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1. INTRODUCTION

This article is a resume of the recent work [31, 32, 33] by the author and
Hideyuki Miura (Tokyo Institute of Technology). We consider the second
order elliptic operator of divergence form in $\mathbb{R}^{d+1}=\{(x, t)\in \mathbb{R}^{d}\cross \mathbb{R}\},$

(1.1) $\mathcal{A}=-\nabla\cdot A\nabla, A=A(x)=(a_{i,j}(x))_{1\leq i,j\leq d+1}$

Here $d\in \mathbb{N},$ $\nabla=(\nabla_{x}, \partial_{t})^{T}$ with $\nabla_{x}=(\partial_{1}, \cdots, \partial_{d})^{T}$ , and each $a_{i,j}$ is
complex-valued and assumed to be independent of the $t$ variable. The ad-
joint matrix of $A$ will be denoted by $A^{*}$ We assume the standard ellipticity
condition

(1.2) ${\rm Re}\langle A(x)\eta, \eta\rangle\geq\nu_{1}|\eta|^{2}, |\langle A(x)\eta, \zeta\rangle|\leq\nu_{2}|\eta||\zeta|$

for all $\eta,$
$\zeta\in \mathbb{C}^{d+1}$ with positive constants $\nu_{1},$ $\nu_{2}$ . Here $\rangle$ denote the inner

product of $\mathbb{C}^{d+1}$ , i.e., $\langle\eta,$ $\zeta\rangle=\sum_{j=1}^{d+1}\eta_{j}\overline{\zeta}_{j}$ for $\eta,$
$\zeta\in \mathbb{C}^{d+1}$ . For later use we

set

$A’=(a_{i,j})_{1\leq i,j\leq d}, b=a_{d+1,d+1},$

$r_{1}=(a_{1,d+1}, \cdots, a_{d,d+1})^{T}, r_{2}=(a_{d+1,1}, \cdots, a_{d+1,d})^{T}$

We will also use the notation $\mathcal{A}’=-\nabla_{x}\cdot A’\nabla_{x}$ , and we call $r_{1}$ and $r_{2}$

the off-block vectors of $A$ . The domain of a linear operator $T$ in a Banach
space $H$ will be denoted by $D_{H}(T)$ . Under the condition (1.2) the standard
theory of sesquilinear forms gives a realization of $\mathcal{A}$ in $L^{2}(\mathbb{R}^{d+1})$ , denoted
again by $\mathcal{A}$ . The simplest example of $\mathcal{A}$ is the $(d+1)$-dimensional Laplacian
$- \triangle=-\triangle_{x}-\partial_{t}^{2}=-\sum_{j=1}^{d}\partial_{j}^{2}-\partial_{t}^{2}$ . In this case we have a factorization

(1.3) $-\triangle=-(\partial_{t}-(-\triangle_{x})^{\frac{1}{2}})(\partial_{t}+(-\triangle_{x})^{\frac{1}{2}})$ .

Clearly the factorization (1.3) is valid including the relation of domains, for
we $haveD_{L^{2}}((-\triangle_{x})^{1/2})=H^{1}(\mathbb{R}^{d})$ , $D_{L^{2}}((\partial_{t}\pm(-\triangle_{x})^{1/2}))=H^{1}(\mathbb{R}^{d+1})$ , and
$D_{L^{2}}((\partial_{t}-(-\triangle_{x})^{1/2})(\partial_{t}+(-\triangle_{x})^{1/2}))=H^{2}(\mathbb{R}^{d+1})$ . Another key feature of
(1.3) is that it is a factorization of the operator in the $t$ variable and the $x$

variables. Hence, by the $t$-independent assumption for the coefficients of $A,$

the factorization into the first order differential operators as in (1.3) is easily
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extended to the case when $A$ is a typical block matrix, i.e., $r_{1}=r_{2}=0$ and
$b=1$ , at least in the formal level. Indeed, it suffices to replace $(-\triangle_{x})^{1/2}$ by
$\mathcal{A}^{;1/2}$ , the square root of $\mathcal{A}’$ in $L^{2}(\mathbb{R}^{d})$ . However, in contrast to the Laplacian
case, the validity of the topological factorization is far from trivial in this
case, since the domain of the squre root of $\mathcal{A}$ has to be characterized as
$H^{1}(\mathbb{R}^{d})$ to achieve the identity $D_{L^{2}}(\mathcal{A})=D_{L^{2}}((\partial_{t}-\mathcal{A}^{\prime 1/2})(\partial_{t}+\mathcal{A}^{;1/2}))$ .
The characterization $D_{L^{2}}(\mathcal{A}^{\prime 1/2})=H^{1}(\mathbb{R}^{d})$ is nothing but the Kato square
root problem for divergence form elliptic operators, which was finally settled
in [6]. Our first goal is to give sufficient conditions on $A$ , which may be a
full entry matrix, so that the exact topological factorization of $\mathcal{A}$ like (1.3)
is verified. To this end we introduce some terminologies.

Definition 1.1. (i) For a given $h\in S’(\mathbb{R}^{d})$ we denote by $M_{h}:S(\mathbb{R}^{d})arrow$

$\mathcal{S}’(\mathbb{R}^{d})$ the multiplier $M_{h}u=hu.$

(ii) We denote by $E_{\mathcal{A}}$ : $\dot{H}^{1/2}(\mathbb{R}^{d})arrow\dot{H}^{1}(\mathbb{R}_{+}^{d+1})$ the $\mathcal{A}$-extension operator,
i. e., $u=E_{A}g$ is the solution to the Dirichlet problem

(1.4) $\{\begin{array}{l}\mathcal{A}u=0 in \mathbb{R}_{+}^{d+1},u=g on \partial \mathbb{R}_{+}^{d+1}=\mathbb{R}^{d}.\end{array}$

The one parameter family of linear operators $\{E_{\mathcal{A}}(t)\}_{t\geq 0}$ , defined by $E_{\mathcal{A}}(t)g=$

$\mathcal{A}(E_{A}g)(\cdot, t)$ for $g\in\dot{H}^{1/2}(\mathbb{R}^{d})$ , is called the Poisson semigroup $a\mathcal{S}$sociated with

(iii) We denote by $\Lambda_{\mathcal{A}}$ : $D_{L^{2}}(\Lambda_{\mathcal{A}})\subset\dot{H}^{1/2}(\mathbb{R}^{d})arrow\dot{H}^{-1/2}(\mathbb{R}^{d})=(\dot{H}^{1/2}(\mathbb{R}^{d}))^{*}$

the Dirichlet-Neumann map associated with $\mathcal{A}$ , which is defined through the
sesquilinear form

(1.5) $\langle\Lambda_{\mathcal{A}}g, \varphi\rangle_{11}\dot{H}^{-}2,\dot{H}2=\langleA\nabla E_{A}g, \nabla E_{\mathcal{A}}\varphi\rangle_{L^{2}(\mathbb{R}_{+}^{d+1})}, g, \varphi\in\dot{H}^{\frac{1}{2}}(\mathbb{R}^{d})$ .

