
On $(B_{N}, A_{N-1})$ parabolic Kazhdan-Lusztig
Polynomials

Keiichi Shigechi
Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan

1 Introduction

Kazhdan and Lusztig introduced Kazhdan-Lusztig polynomials $P_{x,y}$ indexed
by two elements $x$ and $y$ of an arbitrary Coxeter group [4]. These polynomials
are the coefficients of the change of basis from the standard basis of the
Hecke algebra to Kazhdan-Lusztig basis. In [3], Deodhar introduced the
concept of parabolic Kazhdan-Lusztig polynomials $P_{\alpha,\beta}^{\pm}$ for a Coxeter group.
They are associated to the induced representation of the Hecke algebra by
the one-dimensional representations of parabolic subgroups. Lascoux and
Sch\"utzenberger gave an algorithm to compute $P_{\alpha,\beta}^{+}$ by using the binary tree
(recall this is for Grassmannian permutations) [5]. Brenti gave a description
of $P_{\alpha.\beta}^{-}$ via the concept of (shifted) “Dyck partition”’ through the analysis of
$R$-polynomials and the poset structure of the Bruhat order [2]. Boe gave a
binary tree algorithm to compute $P_{\alpha_{)}\beta}^{+}$ for all Hermitian symmetric pairs [1].
In this paper, we study the Kazhdan-Lusztig polynomials in the case of
unequal Hecke parameters for the Hermitian symmetric pair $(B_{N}, A_{N-1})$ .
Our analysis has the flavour of the concept of tangles and link patterns used in
statistical mechanics and that of Temperley-Lieb algebra [7]. The plan of the
paper is as follows. In Section 2, we introduce Kazhdan-Lusztig polynomials
and their parabolic analogues. In Section 3, we introduce a concept of Ballot
strips and new diagrammatic rules $0$ , I and II to stack these strips in a
skew Ferrers diagram. After defining generating functions $Q_{\alpha,\beta}^{\pm}$ for stacking
of strips, we provide the inversion relations for $Q_{\alpha,\beta}^{\pm}$ . Section 4 is devoted
to the analysis of Kazhdan-Lusztig polynomials $P_{\alpha,\beta}^{-}$ . The point is that we
are able to compute $P_{\alpha_{)}\beta}^{-}$ directly through link patterns. Together with the
inversion formula for $Q^{\pm}$ , we show $Q^{\pm}=P^{\pm}$ . In Section 5, we generalize
the binary tree algorithm introduced in [1, 5]. This gives an alternative
combinatorial algorithm for the computation of $P^{+}$ . Further, the generating
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function $Q^{+}$ introduced in Section 3 is shown to be equal to the generating
function of a generalized binary tree.

2

Let $S_{N},$ $S_{N}^{C}$ be the finite Weyl groups associated with the Dynkin diagram

of type $A$ and $C$ . Let $w=s_{i_{1}}\ldots s_{i_{r}}$ be a reduced word in $S_{N}^{C}$ . The length

functions $l,$ $l’,$ $l_{N}$ : $S_{N}^{C}arrow \mathbb{N}$ are defined by $l’(w)=Card\{i_{j}$ : $1\leq i_{j}\leq$

$N-1\},$ $l_{N}(w)=Card\{i_{j} : i_{j}=N\}$ and $l(w)$ $:=l’(w)+l_{N}(w)=r$ . The
symmetric group $S_{N}$ of $N$ letters is a subgroup of $S_{N}^{C}$ . The restriction of $l$

on $S_{N}$ is the standard length function of $S_{N}$ . We use a natural partial order
in $S_{N}^{C}$ , known as the (strong) Bruhat order. We write $w’\leq w$ if and only if
$w’$ can be obtained as a subexpression of a reduced expression of $w.$

The Iwahori-Hecke algebra $\mathcal{H}$ of type $B_{N}$ is an unital, associative algebra
over $\mathbb{C}[t, t^{-1}, t_{N}, t ]$ satisfying

$(T_{i}-t)(T_{i}+t^{-1})=0, 1\leq i\leq N-1,$

$(T_{N}-t_{N})(T_{N}+t_{N}^{-1})=0,$

$T_{i}T_{i+1}T_{i}=T_{i+1}T_{i}T_{i+1},$

$T_{N-}{}_{1}T_{N}T_{N-1}T_{N}=T_{N}T_{N-1}T_{N}T_{N-1},$

$T_{i}T_{j}=T_{j}T_{i}, |i-j|>1.$

The set $\{T_{w}\}_{w\in S_{N}^{C}}$ is the standard monomial basis of $\mathcal{H}.$

