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ABSTRACT. We give bijections between permutations and two types of plane partitions, descending
(DPP) and totally symmetric self-complementary (TSSCPP). These bijections map the inversion
number of the permutation to nice statistics on these DPPs and TSSCPPs. We also discuss the
possible extension of this approach to finding bijections between alternating sign matrices and all
DPPs and TSSCPPs.

1. INTRODUCTION

Alternating sign matrices (ASMs) and their equinumerous friends, descending plane partitions
(DPPs) and totally symmetric self-complementary plane partitions (TSSCPPs), have been both-
ering combinatorialists for decades by the lack of an explicit bijection between any two of the
three sets of objects. (See [6] [7] [1] [12] [5] for these enumerations and bijective conjectures and
[3] for the story behind these papers.) In this summary paper, we outline the bijections from [8]
and [9] between permutation matrices (which are a subclass of ASMs) and subclasses of DPPs and
TSSCPPs. The DPP-permutation bijection proceeds in such a way that the inversion number of
the permutation matrix equals the number of parts of the DPP. For the TSSCPP-permutation
bijection, we identify the subclass of TSSCPPs corresponding to permutations and give a bijection
which yields a direct interpretation for the inversion number on these permutation TSSCPPs.

In Section 2, we define ASMs, DPPs, and TSSCPPs and give bijections within their respective
families. We recall the standard bijection from ASMs to monotone triangles. We outline a known
bijection from TSSCPPs to non-intersecting lattice paths and then transform these to new objects
we call boolean triangles.

In Section 3, we identify the permutation subclass of TSSCPPs in terms of the boolean triangles
of Section 2. We use this characterization to present a direct bijection between this subclass of
TSSCPPs and permutation matrices. Then, in Section 4, we give a bijection between permutation
matrices and descending plane partitions with no special parts.

It is not obvious how to extend this bijection to all ASMs, DPPs, and TSSCPPs. In Section 5,
we say a few words on the outlook of the general bijection problem.

2. THE OBJECTS AND THEIR ALTER EGOS

In this section, we first define ASMs and recall the standard bijection to monotone triangles. We
then define DPPs. Finally, we define TSSCPPs and give bijections with non-intersecting lattice
paths and new objects we call boolean triangles. In the following two sections, we give bijections
from permutation ASMs to subclasses of TSSCPPs and DPPs via these intermediary objects.

Definition 1. An alternating sign matrix (ASM) is a square matrix with entries $0$ , 1, or $-1$ whose
rows and columns each sum to 1 and such that the nonzero entries in each row and column alternate
in sign.
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$(001$ $001$ $001)(001$ $001$ $001)(001$ $001$ $001)(001$ $-111$ $001)(001$ $001$ $001)(001$ $001$ $001)(001$ $001$ $001)$

FIGURE 1. The seven $3\cross 3$ ASMs.

See Figure 1 for the seven $3\cross 3$ ASMs. It is clear that the alternating sign matrices with no $-1$

entries are the permutation matrices.
Alternating sign matrices are known to be in bijection with monotone triangles, which are certain

strict Gelfand-Tsetlin patterns. See Figure 2 for the seven monotone triangles of order 3 and
Figure 7 for the indexing of a general monotone triangle.

Definition 2. A monotone triangle of order $n$ is a triangular arrays of integers with $i$ integers

in row $i$ for all $1\leq i\leq n$ , bottom row 123 . . . $n$ , and integer entries $a_{i,j}$ for $1\leq i\leq n,$

$n-i\leq j\leq n-1$ such that $a_{i,j-1}\leq a_{i-1,j}\leq a_{i,j}$ and $a_{i,j}<a_{i,j+1}.$

$1 1 2 2 2 3 3$1 2 1 3 1 2 1 3 2 3 1 3 2 3
1 2 31 2 31 2 31 2 31 2 31 2 31 2 3

FIGURE 2. The seven monotone triangles of order 3, listed in order corresponding to Figure 1.

It is well-known that monotone triangles of order $n$ are in bijection with $n\cross n$ alternating sign

matrices via the following map [3]. For each row of the ASM note which columns have a partial

sum (from the top) of 1 in that row. Record the numbers of the columns in which this occurs in
increasing order. This process yields a monotone triangle of order $n$ . Note that entries $a_{i,j}$ in the
monotone triangle satisfying the strict diagonal inequalities $a_{i,j-1}<a_{i-1,j}<a_{i,j}$ are in bijection
with the $-1$ entries of the corresponding ASM. Also, recall that the inversion number of an ASM
$A$ is defined as $I(A)= \sum A_{ij}A_{k\ell}$ where the sum is over all $i,j,$ $k,$ $\ell$ such that $i>k$ and $j<l$ . This
definition extends the usual notion of inversion in a permutation matrix.