Here $\rangle_{\dot{H}^{-1/2},\dot{H}^{1/2}}$ denotes the duality coupling of $\dot{H}^{-1/2}(\mathbb{R}^{d})$ and $\dot{H}^{1/2}(\mathbb{R}^{d})$ .

Remark 1.1. From the standard theory for sesquilinear forms [27], due
to the ellipticity condition (1.2), the Poisson semigroup $\{E_{A}(t)\}_{t\geq 0}$ is well-
defined for $\dot{H}^{1/2}(\mathbb{R}^{d})$ and the Dirichlet-Neumann map $\Lambda_{\mathcal{A}}$ is extended as an
injective $m$-sectorial operator in $L^{2}(\mathbb{R}^{d})$ satisfying $D_{L^{2}}(\Lambda_{\mathcal{A}})\subset H^{1/2}(\mathbb{R}^{d})$ .

Our first result is Theorem (1.1) below. We denote by $\mathcal{M}(\mathbb{R}^{d})$ the space
of finite Radon measures, and $L^{p,\infty}(\mathbb{R}^{d})$ is the Lorentz space $L^{p,q}(\mathbb{R}^{d})$ with
the exponent $q=\infty.$

Theorem 1.1 ([31, 33 Suppose that either

(i) $A$ is Lipschitz, $or$

(ii) $A$ is Hermite, or both
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(iiia) for $j=1$ , 2, $\nabla_{x}\cdot r_{j}belong_{\mathcal{S}}$ to $L^{d,\infty}(\mathbb{R}^{d})+L^{\infty}(\mathbb{R}^{d})$ if $d\geq 2$ (or $\nabla_{x}\cdot r_{j}$

belongs to $\mathcal{M}(\mathbb{R})+L^{\infty}(\mathbb{R})$ if $d=1$) with small $L^{d,\infty}(\mathbb{R}^{d})$ parts (or small
$\mathcal{M}(\mathbb{R})$ parts resp.) and

(iiib) ${\rm Im}(r_{1}+r_{2})=0$ and ${\rm Im} b=0.$

Then $H^{1}(\mathbb{R}^{d})$ is continuously embedded in $D_{L^{2}}(\Lambda_{A})\cap D_{L^{2}}(\Lambda_{\mathcal{A}^{*}})$ , and the
operators $-P_{\mathcal{A}},$ $-P_{\mathcal{A}^{*}}$ defined by

(1.6) $D_{L^{2}}(P_{\mathcal{A}})=H^{1}(\mathbb{R}^{d}) , -P_{\mathcal{A}}f=-M_{1/b}\Lambda_{\mathcal{A}}f-M_{r_{2}/b}\cdot\nabla_{x}f,$

(1.7) $D_{L^{2}}(P_{\mathcal{A}^{*}})=H^{1}(\mathbb{R}^{d}) , -P_{\mathcal{A}}*f=-M_{1/\overline{b}}\Lambda_{\mathcal{A}}*f-M_{\overline{r}_{1}/\overline{b}}\cdot\nabla_{x}f,$

generate strongly continuous and analytic semigroups in $L^{2}(\mathbb{R}^{d})$ . Moreover,
the realization of $\mathcal{A}’$ in $L^{2}(\mathbb{R}^{d})$ and the realization $\mathcal{A}$ in $L^{2}(\mathbb{R}^{d+1})$ are re-
spectively factorized as

(1.8) $\mathcal{A}’=M_{b}\mathcal{Q}_{\mathcal{A}}P_{\mathcal{A}}, \mathcal{Q}_{\mathcal{A}}=M_{1/b}(M_{\overline{b}}P_{\mathcal{A}^{*}})^{*},$

(1.9) $\mathcal{A}=-M_{b}(\partial_{t}-\mathcal{Q}_{\mathcal{A}})(\partial_{t}+P_{\mathcal{A}})$ .

Here $(M_{\overline{b}}P_{\mathcal{A}^{*}})^{*}i\mathcal{S}$ the adjoint of $M_{\overline{b}}P_{\mathcal{A}^{*}}$ in $L^{2}(\mathbb{R}^{d})$ .

Remark 1.2. The operator $-P_{\mathcal{A}}$ is nothing but the generator of the Pois-
son semigroup in $L^{2}(\mathbb{R}^{d})$ , i.e., $- P_{\mathcal{A}}f=-\mathcal{P}_{\mathcal{A}}f:=\lim_{tarrow 0}t^{-1}(E_{\mathcal{A}}(t)f-f)$

in $L^{2}(\mathbb{R}^{d})$ . In other words, Theorem 1.1 includes the following assertion:
the Poisson semigroup $\{E_{\mathcal{A}}(t)\}_{t\geq 0}$ in $H^{1/2}(\mathbb{R}^{d})$ is extended as an analytic
semigroup in $L^{2}(\mathbb{R}^{d})$ , and the domain of its generator is characterized as
$H^{1}(\mathbb{R}^{d})$ . We note that when $r_{1}=r_{2}=0$ and $b=1$ the operator $P_{\mathcal{A}}$ is
the square root of $\mathcal{A}’$ . Hence, the characterization $D_{L^{2}}(P_{\mathcal{A}})=H^{1}(\mathbb{R}^{d})$ in
the case (iii) of Theorem 1.1 is closely related with the Kato square root
problem.

Remark 1.3. When $A$ possesses enough regularity it is classical in the
theory of pseudo-differential operators that one looks for the factorization
of $\mathcal{A}$ in the form $-M_{b}(\partial_{t}-\mathcal{A}_{1})(\partial_{t}+\mathcal{A}_{2})$ for some first order operators $\mathcal{A}_{1}$

and $\mathcal{A}_{2}$ but with modulo lower order operators; e.g. [43]. On the other
hand, (1.9) is just exact, i.e., any modifications by lower order operators
are not required, and (1.9) holds under mild regularity assumptions on $A.$

