdan—Lusztig polynomials

An element w € S§ is uniquely written as w = zw’ such that z € WV and
w' € Sy. The projection ¢ : S§ — WY induces two natural projections
o* 1 H = C[S§] —» CWN], T, — () ™I my, ), where {my, }pewn is the
standard basis of C[W?].
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Let o € {1,2}" be a binary string and M* := C[W¥]. The action of H
on the module M¢ with ¢ € {+, —} is given by

€tMq o = Qg1
Tm, = M, o o; < aiyp, for1<i< N -1,
ms, o + (t — t‘l)ma a1 < o,
m ay = 1,
TNm — SN.(C -1
“ Moyo+ (N —ty )Ma an =2,

for both Case A and B.
We introduce parabolic Kazhdan-Lusztig basis:

Theorem 2 (Deodhar). There exists a unique basis {CE}pewn of M* and
a unique polynomial PX;* such that CE = CF and

£ _ Ztl(x)—l(y)P;’(;}:mx,

z<y
where X € {A, B}, PE, =1 and t{®- W PX* € Z(TY).
The Kazhdan-Lusztig polynomials satisfy

Theorem 3 (Inversion formula). Let X € {A, B}. We have the inversion
formula for PX*:

D (=)EHEIPLT PR = 5as

o

3 Combinatorics

3.1 Ballot strips

A Ballot path of length (I,I') € N2 is a path from (z,y) € Z? to (z + 2 +
',y + 1) and over the horizontal line y.

A Ballot strip of length (I,1') € N? is obtained by putting unit boxes (45
degree rotated) whose center are at the vertices of a Ballot path of length

N N P

The length is (1,0),(3,0), (0,2),(1,2) and (2,2) from left.
We name boxes around a box as follows:
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(& «just above

& NW — « NE
> +just below W — « SE

For example, the box is said to be just above the box @
Recall the definition of an anchor box in the skew Ferrers diagram. We
put a constraint for a Ballot strip as follows.

Rule 0: Case A and B: The rightmost box of a Ballot strip of length (I, ')
with !/ > 1 is on an anchor box.

Let D, D’ be Ballot strips. We define two rules to pile D’ on top of D in
addition to Rule 0.

Rule I: (a) Case A & B: If there exists a box of D just below a box of
D', then all boxes just below a box of D’ belong to D.

(b) Case B: Suppose I’ > m. The number of Ballot strips of
length (1,1') is even for I’ — m € 2Z, and zero for otherwise.

Rule II: (a) Case A& B: If there exists a box of D’ just above, NW or
NE of a box of D, then all boxes just above, NW and NE of
a box of D belong to D or D'.

(b) Case B: Suppose I’ > m. If there exists a Ballot strip D of
length (,1') with I’ — m € 2Z, then there is a strip of length
(", I' +1),1” > 1 just above D.

Example 2.
Examples of stacks of Ballot strips satisfying Rule I (left) and Rule II

(right).

Roughly speaking, Rule I (resp. Rule II) means that we are allowed to
pile Ballot strips of smaller or equal (resp. longer) length on top of a Ballot
strip. Further, there is at most one configuration satisfying Rule II.
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3.2 Generating functions

Let B be a Ballot strip of length (I,!') € N?. The Welght wtX (B) for a Ballot
strip B is given by

t2+' I is even
A ’ ’
wt(B) { o2 1'is odd. for Case A.
ol A+ 0<l'<m-1
wtB(B) = g2+l I'>m,l' —m € 2Z, for Case B.

gt -1 S g P —m— 1 € 27,
where 0 = + (resp. —) in case of Rule I (resp. Rule II).

Definition 1. The generating function of Ballot strips for the paths a < f3
with the sign € is defined by

QX =Y JIw*®).

CceContY (a,8) BEC

where X € {A,B},Y € {I,1I} and € € {+,—}. Define QXY =1.