We now define descending plane partitions.

Definition 3. A descending plane partition (DPP) is an array of positive integers $\{d_{i,j}\}$ with $i\leq j$

$($ that $is,$ with $the ith row$ indented $by i-1$ units) with weak decrease across rows, strict decrease
down columns, and in which the number of parts in each row is strictly less than the largest part

in that row and is greater than or equal to the largest part in the next row.

$d_{1,1}$ $d_{1,2}$ $d_{1,3}$ . . . . . . . . . . . . . . . . . . . . . $d_{1,\lambda_{1}}$

$d_{2,2}$ $d_{2,3}$ . . . . . . . . . . . . . . $d_{2,\lambda_{2}}$.. $.\cdot$

$d_{\ell,\ell}$ . . . $d_{\ell,\lambda_{\ell}}$

FIGURE 3. The general form of a descending plane partition.

Definition 4. A descending plane partition is of order $n$ if its largest part is at most $n.$

Definition 5. A special part of a descending plane partition is a part $d_{i,j}$ such that
$d_{i,j}\leq j-i.$

See Figure 3 for the general form of a DPP and Figure 4 for the seven DPPs of order 3. The
only DPP in Figure 4 with a special part is 31. The 1 is a special part since $1=d_{1,2}\leq 2-1.$

We now turn our attention to totally symmetric self-complementary plane partitions.
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$\emptyset$ 2 3 31 32 3 3

FIGURE 4. The seven descending plane partitions of order 3.

Definition 6. A plane partition is a two dimensional array of positive integers which weakly
decreases across rows from left to right and down columns.

We can visualize a plane partition as a stack of unit cubes pushed up against the corner of a
room. If we identify the corner of the room with the origin and the room with the positive orthant,
then denote each unit cube by its coordinates in $\mathbb{N}^{3}$ , we obtain the following equivalent definition.
A plane partition $\pi$ is a finite set of positive integer lattice points $(i, j, k)$ such that if $(i,j, k)\in\pi$

and $1\leq i’\leq i,$ $1\leq j’\leq j$ , and $1\leq k’\leq k$ then $(i’, j’, k’)\in\pi$ . A plane partition is totally symmetric
if whenever $(i, j, k)\in\pi$ then all six permutations of $(i, j, k)$ are also in $\pi.$

Definition 7. A totally symmetric self complementary plane partition (TSSCPP) inside a $2n\cross$

$2n\cross 2n$ box is a totally symmetric plane partition which is equal to its complement, that is, the
collection of empty cubes in the box is of the same shape as the collection of cubes in the plane
partition itself.

666333 666433 666433 666553
666333 665332 665433 6 5 5 4 3 1
666333 666333 664322 6 5 4 3 2 1
3 3 3 4331 4432 54321
333 333 332 53211
333 332 332 311

$666553 666543 666543$$655331 665332 665432$$655331 655331 654321$$53311 53311 54321$$53311 4331 43 2 1$$311 321 321$
FIGURE 5. TSSCPPs inside a $6\cross 6\cross 6$ box

See Figure 5 for the seven TSSCPPs of order 3.
In [4], Di Francesco gives a bijection from TSSCPPs of order $n$ to a collection of nonintersecting

lattice paths. The bijection proceeds by taking a fundamental domain of the TSSCPP, and instead
of reading the number of boxes in each stack, one looks at the paths going alongside those boxes.
This yields a collection of nonintersecting paths with two types of steps. With a slight further
deformation, he obtains that the following objects are in bijection with TSSCPPs. See Figure 6.

Proposition 8 (Di Rancesco). Totally symmetric self-complementary plane partitions inside a
$2n\cross 2n\cross 2n$ box are in bijection with nonintersecting lattice paths (NILP) starting at $(i, -i)$ ,
$i=1$ , 2, . . . , $n-1$ , and ending at positive integer points on the $x$ -axis of the form $(r_{i}, 0)$ , $i=$

$1$ , 2, . . . , $n-1$ , making only vertical steps $(0,1)$ or diagonal steps $(1, 1)$ .