Let us call the operator $-P_{\mathcal{A}}$ in Theorem 1.1 the Poisson operator associ-
ated with $\mathcal{A}$ . Theorem 1.1 states that if $A$ possesses either some regularity
or symmetry then the topological factorization of the type (1.3) is still valid,
and $-(-\triangle_{x})^{1/2}$ for the Laplacian case is replaced by the Poisson operator
$-P_{\mathcal{A}}$ in general case. The condition (iiia) of Theorem 1.1 imposes the reg-
ularity for the divergence of the off-block vectors. The spaces $L^{d,\infty}(\mathbb{R}^{d})$ for
$d\geq 2$ and $\mathcal{M}(\mathbb{R})$ for $d=1$ in (iiia) are critical in view of scaling as a local
regularity for $\nabla_{x}\cdot r_{j}$ . Indeed, in view of scaling the Multiplication operator
$M_{\nabla_{x}\cdot r_{j}}$ is comparable with the first order operator when $\nabla_{x}\cdot r_{j}$belongs to
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these spaces. In [30] it is shown that if $A$ is a $2\cross 2$ matrix of the form
$a_{1,1}=a_{2,2}=1$ and $a_{1,2}=-a_{2,1}=msignx$ with large $m\in \mathbb{R}$ , then the
Poisson semigroup $\{E_{\mathcal{A}}(t)\}_{t\geq 0}$ in $H^{1/2}(\mathbb{R})$ is not extended as a semigroup
in $L^{2}(\mathbb{R})$ . Hence, when $d=1$ , the smallness condition for $\mathcal{M}(\mathbb{R})$ part of
$\nabla_{x}\cdot r_{j}$ in (iiia) is optimal in this sense.
The factorizations (1.8) and (1.9) are regarded as operator theoretical

descriptions of the Rellich identity. The Rellich identity is a classical tool
to investigate the boundary behavior of solutions to the elliptic equations;
cf. [40, 39, 24]. It is particularly well-known when $A$ is real symmetric, and
the typical version is

(1.10) $\langle A’\nabla_{x}g, \nabla_{x}g\rangle_{L^{2}(\mathbb{R}^{d})}=\langle\gamma\partial_{t}E_{\mathcal{A}}g, M_{b}\gamma\partial_{t}E_{\mathcal{A}}g\rangle_{L^{2}(\mathbb{R}^{d})},$

where $\gamma$ is the trace operator to the boundary $\partial \mathbb{R}_{+}^{d+1}\simeq \mathbb{R}^{d}$ . The identity
(1.10) is formally obtained by a simple integration by parts with the aid of
the $t$-independence of the coefficients of $A$ . Since $\gamma\partial_{t}E_{\mathcal{A}}=-\mathcal{P}_{\mathcal{A}}$ , we observe
from (1.10) that $\mathcal{P}_{A}$ is comparable with $\nabla_{x}$ in $L^{2}(\mathbb{R}^{d})$ at least when $A$ is
real symmetric. Even for a general matrix $A$ we can formally derive the
identity

$\langle A’\nabla_{x}g, \nabla_{x}g\rangle_{L^{2}(\mathbb{R}^{d})}=\langle\gamma\partial_{t}E_{\mathcal{A}}g, M_{\overline{b}}\gamma\partial_{t}E_{\mathcal{A}}*g\rangle_{L^{2}(R^{d})},$

or its more general version

(1.11) $\langle A’\nabla_{x}g, \nabla_{x}h\rangle_{L^{2}(\mathbb{R}^{d})}=\langle\gamma\partial_{t}E_{A}g, M_{\overline{b}}\gamma\partial_{t}E_{\mathcal{A}}*h\rangle_{L^{2}(\mathbb{R}^{d})}.$

Replacing $\gamma\partial_{t}E_{\mathcal{A}}$ and $\gamma\partial_{t}E_{\mathcal{A}^{r}}$ by $-\mathcal{P}_{\mathcal{A}}$ and $-\mathcal{P}_{\mathcal{A}^{*}}$ respectively, and setting
$\mathcal{Q}_{\mathcal{A}}=M_{1/b}(M_{\overline{b}}\mathcal{P}_{\mathcal{A}^{*}})^{*}$ , we have from (1.11) the formal identity

(1.12) $\langle \mathcal{A}’g, h\rangle_{L^{2}(\mathbb{R}^{d})}=\langle M_{b}\mathcal{Q}_{\mathcal{A}}\mathcal{P}_{A}g, h\rangle_{L^{2}(\mathbb{R}^{d})}.$

The identity (1.12) implies (1.8) due to the formal relation $P_{\mathcal{A}}=\mathcal{P}_{\mathcal{A}}$ . The
identity (1.9) is formally obtained in the similar manner. The essential
difficulty here is to characterize $g$ and $h$ for which (1.11) is verified. When $A$

is nonsmooth and nonsymmetric this problem is highly nontrivial. Theorem
1.1 states that the identity (1.11) holds for all $g,$ $h\in H^{1}(\mathbb{R}^{d})$ under the
assumptions of either (i) or (ii) or (iiia)-(iiib).

As for the proof of Theorem 1.1, we need different approaches for each of
(i), (ii), and (iiia)-(iiib). The proof for the case (i) is based on the calculus
of principal symbols for $P_{A}$ and $\Lambda_{\mathcal{A}}$ (see [32]), while the proof for the case
(ii) is based on the Rellich identity (1.10). The case (iiia)-(iiib) is related
with the Kato square root problem, and the proof for this case relies on the
fact $D_{L^{2}}(\mathcal{A}^{;1/2})=H^{1}(\mathbb{R}^{d})$ obtained by [6]. In each case the following four
lemmas play a central role.

Lemma 1.1 ([31, Proposition 2.4]). The one-parameter family $\{E_{\mathcal{A}}(t)\}_{t\geq 0}$

defines a strong continuous and analytic semigroup in $H^{1/2}(\mathbb{R}^{d})$ . Hence
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there is a unique sectorial operator $-\mathcal{P}_{\mathcal{A}}$ : $D_{H^{1/2}}(\mathcal{P}_{\mathcal{A}})arrow H^{1/2}(\mathbb{R}^{d})$ such that
$E_{A}(t)=e^{-t\mathcal{P}_{A}}.$

Lemma 1.2 ([31, Proposition 3.3]). The following two statements are equiv-
alent.

(i) $D_{H^{1/2}}(\mathcal{P}_{\mathcal{A}})\subset D_{L^{2}}(\Lambda_{\mathcal{A}^{*}})$ and $\Vert\Lambda_{\mathcal{A}}*f\Vert_{L^{2}(R^{d})}\leq C\Vert f\Vert_{H^{1}(\mathbb{R}^{d})}hold_{\mathcal{S}}$ for $f\in$

$D_{H^{1/2}}(\mathcal{P}_{\mathcal{A}})$ .
(ii) $\{e^{-t\mathcal{P}_{A}}\}_{t\geq 0}$ is extended as a strongly continuous semigroup in $L^{2}(\mathbb{R}^{d})$

and $D_{L^{2}}(\mathcal{P}_{\mathcal{A}})$ is continuously embedded in $H^{1}(\mathbb{R}^{d})$ .
Moreover, if the condition (ii) $(and hence,$ (i)) holds then $D_{L^{2}}(\mathcal{P}_{\mathcal{A}})i\mathcal{S}$ contin-
uously embedded in $D_{L^{2}}(\Lambda_{\mathcal{A}})$ , $H^{1}(\mathbb{R}^{d})$ is continuously embedded in $D_{L^{2}}(\Lambda_{\mathcal{A}^{*}})$ ,
and it follows that

$\mathcal{P}_{\mathcal{A}}f=M_{1/b}\Lambda_{\mathcal{A}}f+M_{r_{2}/b}\cdot\nabla_{x}f,$

$\langle \mathcal{A}’f, g\rangle_{\dot{H}^{-1},\dot{H}^{1}}=\langle \mathcal{P}_{\mathcal{A}}f, \Lambda_{\mathcal{A}^{*9}}+M_{\overline{r}_{1}}\cdot\nabla_{x}g\rangle_{L^{2}(\mathbb{R}^{d})}$

for $f\in D_{L^{2}}(\mathcal{P}_{\mathcal{A}})$ and $g\in H^{1}(\mathbb{R}^{d})$ .