Example 3. Let (a,3) = (111111,211212). The possible configurations of
Ballot strips for Case A and Case B (m > 2) are

SELLE
BEBE

QAT = 14212 4+ 2t + 18 — % — %S,

The generating functions are

o,pB
B,
Qap™ = A+’ +tY), m>2,
QT = 1+20+2t* +15, m=1
Theorem 4 (Inversion Formula). The generating functions QX Y satisfy

X,I,— ~X,I1,—-
Z Qa,ﬂ Qﬁn ("l)lﬂHM = 50,7
B



The outline of the proof. Let us fix a configuration of Ballot strips in the
region delimited by paths o and «y. This region is divided into two by a path
B. The region delimited by paths a (resp. <) and ( satisfies Rule I (resp.
Rule IT). Note that 3 depends on the configuration and there may be several
possible choices of 5. ( is specified by choices of “boundary” strips, which
can belong to the region governed either by Rule I or Rule II. We have

ZQa qu 1)+l = Z]wt ©)] Z sign(C)(—1)B+M,
B

BeP(C)

where P(C) is the set of paths 8 between a and  such that the region below 3
satisty Rule I and the one above § satisfy Rule II. By taking the sum over all
possible §s for the fixed configuration, we have 5. p c sign(C J(=1)1B+N =
0. Here, We take care about the sign ¢ = =+. O

4 Kazhdan—Lusztig polynomials ijﬁ

The relations among the Kazhdan—Lusztig polynomials Piﬂ and the gener-

ating functions Qf; that we shall establish in subsequent sections are sum-
marized as:

P Q“’_ . transpose R I+
a,f a,B a,p
}nverse Iinverse

Ql’_ _ transpose p+ _QI’J,
a,8 A T taf T wa,p

4.1 Module M™: link pattern for Case A

Let a € Py be a binary string of length N. We make a pair between adjacent
2 and 1 (in this order) in the string « and remove it from «. We continue this
proeedure until it becomes-a sequence 1...12...2. We call these remaining
I’s (resp. 2’s) as unpaired 1’s (resp. 2’s). The (2¢ — 1)-th (resp. 2i-th)
unpaired 2 from the right is called as an o-unpaired (resp. e-unpaired) 2

We introduce a graphical notation for these pairs, an unpaired 1, an e-
and o-unpaired 2. Consider a line with NV points. If a; and a; make a pair,
then we connect ¢ and j via an arch. If o; is an unpaired 1, we put a vertical
line with a circled 1. If ; is an e-unpaired (resp. o-unpaired) 2, we put a
vertical line with a mark e (resp. o). We call this graphlcal notation as a
link pattern for Case A.
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Example 4. Let o = 1221222112. The link pattern 1s

0)

P

166

Recall that the module M~ is spanned by the set of basis {1 }acp,y. The

space is isomorphic to VN where V' = C? has the standard basis {|1),]2)}.

When i-th component of the tensor product is z € {1,2}, we denote it by
|z);. We simply write |zz’);; for the tensor product |z); ® |z'); and sometimes
denoted by |zz’) if the components are obvious. Hereafter, we identify a base

Mg, € {1,2}Y with |y ... an).

An arch, vertical line with e,0 and a circled 1 are building blocks of a link
pattern corresponding to a string o € {1,2}". We introduce a map w* from

these building blocks to a vector in V2 or V:
™ = [21) +t7Y12),

(0]
[ =2 +t5'1),

€
| = 2+,

?HH)

Then, we extend the map w* to a link pattern for a string a.

Example 5.

w4 (1212) = [E OI

1)1 ® (12123 + t7112)23) ® (|2)a + t5'[1)4)
= Misiz + t I Murge + t7 i maays + T My

Theorem 5. An element w?(«a) is Kazhdan-Lusztig basis C2~.
Corollary 1.

All~- _ pA,-—
Qa,ﬁ - Pa,ﬂ

4.2 Module M~: link pattern for Case B

Let a € Py be a binary string. We make pairs between 2’s and 1’s. Then, we
have remaining unpaired 1’s and 2’s as Case A. If o; is the j-th (1 < j <m)



unpaired 2 from the right, put a vertical line with the integer m+1—j. If o5
and oy with ¢ < ¢’ are the j-th and (j+1)-th unpaired 2’s with j > m+1 and
Jj—m+1 € 2Z, put vertical lines (on the i-th and #’-th point) whose endpoints
are connected by a dotted line. If a; is an unpaired 1 or a remaining unpaired
2 not classified above, then we put a vertical line with a circled 1 or a circled
2 respectively on the i-th point. We call this graph as a link pattern for Case
B.