We consider the two cases for the Hecke parameters $(t, t_{N})$ :

Case A $t$ and $t_{N}$ are algebraically independent with the lexicographic order
$t>t_{N},$

Case $Bt_{N}=t^{m}$ with some positive integer $m.$

We denote $t^{l’(w)}t_{N}^{l_{N}(w)}$ for Case $A$ , and $t^{l’(w)+ml_{N}(w)}$ for Case $B$ by $t^{l(w)}.$

We define the bar involution of $\mathcal{H},$ $\mathcal{H}\ni a\mapsto\overline{a}$ by $T_{i}\mapsto T_{i}^{-1},$ $1\leq i\leq N$

together with $t^{p}\mapsto t^{-p}$ for $p\in \mathbb{N}_{+}$ (for Case A and B) and $t_{N}\mapsto t_{N}^{-1}$

We consider the abelian group $\Gamma^{A}=\{t^{i}t_{N}^{j}|i, j\in \mathbb{Z}\}$ and $\Gamma^{B}=\{t^{i}|i\in \mathbb{Z}\}.$

Introduce the lexicographic order $\Gamma^{X}=\Gamma_{+}^{X}\cup\{1\}\cup\Gamma^{\underline{X}}(X=A, B)$ where

$\Gamma_{+}^{A} := \{t^{i}t_{N}^{j}|i>0, j\in \mathbb{Z}\}U\{t_{N}^{i}|i>0\},$

$\Gamma_{+}^{B} := \{t^{i}|i>0\}.$
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Theorem 1 ([6]). There exists a unique basis $\{C_{w}:w\in S_{N}^{C}\}$ and a unique
polynomial $P_{v,w}$ such that $\overline{C_{w}}=C_{w}$ and

$C_{w}= \sum_{v\leq w}t^{l(v)-l(w)}P_{v},{}_{w}T_{v},$

where $t^{l(v)-l(w)}P_{v,w}\in \mathbb{Z}(\Gamma_{-}^{X})$ .

2.1 The coset space

Let $W^{N}$ be the left coset space $S_{N}^{C}/S_{N}$ . The following objects are bijective
to each other:

(i) A minimal (maximal) representative of the coset $W^{N}.$

(ii) A binary string $\{$ 1, $2\}^{N}$ . Let $\mathcal{P}_{N}$ be the set of binary strings in $\{$ 1, $2\}^{N}.$

(iii) A path from $(0,0)$ to $(N, n)$ with $|n|\leq N$ and $N-n\in 2\mathbb{Z}$ where each
step is in the direction $(1, \pm 1)$ .

(iv) A shifted $Ferrer\mathcal{S}$ diagram specified by a path.

We introduce the sign $\epsilon=\pm$ . The maximal (resp. minimal) representa-
tives in $W^{N}$ corresponds to $\epsilon=+($resp. $\epsilon=$

Example 1. Let $\alpha=221121$ and $\epsilon=+$ . The path $\alpha$ is the lowest path from
$O$ to $B$ and the path 111111 is the up-right one from $O$ to A. As a maximal
representation in $W^{N},$ $w^{+}(\alpha)=S_{5}S_{6}S_{2}S_{3}S_{4}S_{5}S_{6}\mathcal{S}_{1}\mathcal{S}_{2}S_{3}S_{4}S_{5}S_{6}$ . The boxes with
$*are$ called anchor boxes.

2.2 Parabolic Kazhdan-Lusztig polynomials

An element $w\in S_{N}^{C}$ is uniquely written as $w=xw’$ such that $x\in W^{N}$ and
$w’\in S_{N}$ . The projection $\varphi$ : $S_{N}^{C}arrow W^{N}$ induces two natural projections
$\varphi^{\pm}:\mathcal{H}\cong \mathbb{C}[S_{N}^{C}]arrow \mathbb{C}[W^{N}],$ $T_{w}\mapsto(\pm t^{\pm 1})^{l(w’)}m_{\varphi(w)}$ , where $\{m_{w}\}_{w\in W^{N}}$ is the
standard basis of $\mathbb{C}[W^{N}].$
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Let $\alpha\in\{1, 2\}^{N}$ be a binary string and $\mathcal{M}^{\pm}:=\mathbb{C}[W^{N}]$ . The action of $\mathcal{H}$