In [4], Di Francesco uses the Lindstr\"om-Gessel-Viennot formula for counting nonintersecting
lattice paths via a determinant evaluation to give an expression for the generating function of
TSSCPPs with a weight of $\tau$ per vertical step. We will show that when restricted to permutation
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FIGURE 6. The seven TSSCPP NILP of order 3.

TSSCPPs, this weight corresponds to the inversion number of the permutation. Note that the
distribution of the number of vertical steps in all TSSCPP NILPs does not correspond to the
inversion number distribution on ASMs.

With another slight deformation, we obtain a tableaux version of these NILPs. See Figures 7
and 8.

Definition 9. A boolean triangle of order $n$ is a triangular integer array $\{b_{i,j}\}$ for $1\leq i\leq n-1,$

$n-i\leq j\leq n-1$ with entries in $\{0$ , 1 $\}$ such that the diagonal partial sums satisfy

(1) $1+ \sum_{i=j+1}^{i’}b_{i,n-j-1}\geq\sum_{i=j}^{i’}b_{i,n-j}.$

$b_{1,n-1}$

$b_{2,n-2} b_{2,n-1}$

$b_{3,n-3} b_{3,n-2} b_{3,n-1}$

:
$b_{n-1,1}$ $b_{n-1,2}$ . . . $b_{n-1,n-2}$ $b_{n-1,n-1}$

FIGURE 7. The indexing on a generic monotone or boolean triangle

$1 1 0 0 1 0 0$1 1 1 01101001000

FIGURE 8. The seven TSSCPP boolean triangles of order 3, listed in order corre-
sponding to Figure 6 (and Figure 2 via the bijection of Theorem 12).

Proposition 10. Boolean triangles of order $n$ are in bijection with TSSCPPs inside a $2n\cross 2n\cross 2n$

box.

Proof. The bijection proceeds by replacing each vertical step of the NILP with a 1 and each diagonal
step with a $0$ and vertically reflecting the array. The inequality on the partial sums is equivalent
to the condition that the lattice paths are nonintersecting. $\square$

3. THE TSSCPP-PERMUTATION BIJECTION

In this section, we give a bijection between $n\cross n$ permutation matrices and a subclass of totally
symmetric self-complementary plane partitions inside a $2n\cross 2n\cross 2n$ box, preserving the inver-
sion number statistic and two boundary statistics. First, we identify the permutation subclass of
TSSCPPs.

Definition 11. Let permutation TSSCPPs of order $n$ be all TSSCPPs of order $n$ whose corre-
sponding boolean triangles have weakly decreasing rows. (In the NILP picture, each row has some
number of vertical steps followed by some number of diagonal steps.)

176



It is easy to see that there are $n!$ permutation TSSCPPs. The condition on the boolean triangle
that the rows be weakly decreasing means that all the $1$ ’s must be left-justified, thus the defining
partial sum inequality (1) is never violated. To construct a permutation TSSCPP, freely choose
any number of left-justified $1$ ’s in each row of the boolean triangle and the rest zeros; there are
$i+1$ choices for row $i$ , and the choices are all independent.

We are now ready to state and prove our main theorem.

Theorem 12. There is a natural statistic-preserving bijection between $n\cross n$ permutation matrices
with inversion number $p$ whose 1 in the last row is in column $k$ and whose 1 in the last column is
in row $P$ and permutation TSSCPPs of order $n$ with $p$ zeros in the boolean triangle, exactly $n-k$

of which are contained in the last row, and for which the lowest 1 in diagonal $n-1$ is in row $l-1.$

Proof. We first describe the bijection map. An example of this bijection is shown in Figure 10.
Begin with a permutation TSSCPP of order $n$ . Consider its associated boolean triangle $b=$

$\{b_{i,j}\}_{1\leq i\leq n-1,n-i\leq j\leq n-1}$ . Define $a=\{a_{i,j}\}_{1\leq i\leq n,n-i\leq j\leq n-1}$ as follows: $a_{n,j}=j+1$ and for $i<n,$
$a_{i,j}=a_{i+1,j}$ if $b_{i,j}=0$ and $a_{i,j}=a_{i+1,j-1}$ if $b_{i,j}=1$ . We claim $a$ is a monotone triangle.
Clearly $a_{i,j-1}\leq a_{i-1,j}\leq a_{i,j}$ . Also, $a_{i,j}<a_{i,j+1}$ , since if $a_{i,j}=a_{i,j+1}$ , then $a_{i,j}=a_{i+1,j}$ and
$a_{i,j+1}=a_{i+1,j+1}$ so that we would need $b_{i,j}=0$ and $b_{i,j+1}=1$ . This contradicts the fact that
the rows of permutation boolean triangles must weakly decrease. Furthermore, $a$ is a monotone
triangle with no $-1$ ’s in the corresponding ASM, since each entry is defined to be equal to one of
its diagonal neighbors in the row below. This process is clearly invertible.