Lemma 1.3 ([31, Corollary 3.5, Proposition 3.6]). Assume that $\{e^{-t\mathcal{P}_{A}}\}_{t>0}$

and $\{e^{-t\mathcal{P}_{A^{*}}}\}_{t\geq 0}$ are extended as strongly continuous semigroups in $L^{2}(\mathbb{R}^{\overline{d}})$

and that $D_{L^{2}}(\mathcal{P}_{\mathcal{A}})$ and $D_{L^{2}}(\mathcal{P}_{\mathcal{A}^{*}})$ are continuously embedded in $H^{1}(\mathbb{R}^{d})$ .
Then we have
$\langle A’\nabla_{x}f,$ $\nabla_{x}g\rangle_{L^{2}(\mathbb{R}^{d})}=\langle \mathcal{P}_{\mathcal{A}}f,$ $M_{\overline{b}}\mathcal{P}_{\mathcal{A}}*g\rangle_{L^{2}(\mathbb{R}^{d})},$ $f\in D_{L^{2}}(\mathcal{P}_{\mathcal{A}})$ , $g\in D_{L^{2}}(\mathcal{P}_{A^{*}})$ ,

$C’\Vert f\Vert_{H^{1}(\pi)}d\leq\Vert \mathcal{P}_{A}f\Vert_{L^{2}(\mathbb{R}^{d})}+\Vert f\Vert_{L^{2}(\mathbb{R}^{d})}\leq C\Vert f\Vert_{H^{1}(\mathbb{R}^{d})},$ $f\in D_{L^{2}}(\mathcal{P}_{\mathcal{A}})$ .

If in addition that $\lim_{tarrow}\inf_{0}\Vert d/dte^{-t\mathcal{P}_{A}}f\Vert_{L^{2}(\mathbb{R}^{d})}<\infty$ holds for all $f\in$

$C_{0}^{\infty}(\mathbb{R}^{d})$ then $D_{L^{2}}(\mathcal{P}_{\mathcal{A}})=H^{1}(\mathbb{R}^{d})$ with equivalent $norm\mathcal{S}.$

Remark 1.4. A similar sufficient condition for the characterization $D_{L^{2}}(\mathcal{P}_{\mathcal{A}})=$

$H^{1}(\mathbb{R}^{d})$ with equivalent norms is given in [2, Theorem 4.1], where he also
studied the case for elliptic systems. Our approach, different from [2], is
based on the Rellich type identity.

Lemma 1.4 ([31, Lemma 3.8]). Assume that the $semigroup_{\mathcal{S}}\{e^{-t\mathcal{P}_{A}}\}_{t\geq 0}$

and $\{e^{-t\mathcal{P}_{\mathcal{A}^{*}}}\}_{t\geq 0}$ in $H^{1/2}(\mathbb{R}^{d})$ are extended as strongly continuous semigroups
in $L^{2}(\mathbb{R}^{d})$ and that $D_{L^{2}}(\mathcal{P}_{\mathcal{A}})=D_{L^{2}}(\mathcal{P}_{A^{*}})=H^{1}(\mathbb{R}^{d})$ holds with equivalent
norms. Then $H^{1}(\mathbb{R}^{d})$ is continuously embedded in $D_{L^{2}}(\Lambda_{\mathcal{A}})\cap D_{L^{2}}(\Lambda_{\mathcal{A}^{*}})$ and

(1.13) $\mathcal{P}_{\mathcal{A}}f=M_{1/b}\Lambda_{A}f+M_{r_{2}/b}\cdot\nabla_{x}f, f\in H^{1}(\mathbb{R}^{d})$ ,

(1.14) $\mathcal{P}_{A}*g=M_{1/\overline{b}}\Lambda_{\mathcal{A}}*g+M_{\overline{r}_{1}/\overline{b}}\cdot\nabla_{x}g, g\in H^{1}(\mathbb{R}^{d})$ .

Moreover, the realization $of\mathcal{A}’$ in $L^{2}(\mathbb{R}^{d})$ and the realization $of\mathcal{A}$ in $L^{2}(\mathbb{R}^{d+1})$

are respectively factorized as

(1.15) $\mathcal{A}’=M_{b}\mathcal{Q}_{A}\mathcal{P}_{\mathcal{A}}, \mathcal{Q}_{\mathcal{A}}=M_{1/b}(M_{\overline{b}}\mathcal{P}_{A^{*}})^{*},$

(1.16) $\mathcal{A}=-M_{b}(\partial_{t}-\mathcal{Q}_{\mathcal{A}})(\partial_{t}+\mathcal{P}_{A})$ .
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Here $(M_{\overline{b}}\mathcal{P}_{\mathcal{A}^{*}})^{*}$ is the adjoint of $M_{\overline{b}}\mathcal{P}_{\mathcal{A}^{*}}$ in $L^{2}(\mathbb{R}^{d})$ .

2. APPLICATIONS

The factorization (1.9) is important since it provides the integral solution
formula for the inhomogeneous Dirichlet problem

(2.1) $\{\begin{array}{l}\mathcal{A}u=F in \mathbb{R}_{+}^{d+1},u=g on \partial \mathbb{R}_{+}^{d+1},\end{array}$

and the inhomogeneous Neumann problem

(2.2) $\{\begin{array}{l}\mathcal{A}u=F in \mathbb{R}_{+}^{d+1},-e_{d+1}\cdot A\nabla u=g on \partial \mathbb{R}_{+}^{d+1}\end{array}$

Definition 2.1 (Mild solution). Let $F\in L_{loc}^{1}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))$ and $g\in L^{2}(\mathbb{R}^{d})$ .
If the function $u\in L_{loc}^{1}(\mathbb{R}_{+}^{d+1})$ has the well-defined representation

(2.3) $u(t)=e^{-tP_{A}}g+ \int_{0}^{t}e^{-(t-s)P_{A}}\int_{s}^{\infty}e^{-(\tau-s)Q_{A}}M_{1/b}F(\tau)d\tau ds,$

then we call $u$ a mild solution to (2.1). Similarly, if the function $v\in$

$L_{loc}^{1}(\mathbb{R}_{+}^{d+1})$ has the well-defined representation

(2.4) $v(t)=e^{-tP_{A}} \Lambda_{\mathcal{A}}^{-1}(g+M_{b}\int_{0}^{\infty}e^{-sQ_{A}}M_{1/b}F(\mathcal{S})ds)$

$+ \int_{0}^{t}e^{-(t-s)P_{A}}\int_{s}^{\infty}e^{-(\tau-s)Q_{A}}M_{1/b}F(\tau)d\tau ds,$

then we call $v$ a mild solution to (2.2).