on the module $\mathcal{M}^{\epsilon}$ with $\epsilon\in\{+, -\}$ is given by

$T_{i}m_{\alpha}$ $=$ $\{\begin{array}{ll}\epsilon t^{\epsilon}m_{\alpha} \alpha_{i}=\alpha_{i+1},m_{s_{i}\alpha} \alpha_{i}<\alpha_{i+1},m_{s_{i}.\alpha}+(t-t^{-1})m_{\alpha} \alpha_{i+1}<\alpha_{i},\end{array}$ for $1\leq i\leq N-1,$

$T_{N}m_{\alpha}$ $=$ $\{\begin{array}{ll}m_{s\alpha}N. \alpha_{N}=1,m_{s_{N}.\alpha}+(t_{N}-t_{N}^{-1})m_{\alpha} \alpha_{N}=2,\end{array}$

for both Case A and B.
We introduce parabolic Kazhdan-Lusztig basis:

Theorem 2 (Deodhar). There exists a unique basis $\{C_{x}^{\pm}\}_{x\in W^{N}}$ of $\mathcal{M}^{\pm}$ and
a unique polynomial $P_{x,y}^{X,\pm}$ such that $\overline{C_{x}^{\pm}}=C_{x}^{\pm}$ and

$C_{y}^{\pm}= \sum_{x\leq y}t^{l(x)-l(y)}P_{x,y}^{X,\pm}m_{x},$

where $X\in\{A, B\},$ $P_{y,y}^{\pm}=1$ and $t^{l(x)-l(y)}P_{x,y}^{X,\pm}\in \mathbb{Z}(\Gamma^{\underline{X}})$ .

The Kazhdan-Lusztig polynomials satisfy

Theorem 3 (Inversion formula). Let $X\in\{A, B\}$ . We have the inversion

formula for $P^{X,\pm}$ :

$\sum_{\alpha}(-1)^{|\alpha|+|\beta|}P_{\alpha,\beta}^{X,-}P_{\alpha,\gamma}^{X,+}=\delta_{\beta,\gamma}$

3 Combinatorics

3.1 Ballot strips

A Ballot path of length $(l, l’)\in.\mathbb{N}^{2}$ is a path from $(x, y)\in \mathbb{Z}^{2}$ to $(x+2l+$
$l’,$ $y+l’)$ and over the horizontal line $y.$

A Ballot strip of length $(l, l’)\in \mathbb{N}^{2}$ is obtained by putting unit boxes (45

degree rotated) whose center are at the vertices of a Ballot path of length
$(l,$ $l$

The length is $(1, 0)$ , $(3, 0)$ , $(0,2)$ , $(1, 2)$ and $(2, 2)$ from left.
We name boxes around a box as foJkows:
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For example, the box $◇\copyright$ is said to be just above the box $◇\bullet$

Recall the definition of an anchor box in the skew Ferrers diagram. We
put a constraint for a Ballot strip as follows.

Rule $0$ : Case A and $B$ : The rightmost box of a Ballot strip of length $(l, l’)$

with $l’\geq 1$ is on an anchor box.

Let $\mathcal{D},$
$\mathcal{D}’$ be Ballot strips. We define two rules to pile $\mathcal{D}’$ on top of $\mathcal{D}$ in

addition to Rule O.

Rule I: (a) Case $A$ & $B$ : If there exists a box of $\mathcal{D}$ just below a box of
$\mathcal{D}’$ , then all boxes just below a box of $\mathcal{D}’$ belong to $\mathcal{D}.$

(b) Case $B$ : Suppose $l’\geq m$ . The number of Ballot strips of
length $(l, l’)$ is even for $l’-m\in 2\mathbb{Z}$ , and zero for otherwise.

Rule II: (a) Case A& $B$ : If there exists a box of $\mathcal{D}’$ just above, NW or
NE of a box of $\mathcal{D}$ , then all boxes just above, NW and NE of
a box of $\mathcal{D}$ belong to $\mathcal{D}$ or $\mathcal{D}’.$

(b) Case $B$ : Suppose $l’\geq m$ . If there exists a Ballot strip $\mathcal{D}$ of
length $(l, l’)$ with $l’-m\in 2\mathbb{Z}$ , then there is a strip of length
$(l”, l’+1)$ , $l”\geq l$ just above $\mathcal{D}.$

$Example\mathcal{S}$ of $stack_{\mathcal{S}}$ of Ballot strips satisfying Rule $I$ (left) and Rule II
(right).