Example 6. Let o = 122212222112 and m = 2. The link pattern is

We define the map w? from the building blocks to a vector in‘ V or V2
—~ 21y +t7Y12),
| = D,
[ = [22) +¢7Y11),
? = |z), xe€{1,2}.

Together with the map from a binary string to a link pattern, we naturally
extend the map w? from a binary string to a vector in M~, and denote it
by w?.

Theorem 6. An element w?(a) is Kazhdan-Lusztig basis C .

Corollary 2.

BIl~ _ p-—
Qa,ﬂ - Pa,ﬂ‘

4.3 Module M™*: Case A & B

We prove that the generating functions Qf’ ’él ', X = A, B are equal to the
Kazhdan-Lusztig polynomials P, ;. The generating function Qiﬂ satisfy
the inversion relation which is exactly the same as the inversion formula
(Theorem 3). Therefore, we have

Theorem 7.

X+ _ p+
Qa,B - Pa,ﬂ'
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5 Binary tree

Let Z be a set such that § € Z, z € Z = 122 € Z and if 21,2, € Z then the
concatenation 2129 € Z.

A binary string « is of the form 22,22, . . . 22p12,411 . . . 124 for some integer
p,q > 0 with z; € Z. We call an underlined 1 (resp. 2) as an unpaired 1

(resp. 2).
We denote by ||a|| the length of a binary string a and by |||, the number
of ¢ in the string a. Let o = a’vwa” and 8 = 128" with ||/|| = ||F]],

v,w € {1,2}. A capacity of the edge corresponding to the underlined 1 and
2 in [ is defined by

cap(12) := [la'v[|x = [|8'1l;-

Let a = a’v and 8 = B’1. Similarly, the capacity of underlined 1 is
defined by

cap(1) := [lally = [IBllx.

Note that the condition a < 8 implies a capacity is always non-negative.
The capacity of 8 with respect to « is the collection of capacities of pairs
of adjacent 1 and 2 in « and that of the rightmost 1 in 3 if it exists.

5.1 Case A

We divide unpaired 1’s into two classes. In «, the (2¢ — 1)-th (resp. 2i-th)
unpaired 1 from the right is called o-unpaired (resp. e-unpaired) 1.
A binary tree A(a) satisfies

($1) A(D) is the empty tree.
(02) A(2w) = A(w).

(¢3) A(zw), z € Z is obtained by attaching the tree for A(z) and A(w) at
their roots.

(04) A(122), z € Z is obtained by attaching an edge just above the tree
A(z).

(¢5) If unpaired 1 in lw is e-unpaired (resp. o-unpaired) 1, A(lw) is ob-
tained by attaching an edge just above the tree A(w) and mark the
edge with “e” (resp. “0”).



The capacity of 8 with respect to « is written as integers on leaves of
A(B). Denote by A(B/ca) a tree equipped with capacities.

A labelling of A(B/a) is a set of non-negative integers on edges of A(S)
satisfying

(d1) An integer on an edge connecting to a leaf is less than or equal to its
capacity.
(&%2) Integers on edges are non-increasing from leaves to the root.

Let o, 0., 0, be the sum of labels on edges without “e” and “0”, with “e”,
Wlth (43 7’

Definition 2. The generating function RA of labellings on A(B/a) is de-
fined by R, = > 27 (—t%)% (- tz/tN)"E, 'where the sum runs over all la-
bellings of A(B/c).

Example 7. Let (o, 8) = (1111111,2211211). The binary tree A(B) and a
labelling is

The capacities of a pair 12 and o-unpaired 2 are 2 and 3 respectively. The
weight of the labelling is t4t%,.

Theorem 8.

Al -~ A
Qa BT Flap

5.2 Case B

If a; is the (m + 1 — j)-th (1 < j < m) unpaired 1 from the right, we call
this as j-terminal 1. If o; and oy with ¢ < ¢’ are the j-th and (j + 1)-th
unpaired 1’s with 5 > m + 1 and j — m odd, we make a pair these 1’s and
call it a 11-pair. If o; is an unpaired 1 and not classified above, we call this
as an eztra-unpair 1.