We note that our approach using Theorem 1.1 provides a unified view
for (2.1) and (2.2) through mild solutions. As applications to Theorem 1.1,
we consider the solvability of inhomogeneous problem in Section 2.1, and in
Section 2.2 we show the validity of the Helmholtz decomposition for vector
fields in a domain with a graph boundary when the function space of vector
fields is chosen as certain anisotropic Lebesgue space.

2.1. Application to inhomogeneous problem with non $\dot{H}^{-1}(\mathbb{R}_{+}^{d+1})$

data. Firstly let us state some results on $L^{2}$ solvability of (2.1) and (2.2)
in the simplest form. We set $\overline{\mathbb{R}_{+}}=[0, \infty$ ), and for a Banach space $X$ we
write $f\in C(\overline{\mathbb{R}_{+}};X)$ if and only if $f\in C([O, T);X)$ for all $T>0$ . For the
homogeneous problems $(i.e., F=0 in (2.1)$ or (2.2)), Theorem 1.1 implies
the following result:

Theorem 2.1 ([31]). Under the assumptions of Theorem 1.1, there exists
a unique weak solution $u$ to (2.1) with $F=0$ and $g\in L^{2}(\mathbb{R}^{d})$ such that
$u\in C(\overline{\mathbb{R}_{+}};L^{2}(\mathbb{R}^{d}))\cap\dot{H}^{1}(\mathbb{R}^{d}\cross(\delta, \infty))$ for any $\delta>$ O. If in addition $g$
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belongs to the range of $\Lambda_{\mathcal{A}}$ , then there exists a unique weak solution $v$ to
(2.2) with $F=0$ such that $v\in C(\overline{\mathbb{R}_{+}};H^{1/2}(\mathbb{R}^{d}))\cap\dot{H}^{1}(\mathbb{R}_{+}^{d+1})$ .

Remark 2.1. As we mentioned before, if $A$ is Hermite then $D_{L^{2}}(\Lambda_{\mathcal{A}})=$

$H^{1}(\mathbb{R}^{d})$ holds. In this case the weak solution to (2.2) obtained in Theorem
2.1 possesses further regularity such as $C(\overline{\mathbb{R}_{+}};H^{1}(\mathbb{R}^{d}))$ .

Remark 2.2. It is well-known that solvability of the elliptic boundary value
problems in $\mathbb{R}_{+}^{d+1}$ can be extended to that in the domain above a Lipschitz
graph. The $L^{2}$ solvability of the Laplace equation $(i.e., A=I)$ in Lipschitz
domains was shown in [11, 24, 44]. In [13] the relation $D_{L^{2}}(\mathcal{P}_{\mathcal{A}})=H^{1}(\mathbb{R}^{d})$ is
proved in this case. This result was extended by [25, 29, 1] to the case when
$A$ is real symmetric, and by [5] to the case when $A$ is Hermite. In view of
$L^{2}$ solvability of the homogeneous boundary value problems, Theorem 2.1
gives a new contribution under the conditions (iiia)- (iiib) in Theorem 1.1.

When $A$ is not Hermite and nonsmooth, the boundary value problems are
not always solvable for $L^{2}$ boundary data. If $A$ is a typical block matrix,
$r_{1}=r_{2}=0$ and $b=1$ , then the homogenous Dirichlet problem is easily
solved by using the semigroup theory, while the homogeneous Neumann
problem in this case is essentially equivalent with the Kato square root
problem solved in [6]; see also [9]. Recently the authors in [4] showed $L^{2}$

solvability of the homogeneous Dirichlet and Neumann problems when $A$ is
a small $L^{\infty}$ perturbation of a block matrix; see also [14, 23, 5, 1, 3, 8, 7]
for related stability result. In fact, Theorem 2.1 with the conditions (iiia)-
(iiib) can be regarded as another stability result for the block matrix case.
Note that $\Vert\nabla_{x}\cdot r_{j}\Vert_{L^{d,\infty}(\mathbb{R}^{d})}$ for $d\geq 2$ or $\Vert\nabla_{x}\cdot r_{j}\Vert_{\mathcal{M}(\mathbb{R}^{d})}$ for $d=1$ , is in the
same order as $\Vert a_{i,j}\Vert_{L^{\infty}(R^{d})}$ in view of scaling. this implies that, the condition
(iiia) of Theorem 2.1 is comparable to $L^{\infty}$ perturbations discussed in [4, 5, 1]
in view of scaling. On the other hand, as stated in the introduction, the
authors of [30] gave an example of the matrix $A$ such that the homogeneous
Dirichlet problem in $\mathbb{R}_{+}^{2}$ is not solvable for the boundary data in $L^{2}(\mathbb{R})$ . In
their example, $A$ is real but nonsymmetric, and $\nabla_{x}\cdot r_{j}(j=1,2)$ is a Dirac
measure whose mass is not small. This example shows the optimality of
our condition (iiia) for the case of real nonsymmetric matrices when $d=1.$

For further results on solvability of the homogeneous problems, see [28] and
references therein.

The next result concerns $L^{2}$ solvability of the inhomogeneous problems.
For simplicity of the presentation, we will assume the boundary data are
zero. It is classical that if $F$ belongs to $\dot{H}^{-1}(\mathbb{R}_{+}^{d+1})$ then there is a unique
solution $u\in\dot{H}^{1}(\mathbb{R}_{+}^{d+1})$ to (2.1) with $g=0$ . The novelty of our result below
is that, for some class of $A$ , we can handle with the inhomogeneous term $F$

which does not necessarily belong to $\dot{H}^{-1}(\mathbb{R}_{+}^{d+1})$ .

Theorem 2.2 ([31]). Suppose that either
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(ii) $A$ is Hermite or both

(iiia’) $\nabla_{x}\cdot r_{1}=0$ and $\nabla_{x}\cdot r_{2}$ belongs to $L^{d,\infty}(\mathbb{R}^{d})+L^{\infty}(\mathbb{R}^{d})$ if $d\geq 2$ (or
$\nabla_{x}\cdot r_{2}$ belongs to $\mathcal{M}(\mathbb{R})+L^{\infty}(\mathbb{R})$ if $d=1$) with small $L^{d,\infty}(\mathbb{R}^{d})$ parts (or
small $\mathcal{M}(\mathbb{R})$ parts resp.) and

(iiib’) $r_{1},$ $r_{2}$ , and $b$ are real-valued.

Then for given $F\in L^{1}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))$ there exists a weak solution $u$ to (2.1)
with $g=0$ satisfying

$u\in C(\overline{\mathbb{R}_{+}};L^{2}(\mathbb{R}^{d}))$ and $\nabla u\in L_{loc}^{p}(\overline{\mathbb{R}_{+}};L^{2}(\mathbb{R}^{d}))$ for any $p\in[1, \infty$).