Roughly speaking, Rule I (resp. Rule II) means that we are allowed to
pile Ballot strips of smaller or equal (resp. longer) length on top of a Ballot
strip. Further, there is at most one configuration satisfying Rule II.
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3.2 Generating functions

Let $\mathcal{B}$ be a Ballot strip of length $(l, l’)\in \mathbb{N}^{2}$ . The weight $wt^{X}(\mathcal{B})$ for a Ballot
strip $\mathcal{B}$ is given by

$wt^{A}(\mathcal{B})$ $:=$ $\{\begin{array}{ll}t^{2l+l’} l’ is even,-\sigma t^{2l}t_{N}^{2} l’ is odd.\end{array}$ for Case $A.$

$wt^{B}(\mathcal{B})$ $:=$ $\{\begin{array}{l}\sigma^{l’}t^{2l+l’} 0\leq l’\leq m-1t^{m+2l+l’}’ l’\geq m, l’-m\in 2\mathbb{Z},t^{m+21+l’-1} l’\geq m, l’-m-1\in 2\mathbb{Z},\end{array}$ for $Ca\mathcal{S}eB.$

where $\sigma=+($resp. $-)$ in case of Rule I (resp. Rule II).

Definition 1. The generating function of Ballot strips for the $path_{\mathcal{S}}\alpha<\beta$

with the sign $\epsilon$ is defined by

$Q_{\alpha,\beta}^{X,Y,\epsilon}= \sum_{C\in Conf^{Y}(\alpha,\beta)}\prod_{\mathcal{B}\in C}wt^{X}(\mathcal{B})$

.

where $X\in\{A, B\},$ $Y\in\{I, II\}$ and $\epsilon\in\{+$ , Define $Q_{\alpha,\alpha}^{X,Y,\epsilon}=1.$

Example 3. Let $(\alpha, \beta)=$ $(111111, 211212)$ . The possible configurations of
Ballot strips for Case $A$ and Case $B(m\geq 2)$ are

The generating $function\mathcal{S}$ are

$Q_{\alpha,\beta}^{A,I,+} = 1+2t^{2}+2t^{4}+t^{6}-s^{2}t^{4}-s^{2}t^{6},$

$Q_{\alpha,\beta}^{B,I,+} = (1+t^{2})^{2}(1+t^{4}) , m\geq 2,$

$Q_{\alpha,\beta}^{B,I,+} = 1+2t^{2}+2t^{4}+t^{6}, m=1.$

Theorem 4 (Inversion Formula). The generating functions $Q_{\alpha,\beta}^{X,Y,\epsilon}$ satisfy

$\sum_{\beta}Q_{\alpha,\beta}^{X,I,-}Q_{\beta,\gamma}^{X,II,-}(-1)^{|\beta|+|\gamma|}=\delta_{\alpha,\gamma}$
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The outline of the proof. Let us fix a configuration of Ballot strips in the
region delimited by paths $\alpha$ and $\gamma$ . This region is divided into two by a path
$\beta$ . The region delimited by paths $\alpha$ (resp. $\gamma$ ) and $\beta$ satisfies Rule I (resp.
Rule II). Note that $\beta$ depends on the configuration and there may be several
possible choices of $\beta.$ $\beta$ is specified by choices of “boundary” strips, which
can belong to the region governed either by Rule I or Rule II. We have

$\sum_{\beta}Q_{\alpha,\beta}^{X,I,-}Q_{\beta_{)}\gamma}^{X,II,-}(-1)^{|\beta|+|\gamma|}=\sum_{c}|wt(C)|\sum_{\beta\in \mathcal{P}(C)}sign(C)(-1)^{|\beta|+|\gamma|},$

where $\mathcal{P}(C)$ is the set of paths $\beta$ between $\alpha$ and $\gamma$ such that the region below $\beta$

satisfy Rule I and the one above $\beta$ satisfy Rule II. By taking the sum over all
possible $\beta$ ’s for the fixed configuration, we have $\sum_{\beta\in \mathcal{P}(C)}sign(C).(-1)^{|\beta|+|\gamma|}=$