TSSCPP
Boolean triangle$0\bullet$

$\circ|$

.
$/^{\bullet}$

$O^{/}/ / / \Leftrightarrow 0 1 0 \Leftrightarrow$

$\circ| / 1 1 0$$/ 0 0 0 0$
$\circ|$ $1 0 0 0 0$

Monotone triangle Permutation matrix

$1 1 32 33 443 444 456 56 65 6 6 \Leftrightarrow (000001 000001 000001 000001 000001 000001)$

FIGURE 9. An example of the bijection. The matrix on the lower right is the
permutation 463512 which has 11 inversions. These inversions correspond to the 11
diagonal steps of the TSSCPP on the upper left.

We now show that this map takes a permutation TSSCPP boolean triangle with $p$ zeros to a
permutation matrix with $p$ inversions. Recall that the inversion number of any ASM $A$ (with the
matrix entry in row $i$ and column $j$ denoted $A_{ij}$ ) is defined as $I(A)= \sum A_{ij}A_{k\ell}$ where the sum is
over all $i,$ $j,$ $k,$ $\ell$ such that $i>k$ and $j<\ell$ . This definition extends the usual notion of inversion
in a permutation matrix. In [10] we found that $I(A)$ satisfies $I(A)=E(A)+N(A)$ , where $N(A)$

is the number of $-1$ ’s in $A$ and $E(A)$ is the number of entries in the monotone triangle equal to
their southeast diagonal neighbor (entries $a_{i,j}$ satisfying $a_{i,j}--a_{i+1,j}$ ). Since in our case, $N(A)=0$
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and $E(A)$ equals the number of zeros in the corresponding TSSCPP boolean triangle, we have that
$I(A)$ equals the number of zeros in $b.$

We can see that the zeros of $b$ correspond to permutation inversions directly by noting that

to convert from the monotone triangle representation of a permutation to a usual permutation $\sigma$

such that $iarrow\sigma(i)$ , we set $\sigma(i)$ equal to the unique new entry in row $i$ of the monotone triangle.

Thus for each entry of the monotone triangle $a_{i,j}$ such that $a_{i,j}=a_{i+1,j}$ , there will be an inversion

in the permutation between $a_{i,j}$ and $\sigma(i+1)$ . This is because $a_{i,j}=\sigma(k)$ for some $k\leq i$ and
$\sigma(k)=a_{i,j}>\sigma(i)$ . These entries $a_{i,j}$ such that $a_{i,j}=a_{i+1,j}$ correspond exactly to zeros in row $i$

of the boolean triangle $b$ . Thus if a permutation TSSCPP has $p$ zeros in its boolean triangle, its

corresponding permutation will have $p$ inversions.
Also, observe that if the number of zeros in the last row of the boolean triangle is $k$ , then the 1

in the bottom row of the permutation matrix will be in column $n-k$ . So the missing number in

the penultimate monotone triangle row shows where the last row of the boolean triangle transitions

from ones to zeros. So by the bijection between monotone triangles and ASMs, the 1 in the last

row of $A$ is in column $n-k.$

Finally, if the lowest 1 in diagonal $n-1$ of the boolean triangle is in row $\ell-1$ , this means that

the entries $\{a_{i,n-1}\}$ for $\ell\leq i\leq n$ are all equal to $n$ . So the 1 in the last column of the permutation

matrix is in row $l.$
$\square$

See Figure 10 for an example of this bijection.

4. THE DPP PERMUTATION BIJECTION

In this section we give a bijection between descending plane partitions of order $n$ with no special

parts, $p$ parts, and $k$ parts equal to $n$ and $n\cross n$ permutation matrices with $p$ inversions and a 1 in

row $n-k$ of the last column. We will need the following lemma.

Lemma 13. There is a natural part-preserving bijection between descending plane partitions of
order $n$ with no special parts and partitions with largest part at most $n$ and with at most $i-1$ parts

equal to $i$ for all $i\leq n.$

The bijection map is very simple, so we will state the map, but refer to [8] for the proof that it

is a well-defined bijection. To map from the DPPs to the partitions, take all the parts of the DPP

and put them in one row in decreasing order. To map from the partitions to the DPPs, insert the

parts of the partition into the shape of a DPP in decreasing order, putting as many parts in a row

as possible and then moving on to the first position in the next row whenever the next part to be

inserted would be forced to be special if added to the current row. So this bijection is simply a
rearrangement of parts.