If in addition $h=M_{b} \int_{0}^{\infty}e^{-sQ_{A}}M_{1/b}F(s)ds$ belongs to the range $of\Lambda_{A}$ , then
there exists a weak solution $v$ to (2.2) with $g=0$ satisfying

$v\in C(\overline{\mathbb{R}_{+}};L^{2}(\mathbb{R}^{d}))$ and $\nabla v\in L_{loc}^{p}(\overline{\mathbb{R}_{+}};L^{2}(\mathbb{R}^{d}))$ for any $p\in[1$ , 2).

Remark 2.3. Under the assumptions of Theorem 2.2 the Poisson semi-
groups $\{e^{-t\mathcal{P}_{A}}\}_{t\geq 0}$ and $\{e^{-t\mathcal{P}_{A^{*}}}\}_{t>0}$ are realized as strongly continuous and
analytic semigroups acting on $L^{2}\overline{(}\mathbb{R}^{d}$ ) thanks to the results of Theorem 1.1.

Remark 2.4. There is a lot of literature for the inhomogeneous boundary
value problems in bounded Lipschitz domains; see, e.g., [12, 26, 15, 34, 35,
36] and references therein. As well as the case for the homogeneous problem,
Theorem 2.2 for Hermite matrices yields $L^{2}$ solvability of the inhomogeneous
problems for matrices of the same type in domains above Lipschitz graphs.
For the Laplace equation, $L^{p}$ solvability of the inhomogenous problems in
bounded Lipschitz domains was proved in [12, 26, 15]. Our result also shows
the gradient of the Dirichlet Green operator (i.e., the solution map for (2.1)
with the zero boundary data: $F\mapsto\nabla u$) maps $L^{1}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))$ continuously
to $L_{loc}^{p}(\mathbb{R}_{+}, L^{2}(\mathbb{R}^{d}))$ . Results of this type go back to [12] where the author
showed that the gradient of the Dirichlet Green operator for $\mathcal{A}=-\Delta$ in the
bounded Lipschitz domain is a continuous map from $L^{1}(\Omega)$ to $L^{n/(n-1),\infty}(\Omega)$ .
Recently, it was generalized in [34] for the Neumann Green operator by using
potential technique; see also [35, 36] for further results.

As is well-known in the spectral theory, it is a subtle problem to determine
sufficient conditions for $F$ to solve the problems (2.1) or (2.2). Indeed, due
to the lack of the Poincar\’e inequality, the origin belongs to the continuous
spectrum of $\mathcal{A}$ (with the zero boundary condition) in $L^{2}(\mathbb{R}_{+}^{d+1})$ . Hence the
inhomogeneous problem is not always solvable for $F\in L^{2}(\mathbb{R}_{+}^{d+1})$ , even if $A$ is
real symmetric and smooth. Therefore some additional conditions related to
the spatial decay have to be imposed on $F$ to find the solution. Furthermore,
the solution may fail to decay at spatial infinity even if it exists. To show
Theorem 2.2 we will make use of the representation formulas (2.3) and (2.4).
Then it is clear that the temporal decay of $e^{-tQ_{A}}$ is crucial for solving our
problems. In fact, the conditions in Theorem 2.2 guarantee the boundedness
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of the semigroup $\{e^{-tQ_{A}}\}_{t\geq 0}$ in $L^{2}(\mathbb{R}^{d})$ , and hence, the integrals in (2.3) and
(2.4) converge absolutely if $F\in L^{1}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))$ . By a simple observation
of the scaling, it is easy to see that the space $L^{1}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))$ includes some
functions decaying more slowly at (time) infinity than those in $\dot{H}^{-1}(\mathbb{R}_{+}^{d+1})$ .
In this sense, our result generalizes the class of the inhomogeneous terms
for the solvability in terms of the decay at infinity. In should be emphasized
here that the factorization in Theorem 1.1 plays an essential role behind
the proof of Theorem 2.2, for the representation formulas such as (2.3) and
(2.4) are nothing but a result of (1.9). In [31, Section 5] a detailed version
of Theorem 2.2 is also stated.

2.2. Application to Helmholtz decomposition in unbounded do-
main with graph boundary. In this section we apply the solution for-
mula (2.4) to the analysis of the Helmholtz decomposition for vector fields
in the domain above a Lipschitz graph:

(2.5) $\Omega=\{\tilde{x}=(x, x_{d+1})\in \mathbb{R}^{d}\cross \mathbb{R}|x_{d+1}>\eta(x)\}.$

Here $\eta$ is a given function satisfying $\Vert\nabla_{x}\eta\Vert_{L^{\infty}(\mathbb{R}^{d})}<\infty.$

The Helmholtz decomposition, the decomposition of a given vector field
into a solenoidal field and a potential one is the fundamental tool in the
mathematical analysis of the incompressible flow. In the energy space
$(L^{2}(\Omega))^{d+1}$ this decomposition is easily derived for any domain $\Omega$ from the
standard theory of the Hilbert space. On the other hand, if the space
$(L^{2}(\Omega))^{d+1}$ is replaced by other function spaces such as $(L^{q}(\Omega))^{d+1}$ , then
the verification of the Helmholtz decomposition requires detailed analysis
in general. In the case when $\Omega$ is a bounded domain or an exterior domain
with smooth boundaries, the validity of the decomposition in $(L^{q}(\Omega))^{d+1},$

$1<q<\infty$ , is shown by [20] and [37] respectively, and then their resuIts are
extended to these domains but with $C^{1}$-boundary by [41]. Moreover, for the
bounded Lipschitz domains, the validity is proved around $3/2<q<3$ in
[15], and for any $1<q<\infty$ by [22] when the domain is convex. However,
even if the boundary is smooth enough, the problem becomes subtle when
the boundary is noncompact. Although the decomposition is still valid for
$1<q<\infty$ for some special cases, e.g., aperture domains [16, 19], lay-
ers [38], cylinders [42], half spaces and their small perturbations [41], it is
known that the domain of simple form

(2.6) $\Omega=\{\tilde{x}=(x, x_{d+1})\in \mathbb{R}^{d}\cross \mathbb{R}|x_{d+1}>\eta(x)\},$

with a given function $\eta$ does not always admit the Helmholtz decomposition
in $(L^{q}(\Omega))^{d+1}$ if $q\neq 2$ , even if $\eta$ is smooth, see [10] and [21, III. I]. Hence it is
an important question to ask which function space, other than $(L^{2}(\Omega))^{d+1},$

admits the Helmholtz decomposition. In [17, 18], the authors considered
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$\tilde{L}^{q}(\Omega)$ defined by

$\tilde{L}^{q}(\Omega)=\{\begin{array}{ll}L^{2}(\Omega)\cap L^{q}(\Omega) , 2\leq q<\infty,L^{2}(\Omega)+L^{q}(\Omega) , 1<q<2,\end{array}$

and showed that general domains with uniform $C^{1}$ boundaries admit the
Helmholtz decomposition in these spaces. In this section we will give an
alternative approach for this question in the domain of the form (2.6).