O. Here, We take care about the sign $\sigma=\pm.$ $\square$

4 Kazhdan-Lusztig polynomials $P_{\alpha,\beta}^{\pm}$

The relations among the Kazhdan-Lusztig polynomials $P_{\alpha_{)}\beta}^{\pm}$ and the gener-

ating functions $Q_{\alpha,\beta}^{X,\epsilon}$ that we shall establish in subsequent sections are sum-
marized as:

$Q_{\alpha,\beta}^{II,+}$

$|$ inverse $|$ inverse

$Q,-\beta$

4.1 Module $\mathcal{M}^{-}$ : link pattern for Case $A$

Let $\alpha\in \mathcal{P}_{N}$ be a binary string of length $N$ . We make a pair between adjacent
2 and 1 (in this order) in the string a and remove it from $\alpha$ . We continue this
procedure until it becomes-a sequence 1. . . 12. . . 2. We call these remaining
$1$ ’s (resp. $2’ s$ ) as unpaired $1$ ’s (resp. $2’ s$). The $(2i -1)$-th (resp. 2i-th)
unpaired 2 from the right is called as an $0$-unpaired (resp. -unpaired) 2.

We introduce a graphical notation for these pairs, an unpaired 1, an e-
and $0$-unpaired 2. Consider a line with $N$ points. If $\alpha_{i}$ and $\alpha_{j}$ make a pair,
then we connect $i$ and $j$ via an arch. If $\alpha_{i}$ is an unpaired 1, we put a vertical
line with a circled 1. If $\alpha_{i}$ is an $e$-unpaired (resp. $0$-unpaired) 2, we put a
vertical line with a mark $e$ (resp. o). We call this graphical notation as a
link pattern for Case A.
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Example 4. Let $\alpha=1221222112$ . The link pattern is

Recall that the module $\mathcal{M}^{-}$ is spanned by the set of basis $\{m_{\alpha}\}_{\alpha\in \mathcal{P}_{N}}$ . The

space is isomorphic to $V^{N}$ where $V\cong \mathbb{C}^{2}$ has the standard basis $\{|1\rangle, |2\rangle\}.$

When i-th component of the tensor product is $x\in\{1$ , 2 $\}$ , we denote it by
$|x\rangle_{i}$ . We simply write $|xx’\rangle_{ij}$ for the tensor product $|x\rangle_{i}\otimes|x’\rangle_{j}$ and sometimes
denoted by $|xx’\rangle$ if the components are obvious. Hereafter, we identify a base
$m_{\alpha},$

$\alpha\in\{1, 2\}^{N}$ with $|\alpha_{1}\ldots\alpha_{N}\rangle.$

An arch, vertical line with e,o and a circled 1 are building blocks of a link

pattern corresponding to a string $\alpha\in\{1, 2\}^{N}$ We introduce a map $\varpi^{A}$ from
these building blocks to a vector in $V^{2}$ or $V$ :

$\mapsto$ $|21\rangle+t^{-1}|12\rangle,$

$10 \mapsto |2\rangle+t_{N}^{-1}|1\rangle,$

$1e \mapsto |2\rangle+t^{-1}t_{N}|1\rangle,$

$?^{1} \mapsto |1\rangle$

Then, we extend the map $\varpi^{A}$ to a link pattern for a string $\alpha.$

Example 5.

$\varpi^{A}(1212)$ $=$

$= |1\rangle_{1}\otimes(|21\rangle_{23}+t^{-1}|12\rangle_{23})\otimes(|2\rangle_{4}+t_{4}^{-1}|1\rangle_{4})$

$= m_{1212}+t^{-1}m_{1122}+t_{4}^{-1}m_{1211}+t^{-1}t_{4}^{-1}m_{1121}$

Theorem 5. An element $\varpi^{A}(\alpha)i\mathcal{S}$ Kazhdan Lusztig basis $C_{\alpha}^{A,-}$

Corollary 1.