We use this lemma in the following bijection between permutations and descending plane parti-

tions with no special parts.

Theorem 14. There is a simple bijection between descending plane partitions of order $n$ with a

total of $p$ parts, $k$ parts equal to $n$ , and no special parts and $n\cross n$ permutation matrices with

inversion number $p$ whose 1 in the last column is in row $n-k.$

Proof. We first describe the bijection map. An example of this bijection is shown in Figure 10.
Begin with a DPP $\delta$ of order $n$ with no special parts. From Lemma 13 we know that the parts

of $\delta$ form a partition with largest part at most $n$ and at most $i-1$ parts equal to $i$ for all $i\leq n.$

Use these parts to make a monotone triangle of order $n$ in the following way. The bottom row of a

monotone triangle is always 123. . . $n$ . Let $c_{i}$ denote the number of parts of $\delta$ equal to $i$ . Beginning
with $i=n$ , make a continuous path (border strip) of $i$ ’s in the triangle starting at the $i$ in the

bottom row and at each step going northeast if possible or else northwest. The path continues until
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there are a total of $c_{i}$ northwest steps in the path. In this way, the path stays as far to the east
as possible and has exactly $c_{i}$ entries equal to their southeast diagonal neighbor. Decrement $i$ by
one and repeat until reaching $i=1$ . Since there are at most $i-1$ parts equal to $i$ , this process is
well-defined. The resulting array is a monotone triangle of order $n$ such that there are no entries
satisfying $a_{i,j-1}<a_{i-1,j}<a_{i,j+1}$ (i.e. either $a_{i,j}=a_{i-1,j}$ or $a_{i-1,j}=a_{i,j-1}$ ). Thus the monotone
triangle corresponds to an $n\cross n$ permutation matrix $A$ , since permutation matrices are alternating
sign matrices with no $-1$ entries.

DPP Monotone triangle Permutation matrix

$6 56 436 346 45 \Leftrightarrow 1 1 32 33 443 444 456 56 65 6 6 \Leftrightarrow(000001 000001 000001 000001 000001 000001)$

FIGURE 10. An example of the bijection. The bold entries in the monotone triangle
are the entries equal to their southeast diagonal neighbor. These are exactly the
parts of the DPP. Note that the matrix on the right represents the permutation
463512 which has 11 inversions. These inversions correspond to the 11 parts of the
DPP on the left.

The inverse map first takes a permutation matrix $A$ to its monotone triangle. We claim that the
parts of the corresponding DPP $\delta$ are exactly the entries of the monotone triangle which are equal
to their southeast diagonal neighbor, that is, entries $a_{i,j}$ such that $a_{i,j}=a_{i+1,j}$ . Because of the
shape of the monotone triangle, there are at most $i-1$ such entries equal to $i$ . Thus these entries
form a partition with largest entry at most $n$ and at most $i-1$ parts equal to $i$ for all $i\leq n$ . Using
Lemma 13 the parts of this partition can always be formed into a unique DPP.

This is a bijection because the monotone triangle entries $a_{i,j}$ such that $a_{i,j}=a_{i+1,j}$ are exactly
the entries coming from the northwest steps in the border strips which are exactly the entries of $\delta.$

We now show that this map takes a DPP with $p$ parts to a permutation matrix with $p$ inversions.
We again use the fact, noted in [10], that the inversion number of an ASM, $I(A)$ , satisfies $I(A)=$

$E(A)+N(A)$ , where $N(A)$ is the number of $-1$ ’s in $A$ and $E(A)$ is the number of entries in
the monotone triangle equal to their southeast diagonal neighbor (i.e. entries $a_{i,j}$ satisfying $a_{i,j}=$

$a_{i+1,j})$ . Since in our case, $N(A)=0$ and $E(A)$ equals the number of parts of the corresponding
DPP, we have that $I(A)$ equals the number of parts of $\delta.$

We can see that the parts of $\delta$ correspond to permutation inversions directly by noting that to
convert from the monotone triangle representation of a permutation to a usual permutation $\sigma$ such
that $iarrow\sigma(i)$ , one simply sets $\sigma(i)$ equal to the unique new entry in row $i$ of the monotone triangle.
Thus for each entry of the monotone triangle $a_{i,j}$ such that $a_{i,j}=a_{i+1,j}$ , there will be an inversion
in the permutation between $a_{i,j}$ and $\sigma(i+1)$ . This is because $a_{i,j}=\sigma(k)$ for some $k\leq i$ and
$\sigma(k)=a_{i,j}>\sigma(i)$ . These entries $a_{i,j}$ such that $a_{i,j}=a_{i+1,j}$ are exactly the parts of the DPP. Thus
if a DPP has $p$ parts, its corresponding permutation will have $p$ inversions.