Before stating the result, it would be convenient to formulate our prob-
lem more systematically. Let $X(\Omega)$ be a Banach space of functions in $\Omega$

satisfying $C_{0}^{\infty}(\Omega)\subset X(\Omega)\subset L_{loc}^{1}(\Omega)$ . Set

(2.7) $X_{\sigma}(\Omega)=\overline{C_{0,\sigma}^{\infty}(\Omega)}^{\Vert\cdot||_{X(\Omega)}}X_{G}(\Omega)=\{\nabla f\in(X(\Omega))^{d+1}|f\in L_{loc}^{1}(\Omega)\}.$

Here $C_{0,\sigma}^{\infty}(\Omega)$ is a set of all smooth, compactly-supported, and divergence-
free vector fields in $\Omega$ . For simplicity of notations we write $\Vert$ $\Vert_{X(\Omega)}$ for
$\Vert\cdot\Vert_{(X(\Omega))^{d+1}}.$

Definition 2.2. We say that the space $(X(\Omega))^{d+1}$ admits the Helmholtz
decomposition if each $f\in(X(\Omega))^{d+1}$ has a unique decomposition $f=u+$
$\nabla p,$ $u\in X_{\sigma}(\Omega)$ , $\nabla p\in X_{G}(\Omega)$ , satisfying

(2.8) $\Vert u\Vert_{X(\Omega)}+\Vert\nabla p\Vert_{X(\Omega)}\leq C\Vert f\Vert_{X(\Omega)}.$

Here $C$ is a positive constant independent of $f.$

In order to consider the domain $\Omega$ of the form (2.6) we introduce the
Lipschitzmorphism $\Phi$ : $\Omega\in\tilde{x}\mapsto\Phi(\tilde{x})\in \mathbb{R}_{+}^{d+1}$ by

(2.9) $\Phi_{j}(\tilde{x})=\{\begin{array}{l}x_{j} if 1\leq j\leq d,x_{d+1}-\eta(x) if j=d+1.\end{array}$

Let $1<q,$ $r<\infty$ and let $Y^{q,r}(\Omega)$ be the Banach space defined by

(2.10) $Y^{q,r}(\Omega)=\{f\in L_{loc}^{1}(\Omega)|\Vert f\Vert_{Y(\Omega)}q,r=\Vert fo\Phi^{-1}\Vert_{Lq(0,\infty;L^{r}(R^{d}))}<\infty\}$

with the norm $\Vert\cdot\Vert_{Yq,r(\Omega)}$ . Our result reads as follows:

Theorem 2.3 ([33]). Let $\Omega$ be a domain of the form (2.6) with uniform
Lipschitz boundary. Then the space $(Y^{q,2}(\Omega))^{d+1}$ admits the Helmholtz de-
composition for all $1<q<\infty$ . Moreover, the constant $C$ in (2.8) depends
only on $d,$ $q$ , and $\Vert\nabla_{x}\eta\Vert_{L^{\infty}(R^{d})}.$

Remark 2.5. The growth of $\eta$ itself is allowed in our result. The space
$(Y^{q,q}(\Omega))^{d+1}$ coincides with $(L^{q}(\Omega))^{d+1}$ . Due to the well-known counterex-
ample of the weak Neumann problem in the exterior of the cone-like domain,
one cannot expect the validity of the Helmholtz decomposition in the usual
$L^{q}$ space for domains like (2.6). Roughly speaking, Theorem 2.3 asserts that
the Helmholtz decomposition is valid even if the vector fields decay slowly
in the $x^{d+1}$ direction.
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It is well known that the validity of the Helmholtz decomposition is equiv-
alent with the unique solvability of the Neumann problem

(2.11) $\triangle p=\nabla\cdot f$ in $\Omega,$ $n\cdot\nabla p=n\cdot f$ on $\partial\Omega.$

Here $n$ stands for the exterior unit normal to $\partial\Omega$ . Through the standard
homeomorphism (2.9), that is, by setting $w=p\circ\Phi^{-1},$ $F=f\circ\Phi^{-1}$ , the
problem is reduced to the following Neumann problem in $\mathbb{R}_{+}^{d+1}$ :

(2.12) $\{$

$\mathcal{A}w$ $=-\nabla_{x}\cdot F’-\partial_{t}(F_{d+1}+M_{r}\cdot F$ in $\mathbb{R}_{+}^{d+1},$

$-e_{d+1}\cdot A\nabla w$ $=-(F_{d+1}+M_{r}\cdot F$ on $\partial \mathbb{R}_{+}^{d+1}$

Here the matrix $A$ in this case is real symmetric and positive definite with
$r_{1}=r_{2}=r=-\nabla_{x}\eta,$ $b=1+|\nabla_{x}\eta|^{2}$ , and $A’=(a_{i,j})_{1\leq i,j\leq d}=I’$ (the
identity matrix). Let $1<q,$ $r<\infty$ and set

$Z^{q,r}(\mathbb{R}_{+}^{d+1}):=\dot{W}^{1,q}(\mathbb{R}_{+};L^{r}(\mathbb{R}^{d}))\cap L^{q}(\mathbb{R}_{+};\dot{W}^{1,r}(\mathbb{R}^{d}))$

(2.13) $=\{\phi\in L_{loc}^{1}(\mathbb{R}_{+}^{d+1})|\partial_{i}\phi\in L^{q}(\mathbb{R}_{+};L^{r}(\mathbb{R}^{d}))1\leq i\leq d+1\}.$

Let $F=(F’, F_{d+1})\in(L^{q}(\mathbb{R}_{+};L^{r}(\mathbb{R}^{d})))^{d+1}$ Then the weak formulation of
(2.12) is to look for $w\in Z^{q,r}(\mathbb{R}_{+}^{d+1})$ such that

(2.14)
$\langle A\nabla w,$

$\nabla\phi\rangle_{L^{2}(\mathbb{R}_{+}^{d+1})}=\langle F’,$ $\nabla_{x}\phi+M_{r}\partial_{t}\phi\rangle_{L^{2}(\mathbb{R}_{+}^{d+1})}+\langle F_{d+1},$ $\partial_{t}\phi\rangle_{L^{2}(\mathbb{R}_{+}^{d+1})}$

for all $\phi\in Z^{q’,r’}(\mathbb{R}_{+}^{d+1})$ with $1/q+1/q’=1,$ $1/r+1/r’=1.$
In the following paragraphs we abbreviate $\mathcal{P}_{\mathcal{A}}(\mathcal{Q}_{\mathcal{A}}, \Lambda_{\mathcal{A}})$ to $\mathcal{P}(\mathcal{Q}$ and