$Q_{\alpha,\beta}^{A,II,-}=P_{\alpha,\beta}^{A,-}$

4.2 Module $\mathcal{M}^{-}$ : link pattern for Case $B$

Let $\alpha\in \mathcal{P}_{N}$ be a binary string. We make pairs between $2$ ’s and $1’ s$ . Then, we
have remaining $unpa\tilde{l}red1$ ’s and $2$ ’s as Case A. If $\alpha_{i}$ is the j-th $(1\leq j\leq m)$
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unpaired 2 from the right, put a vertical line with the integer $m+1-j$ . If $\alpha_{i}$

and $\alpha_{i’}$ with $i<i’$ are the j-th and $(j+1)$-th unpaired $2$ ’s with $j\geq m+1$ and
$j-m+1\in 2\mathbb{Z}$ , put vertical lines (on the i-th and i’-th point) whose endpoints
are connected by a dotted line. If $\alpha_{i}$ is an unpaired 1 or a remaining unpaired
2 not classified above, then we put a vertical line with a circled 1 or a circled
2 respectively on the i-th point. We call this graph as a link pattern for Case
B.

Example 6. Let $\alpha=122212222112$ and $m=2$ . The link pattern $i\mathcal{S}$

We define the map $\varpi^{B}$ from the building blocks to a vector in $V$ or $V^{2}$ :

$= \mapsto |21\rangle+t^{-1}|12\rangle,$

$p$

$1 \mapsto |2\rangle+(-1)^{m-p}t^{-p}|1\rangle,$

$\sqcup \mapsto |22\rangle+t^{-1}|11\rangle,$

$\int^{x} \mapsto |x\rangle, x\in\{1, 2 \}.$

Together with the map from a binary string to a link pattern, we naturally
extend the map $\varpi^{B}$ from a binary string to a vector in $\mathcal{M}^{-}$ , and denote it
by $\varpi^{B}.$

Theorem 6. An element $\varpi^{B}(\alpha)$ is $Kazhdan-Lu\mathcal{S}ztig$ basis $C_{\alpha}^{-}.$

Corollary 2.

$Q_{\alpha}^{B} =P_{\alpha,\beta}^{-}.$

4.3 Module $\mathcal{M}^{+}$ : Case $A$ &B

We prove that the generating functions $Q_{\alpha,\beta}^{X,II,-},$ $X=A,$ $B$ are equal to the
Kazhdan-Lusztig polynomials $P_{\alpha,\beta}^{-}$ . The generating function $Q_{\alpha,\beta}^{\pm}$ satisfy
the inversion relation which is exactly the same as the inversion formula
(Theorem 3). Therefore, we have

Theorem 7.

$Q_{\alpha,\beta}^{X,I,+}=P_{\alpha,\beta}^{+}.$
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5 Binary tree

Let $\mathcal{Z}$ be a set such that $\emptyset\in \mathcal{Z},$ $z\in \mathcal{Z}\Rightarrow 1z2\in Z$ and if $z_{1},$
$z_{2}\in \mathcal{Z}$ then the

concatenation $z_{1}z_{2}\in \mathcal{Z}.$

A binary string $\alpha$ is of the form $\underline{2}z_{1}\underline{2}z_{2}\ldots\underline{2}z_{p}\underline{1}z_{p+1}\underline{1}\ldots\underline{1}z_{q}$ for some integer
$p,$ $q\geq 0$ with $z_{i}\in \mathcal{Z}$ . We call an underlined 1 (resp. 2) as an unpaired 1
(resp. 2).

We denote by $||\alpha||$ the length of a binary string $\alpha$ and by $||\alpha||_{\sigma}$ the number
of $\sigma$ in the string $\alpha$ . Let $\alpha=\alpha’vw\alpha"$ and $\beta=\beta’\underline{12}\beta"$ with $||\alpha’||=||\beta’||,$

$v,$ $w\in\{1$ , 2 $\}$ . A capacity of the edge corresponding to the underlined 1 and
2 in $\beta$ is defined by

cap(12) $:=||\alpha’v||_{1}-||\beta’1||_{1}.$

Let $\alpha=\alpha’v$ and $\beta=\beta’\underline{1}$ . Similarly, the capacity of underlined 1 is

defined by

cap(l) $:=||\alpha||_{1}-||\beta||_{1}.$

Note that the condition $\alpha\leq\beta$ implies a capacity is always non-negative.

The capacity of $\beta$ with respect to a is the collection of capacities of pairs
of adjacent 1 and 2 in $\alpha$ and that of the rightmost 1 in $\beta$ if it exists.