Also, observe that if the number of parts equal to $n$ in $\delta$ is $k$ , then $k$ determines the position of
the 1 in the last Golumn of the permutation matrix. This is because the path of $n$ ’s in the monotone
triangle must consist of exactly $k$ northwest steps (no northeast steps). So by the bijection between
monotone triangles and ASMs, the 1 in the last column of $A$ is in row $n-k$ . So finally, we have a
bijection between descending plane partitions of order $n$ with a total of $p$ parts, $k$ parts equal to $n,$
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and no special parts and $n\cross n$ permutation matrices with inversion number $p$ whose 1 in the last

column is in row $n-k.$ $\square$

See Figure 10 for an example of this bijection.

5. TOWARD A BIJECTION BETWEEN ALL ASMs, DPPs, AND TSSCPPs

In this Section, we discuss some of the challenges to finding the ASM-DPP-TSSCPP bijection

in full generality.
As discussed in the proof of Theorems 12 and 14, the inversion number of an ASM satisfies

$I(A)=E(A)+N(A)$ where $N(A)$ is the number of -l’s in $A$ and $E(A)$ is the number of entries
in the monotone triangle equal to their southeast diagonal neighbor [10]. Thus there should be a
one to-one correspondence between these diagonal equalities of the monotone triangle and the non-
special parts of the DPP. Difficulties arise quickly, though, since even for $n=4$ there are examples of

$4 4 3$
DPPs, such as

3 1
, whose non-special parts cannot correspond exactly to diagonal equalities

of the same number in the monotone triangle. In the above example, 1 is a special part and 44
33 are non-special parts. If the parts 4433 are each entries in the monotone triangle equal to
their southeast neighbors, there is no way to fill in the rest of the entries of the monotone triangle
so that there is a $-1$ in the ASM (to correspond to the special part of 1 in the DPP). Evidently,
the addition of special parts to the DPP makes the relationship between non-special parts and
monotone triangle diagonal equalities more complex.

Another complicating factor is that, though there is at most one way to write any collection of
numbers as a DPP with no special parts (as shown in Lemma 13), the same is not true of DPPs

with special parts. For example, the parts 55531 can form either the DPP
5 5 5 1

or
3

5 5 5
3 $1^{\cdot}$

Therefore, the position of the parts in the DPP matters when special parts are present.

While DPPs have the property that the number of parts equals the inversion number of the ASM
(this is now proved, though not bijectively [2]), TSSCPPs do not have such a statistic as of yet.
We showed that the number of diagonal steps in a permutation-NILP gives the inversion number of
the permutation matrix, but this is not true for general TSSCPPs and ASMs. Furthermore, while
the number of special parts of a DPP corresponds to the number of $-1$ ’s in the ASM, there is no
such statistic on TSSCPPs. It would seem reasonable to conjecture that the $-1$ of the ASM should
correspondto all instances of a vertical step followed by a diagonal step as you go from left to right
along a row of the NILP (or a $0$ followed by a 1 as you go across a row of the boolean triangle).

This holds up to $n=4$, and it seems to hold for arbitrary $n$ in the special cases of one $-1$ and the
maximal number of $-1’ s(L\frac{n^{2}}{4}\rfloor)$ . But for the number of $-1$ ’s between 1 and $L\frac{n^{2}}{4}$ ], these statistics
diverge.

Di Francesco has noted that the distribution of the number of diagonal steps in the top row of
the TSSCPP-NILP corresponds to the refined enumeration of ASMs. So one might hope to begin
a general bijection by determining the $(n-1)st$ row of the monotone triangle from the top row
of the NILP (or the bottom row of the boolean triangle) by left-justifying all the vertical steps
and then bijecting in the same way as in the permutation case. After that, though, it is unclear
how to proceed. See Figure 5 for a summary of the various statistics which are preserved in the
permutation case DPP-ASM-TSSCPP bijections and which should correspond in full generality.
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