$\Lambda$ as well) for simplicity of the notation. The most important step in the
analysis of (2.12) is to derive the estimate corresponding with (2.8), which
is closely related to the spectral properties of $\mathcal{P}$ and A. We focus on the
a priori estimate for the gradient of $w$ . To this end we assume that $F\in$

$(C_{0}^{\infty}(\mathbb{R}_{+}^{d+1}))^{d+1}$ . Set

$G=-(F_{d+1}+M_{r}\cdot F$
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Due to the solution formula for the Neumann problem (2.4), for the solution
$w$ to (2.12) we have the representation

(2.15) $w(t)=e^{-t\mathcal{P}} \Lambda^{-1}(\gamma G+M_{b}\int_{0}^{\infty}e^{-sQ}M_{1/b}(-\nabla_{x}\cdot F’+\partial_{s}G)(\mathcal{S})ds)$

$+ \int_{0}^{t}e^{-(t-s)\mathcal{P}}\int_{s}^{\infty}e^{-(\tau-s)Q}M_{1/b}(-\nabla_{x}\cdot F’+\partial_{s}G)(\tau)d\tau ds$

$=e^{-t\mathcal{P}} \Lambda^{-1}M_{b}\mathcal{Q}\int_{0}^{\infty}e^{-sQ}(M_{1/b}G-\mathcal{Q}^{-1}M_{1/b}\nabla_{x}\cdot F’)(\mathcal{S})ds$

$+ \int_{0}^{t}e^{-(t-s)\mathcal{P}}(-M_{1/b}G(s)$

$+\mathcal{Q}l^{\infty}e^{-(\tau-s)Q}(M_{1/b}G-\mathcal{Q}^{-1}M_{1/b}\nabla_{x}\cdot F’)(\tau)d\tau)ds.$

Here we have used the integration by parts in the $t$ variable. Set

$h(t)=-M_{1/b}G(t)+\mathcal{Q}l^{\infty}e^{-(s-t)Q}(M_{1/b}G-\mathcal{Q}^{-1}M_{1/b}\nabla_{x}\cdot F’)(s)ds.$

Then, by using the fact $\gamma G=0$ due to $F\in(C_{0}^{\infty}(\mathbb{R}_{+}^{d+1}))^{d+1}$ , the solution $w$

is written in the form $w=w_{1}+w_{2}$ , where each $w_{i}$ is given by

(2.16) $w_{1}(t)= \int_{0}^{t}e^{-(t-s)\mathcal{P}}h(s)ds, w_{2}(t)=e^{-t\mathcal{P}}\Lambda^{-1}M_{b}\gamma h.$

To prove Theorem 2.3 we need to establish the estimate

(2.17) $\Vert\nabla w_{i}\Vert_{Lq(\mathbb{R}+;L^{2}(R^{d}))}\leq C\Vert F\Vert_{L(\mathbb{R}+;L^{2}(R^{d}))}q, i=1, 2$ ,

where $C$ depends only on $d,$ $q$ , and $\Vert\nabla_{x}\eta\Vert_{L\infty(\mathbb{R}^{d})}$ . As is observed in [33],
(2.17) follows from the next three properties of $\mathcal{P}$ and $\Lambda$ :

(I) Boundednes of semigroups: $\{e^{-t\mathcal{P}}\}_{t\geq 0}$ and $\{e^{-t\Lambda}\}_{t\geq 0}$ in $L^{2}(\mathbb{R}^{d})$ are
strongly continuous and bounded, i.e.,

(2.18) $\Vert e^{-t\mathcal{P}}\varphi\Vert_{L^{2}(R^{d})}+\Vert e^{-t\Lambda}\varphi\Vert_{L^{2}(R^{d})}\leq C\Vert\varphi\Vert_{L^{2}(R^{d})},$ $t>0,$ $\varphi\in L^{2}(\mathbb{R}^{d})$ .

(II) Coercive estimates: $D_{L^{2}}(\mathcal{P})=D_{L^{2}}(\Lambda)=H^{1}(\mathbb{R}^{d})$ and

(2.19) $\Vert\nabla_{x}\varphi\Vert_{L^{2}(\mathbb{R}^{d})}\leq C\Vert \mathcal{P}\varphi\Vert_{L^{2}(\mathbb{R}^{d})}, \varphi\in H^{1}(\mathbb{R}^{d})$ ,

(2.20) $\Vert\nabla_{x}\varphi\Vert_{L^{2}(R^{d})}\leq C\Vert\Lambda\varphi\Vert_{L^{2}(\mathbb{R}^{d})}, \varphi\in H^{1}(\mathbb{R}^{d})$ .

(III) Maximal regularity: $\Psi_{\mathcal{P}}[\phi](t)=\int_{0}^{t}e^{-(t-s)\mathcal{P}}\phi(s)ds$ satisfies

(2.21) $\Vert \mathcal{P}\Psi_{\mathcal{P}}[\phi]\Vert_{L^{2}(R_{+};L^{2}(\mathbb{R}^{d}))}\leq C\Vert\phi\Vert_{L^{2}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))}, \phi\in L^{2}(\mathbb{R}_{+}^{d+1})$ .

We note that (I) and (III) imply the analyticity of $\{e^{-t\mathcal{P}}\}_{t\geq 0}$ in $L^{2}(\mathbb{R}^{d})$

and the estimate

(2.22) $\Vert \mathcal{P}\Psi_{\mathcal{P}}[\phi]\Vert_{L^{q}(R_{+};L^{2}(R^{d}))}\leq C\Vert\phi\Vert_{L^{q}(\mathbb{R}_{+};L^{2}(R^{d}))},$ $\phi\in L^{q}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))$ ,
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holds for all $1<q<\infty$ . Then, by the duality argument, we also have

(2.23) $\Vert \mathcal{Q}l^{\infty}e^{-(s-t)Q}\phi(s)ds\Vert_{L_{t}^{q}(R_{+};L^{2}(R_{x}^{d}))}\leq C\Vert\phi\Vert_{Lq(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))}$

for $\phi\in L^{q}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))$ . The estimate (2.17) is proved by using (2.18)-
(2.23). For example, we have from (2.22),

$\Vert\nabla w_{1}\Vert_{L^{q}(\mathbb{R}_{+};L^{2}(R^{d}))}\leq C\Vert h\Vert_{L^{q}(\mathbb{R}+;L^{2}(\mathbb{R}^{d}))},$

and by using (2.23) the norm of $h$ is estimated as

$\Vert h\Vert_{L^{q}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))}\leq C(\Vert F\Vert_{Lq(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))}+\Vert \mathcal{Q}^{-1}M_{1/b}\nabla_{x}\cdot F’\Vert_{Lq(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))})$ .

Hence (2.19) and the duality argument imply (2.17). The proof for $w_{2}$ is
similar, though we need to use the Marcinkiewicz interpolation theorem in
this case. For details, see [33].
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