5.1 Case $A$

We divide unpaired $1$ ’s into two classes. In $\alpha$ , the $(2i-1)$-th (resp. 2i-th)

unpaired 1 from the right is called -unpaired (resp. -unpaired) 1.
A binary tree $A(\alpha)$ satisfies

(◇ 1) $A(\emptyset)$ is the empty tree.

$(◇ 2)A(2w)=A(w)$ .

(◇ 3) $A(zw)$ , $z\in \mathcal{Z}$ is obtained by attaching the tree for $A(z)$ and $A(w)$ at
their roots.

(◇ 4) $A(1z2)$ , $z\in Z$ is obtained by attaching an edge just above the tree
$A(z)$ .

(◇ 5) If unpaired 1 in $\underline{1}w$ is $e$-unpaired (resp. -unpaired) 1, $A(1w)$ is ob-
tained by attaching an edge just above the tree $A(w)$ and mark the
edge with “e” (resp. “o”).
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The capacity of $\beta$ with respect to $\alpha$ is written as integers on leaves of
$A(\beta)$ . Denote by $A(\beta/\alpha)$ a tree equipped with capacities.

A labelling of $A(\beta/\alpha)$ is a set of non-negative integers on edges of $A(\beta)$

satisfying

$(*1)$ An integer on an edge connecting to a leaf is less than or equal to its
capacity.

$(*2)$ Integers on edges are non-increasing from leaves to the root.

Let $\sigma,$ $\sigma_{e},$ $\sigma_{o}$ be the sum of labels on edges without $\langle\langle e$
” and $(0$”, with $e$”,

with $0$
”

Definition 2. The generating junction $R_{\alpha,\beta}^{A}$ of labellings on $A(\beta/\alpha)$ is de-

fined by $R_{\alpha,\beta}^{A}= \sum_{\nu}t^{2\sigma}(-t_{N}^{2})^{\sigma_{o}}(-t^{2}/t_{N}^{2})^{\sigma_{e}}$ , where the sum runs over all la-
bellings of $A(\beta/\alpha)$ .

Example 7. Let $(\alpha, \beta)=$ $(1111111, 2211211)$ . The binary tree $A(\beta)$ and a
labelling $i\mathcal{S}$

The capacities of a pair 12 and $0$ -unpaired 2 are 2 and 3 respectively. The
weight of the labelling is $t^{4}t_{N}^{4}.$

Theorem 8.

$Q_{\alpha,\beta}^{A,I,-}=R_{\alpha.\beta}^{A}$

5.2 Case $B$

If $\alpha_{i}$ is the $(m+1-j)-th(1\leq j\leq m)$ unpaired 1 from the right, we call
this as $j$ -terminal 1. If $\alpha_{i}$ and $\alpha_{i’}$ with $i<i’$ are the j-th and $(j+1)$-th
unpaired $1$ ’s with $j\geq m+1$ and $j-m$ odd, we make a pair these $1$ ’s and
call it a 11-pair. If $\alpha_{i}$ is an unpaired 1 and not classified above, we call this
as an extra-unpair 1.

$A(\beta)$ is defined recursively by the following rules. The rules $(◇ 1)-(◇ 4)$

are the same as Case A. We replace $(◇ 5)$ by the folfowing four conditions:
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(◇ 5’) If underlined 1 in $\underline{1}w$ is the $j$-terminal with $1\leq j\leq m,$ $A(\underline{1}w)$ is
obtained by putting an edge just above the tree $A(w)$ . Then mark this
edge with a plus $+$ only when $j=1.$

(◇ 6) Suppose underlined 1 in $\underline{1}z\underline{1}w$ is a 11-pair. The tree $A(1z1w)$ is ob-
tained by attaching an edge above the root of $A(zw)$ . We mark the
edge with a plus $(+$

$(◇ 7)$ If the underlined 1 in lw is an extra-unpair 1, we have $A(1w)=A(w)$ .