A(B) is defined recursively by the following rules. The rules ($1)-({4)
are the same as Case A. We replace ({b) by the following four conditions:
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m, A(lw) is

(¢5') If underlined 1 in lw is the j-terminal with 1 < 57 <
). Then mark this

obtained by putting an edge just above the tree A(w
edge with a plus “+” only when 7 = 1.

(¢6) Suppose underlined 1 in 1zlw is a 11-pair. The tree A(1zlw) is ob-
tained by attaching an edge above the root of A(zw). We mark the
edge with a plus “4”.

(O7) If the underlined 1 in 1w is an extra-unpair 1, we have A(1w) = A(w).

($8) When an edge e immediately “precedes” an edge €' in the binary tree
A(w), we put a dotted arrow from the edge e to the edge €'

Further, we need an additional information on the tree. Suppose w =
W 2miorl ... 21129 with 2; € Z and r > 0 (242 is non-empty and maxi-
mal). Set w” = lzp49,_11... 2112 such that w = w'zp,19.w” and 2,49, =
TsTs—1 ...xy With x; € Z. Here, all z;’s can not be decomposed further into a
product of non-empty elements in Z. Then the tree A(x;) contains a unique
maximal edge (the edge connecting to the root) corresponding to a pair 12.
A(w") contains a unique maximal edge corresponding to a 11-pair or a 1-
terminal. Observe that A(z;) C A(w), A(w") C A(w) as binary trees. We
say that the maximal edge of A(z;) (resp. A(w")) immediately precedes the
maximal edge of A(x;1) (resp. A(zy)) for 1 <i < s.

(¢8) When an edge e immediately precedes an edge €’ in the binary tree
A(w), we put a dotted arrow from the edge e to the edge €.

In addition to (#1) and (&2) (the same as Case A), we require
(%3) An integer attached to any edge with a plus “+” must be even.

(%4) If the label on an edge is less than or equal to the labels on all “pre-
ceding” edges, then the former must be even.

Example 8. Let a = 22111211. The binary trees for a withm = 1,2 and 3
from left to right.

Given a labelling v, let [v| be the sum of the labels on all edges A(8/«).
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Definition 3. The generating function RS 5 of labellings on A(B,a) is de-
fined by RE ;=35 2.

Theorem 9.

B+ _ B+ _ pB
Pa,ﬂ - Qa,ﬂ - Ra,ﬂ‘

5.3 Outline of the proof of Theorems 8 and 9

Theorem 10. There exists a bijection between labellings of A(B/a) and con-
figurations of Ballot strips between paths o and [ satisfying Rule I.

&K

Figure 1: A bijection among a binary tree, a labelled link pattern and a
configuration of Ballot strips.

We take a “dual” graph of a binary tree A(8) to obtain a link pattern.
In Case A, an edge without a mark (resp. with “0” or “¢”) in a binary tree
corresponds to an arch (resp. a vertical line with “0” or “¢”) in the link
pattern. In Case B, an edge without “+” in a binary tree corresponds to
an arch (corresponding to a pair 12) or a vertical line with the integer p
with 2 < p < m in the link pattern. An edge with “4” in a binary tree
corresponds to a vertical line with the integer 1 or to an arch for a paired 1’s
in the link pattern. Notice that the map from link patterns to trees is not
one-to-one without fixing the string 3: for some cases in Case B, we cannot
distinguish an arch from a vertical line in a link pattern by looking at only
the binary tree (see Figure 1).

An edge of the binary tree corresponds to an arch of the link pattern.
We put a non-negative integer on an arch of the obtained link pattern in
the following way: 1) For a given arch, we put the difference of integers on
the corresponding and parent edges of A(S). 2) On the smallest arch, the
integer is less than or equal to the capacity of the corresponding leaf of A(5).
We call the link pattern with non-negative integers on arches as labelled link

pattern.
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Note that we have a bijection between a labelling of A(8/«a) and a labelled
link pattern (for a given binary string ).

We stack Ballot strips according to the labelling of the link pattern. We
put a corresponding Ballot strip starting from outer arches to inner ones.
Then, we merge the overlapped boxes.

Example 9. A bijection for (o, 5) = (11112222,21121221).

NI VI NI NI\
17N/ VA N/ N B VOV N VA N |
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