(◇ 8) When an edge $e$ immediately “precedes an edge $e’$ in the binary tree
$A(w)$ , we put a dotted arrow from the edge $e$ to the edge $e’.$

Further, we need an additional information on the tree. Suppose $w=$

$w’z_{m+2r}1\ldots z_{1}1z_{0}$ with $z_{i}\in \mathcal{Z}$ and $r\geq 0(z_{m+2r}$ is non-empty and maxi-
mal). Set $w”=1z_{m+2r-1}1\ldots z_{1}1z_{0}$ such that $w=w’z_{m+2r}w"$ and $z_{m+2r}=$

$x_{s}x_{s-1}\ldots x_{1}$ with $x_{i}\in \mathcal{Z}$ . Here, all $x_{i}$ ’s can not be decomposed further into a
product of non-empty elements in $Z$ . Then the tree $A(x_{i})$ contains a unique
maximal edge (the edge connecting to the root) corresponding to a pair 12.
$A(w”)$ contains a unique maximal edge corresponding to a 11-pair or a 1-
terminal. Observe that $A(x_{i})\subseteq A(w)$ , $A(w”)\subseteq A(w)$ as binary trees. We
say that the maximal edge of $A(x_{i})$ (resp. $A(w”)$ ) immediately precedes the
maximal edge of $A(x_{i+1})$ (resp. $A(x_{1})$ ) for $1\leq i\leq \mathcal{S}.$

(◇ 8) When an edge $e$ immediately precedes an edge $e’$ in the binary tree
$A(w)$ , we put a dotted arrow from the edge $e$ to the edge $e’.$

In addition to $(*1)$ and $(*2)$ (the same as Case A), we require

$(*3)$ An integer attached to any edge with a plus $\langle+$ must be even.

$(*4)$ If the label on an edge is less than or equal to the labels on all “pre-
ceding”’ edges, then the former must be even.

Example 8. Let $\alpha=22111211$ . The binary trees for $\alpha$ with $m=1$ , 2 and 3
from left to right.

Given a labelling $v$ , let $|\nu|$ be the sum of the labels on all edges $A(\beta/\alpha)$ .
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Definition 3. The generating function $R_{\alpha_{\backslash \prime}\beta}^{B}$ of labellings on $A(\beta, \alpha)i\mathcal{S}$ de-

fined by $R_{\alpha,\beta}^{B}= \sum_{\nu}t^{2|\nu|}.$

Theorem 9.

$P_{\alpha_{)}\beta}^{B,+}=Q_{\alpha,\beta}^{B,I,+}=R_{\alpha,\beta}^{B}.$

5.3 Outline of the proof of Theorems 8 and 9

Theorem 10. There $exisl\mathcal{S}$ a bijection between labellings of $A(\beta/\alpha)$ and con-
figurations of Ballot strips between paths $\alpha$ and $\beta$ satisfying Rule $I.$

1 2

Figure 1: A bijection among a binary tree, a labelled link pattern and a
configuration of Ballot strips.

We take a “dual” graph of a binary tree $A(\beta)$ to obtain a link pattern.
In Case $A$ , an edge without a mark (resp. with “o” or “e”) in a binary tree
corresponds to an arch (resp. a vertical line with $(0$” or $e$

”
$)$ in the link

pattern. In Case $B$ , an edge without $+$ in a binary tree corresponds to
an arch (corresponding to a pair 12) or a vertical line with the integer $p$

with $2\leq p\leq m$ in the link pattern. An edge with $+$ in a binary tree
corresponds to a vertical line with the integer 1 or to an arch for a paired $1$ ’s
in the link pattern. Notice that the map from link patterns to trees is not
one-to-one without fixing the string $\beta$ : for some cases in Case $B$ , we cannot
distinguish an arch from a vertical line in a link pattern by looking at only
the binary tree (see Figure 1).

An edge of the binary tree corresponds to an arch of the link pattern.
We put a non-negative integer on an arch of the obtained link pattern in
the following way: 1) For a given arch, we put the difference of integers on
the corresponding and parent edges of $A(\beta)$ . $2$ ) On the smallest arch, the
integer is less than or equal to the capacity of the corresponding leaf of $A(\beta)$ .

We call the link pattern with non-negative integers on arches as labelled link
pattern.
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Note that we have a bijection between a labelling of $A(\beta/\alpha)$ and a labelled
link pattern (for a given binary string $\beta$ ).

We stack Ballot strips according to the labelling of the link pattern. We
put a corresponding Ballot strip starting from outer arches to inner ones.
Then, we merge the overlapped boxes.

Example 9. A bijection for $(\alpha, \beta)=(11112222, 21121221)$ .

$0\lambda_{0}^{0} 1\lambda_{0}^{0} 0/o(_{1} 1/o(_{1} 1\lambda_{1}^{1}$
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