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Abstract

We show the $L^{4}$ space-time integrability of solution for the $Schr\ddot{\circ}$dinger

equation of fourth order with periodic boundary condition, that is, on

the one dimensional torus.
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1 Introduction and Main Theorem

We consider the following inhomogeneous linear Schr\"odinger equation of

fourth order on the one dimensional torus $T=R/2\pi Z.$

$i\partial_{t}u+\partial_{x}^{2}u-\partial_{x}^{4}u=f, t\in R, x\in T$ , (1)

$u(O, x)=u_{0}(x) , x\in T$ . (2)

The Schr\"odinger equation (1) of fourth order appears as mathematical models

in various fields, for example, in plasma physics when the quantum effect is
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taken into account (see [5]) or in fluid mechanics when an isolated vortex

filament is embedded in an inviscid incompressible fluid filling an infinite

region (see [4]).

In this note, we prove the space-time integrability of solution for (1)$-(2)$ ,

which is called the Strichartz estimate. The Strichartz estimate of solution

to (1)$-(2)$ is expected to be useful for the study of nonlinear evolution equa-

tions of the fourth order Schr\"odinger type such as the qauntum Zkakharov
equations.

Theorem 1.1. Let $T>0$ and let $1/2>b>5/16$ . Then, we have

$\Vert u\Vert_{L^{4}((-T,T)\cross T)}\leq c\tau^{1/2}\mathcal{T}^{-b}[\Vert u_{0}\Vert_{L^{2}(T)}$ (3)

$+\tau^{1/2}\mathcal{T}^{-b}\Vert f\Vert_{L^{4/3}}((-\tau,\tau)\cross T)],$

where $\mathcal{T}=\min\{T$, 1 $\}$ and $C$ is a positive constant dependent only on $b.$

Theorem 1.1 is more or less known (for the Schr\"odinger equation of second

order and the linear $KdV$ equation, see [1] and for the linear Boussinesq type
equation, see [3]), but there seems to be no literature which contains the

statement and the proof of Theorem 1.1 explicitly. Moreover, the problem in

the case of $T$ has not been studied as well as in the case of $R$ (for the results

about the $R$ case, see, e.g., Segata [8] and Jian, Lin and Shao [6]). So we
present the proof of Theorem 1.1 in this note.

Remark 1.2. It is presumed that Theorem 1.1 may hold with the $L^{4}$ norm
replaced by the If norm for some $p>4$ on the left hand side of (3) for the

same reason as it is conjectured for the Schr\"odinger equation of second order
and the linear $KdV$ equation (see [1]). The Strichartz estimate in the case
of $T$ is more complicated than that in the case of R. For example, a sharp

necessary condition for the Strichartz estimate in the $R$ case follows directly

from the scaling, but it is not the case with the Strichartz estimate on T.

The specific property of each equation only reflects on the lower bound of the
index $b$ for the $L^{4}$ type Strichartz estimate (see, e.g., the proof of Proposition
2.2 in Section 2).

We now list notations which are used throught this note. For any $a\in C,$

we put $\langle a\rangle=1+|a|$ . Let $U(t)=e^{it(\partial_{x}^{2}-\partial_{x}^{4})}$ . Let $\tilde{f}$ denote the Fourier transform
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of $f$ in both the time and spatial variables. For $T>0$ , we put $\mathcal{T}=\min\{T$, 1 $\}.$

For $b,$ $s\in R$ , we define the Fourier restriction norms $\Vert$ $\Vert_{Y^{b,s}}and\Vert\cdot\Vert_{\overline{Y}^{b,s}}$ as

follows.

$\Vert f\Vert_{Y^{b,\epsilon}}=\{\sum_{k=-\infty}^{\infty}\int_{-\infty}^{\infty}\langle k\rangle^{2s}\langle\tau-k^{2}-k^{4}\rangle^{2b}|\tilde{f}(\tau, k)|^{2}d\tau\}^{1/2}$

$\Vert f\Vert_{\overline{Y}^{b,s}}=\{\sum_{k=-\infty}^{\infty}\int_{-\infty}^{\infty}\langle k\rangle^{2s}\langle\tau+k^{2}+k^{4}\rangle^{2b}|\tilde{f}(\tau, k)|^{2}d\tau\}^{1/2}$

We also define the spaces $Y^{b,s}$ and by the completions of $C_{0}^{\infty}(R\cross T)$ in

the norms $\Vert\cdot\Vert_{Y^{b,\epsilon}}$ and $\Vert\cdot\Vert_{\overline{Y}^{b,s}}$ , respectively.

2 Proof of Theorem 1

In this section, we describe the proof of Theorem 1.1. We begin with the

following lemma about the estimate of the integral of the convolution type.

Lemma 2.1. Let $b>1/4$ and $0<\epsilon<4b-1$ . Then, for any $a\in R$ , we have

$\int_{-\infty}^{\infty}\frac{1}{\langle a-x\rangle^{2b}\langle x\rangle^{2b}}dx\leq\frac{C}{\langle a\rangle^{4b-1-\epsilon}},$

where $C$ is a positive constant independent of $a.$

Proof. We denote the integral on the left hand side of the inequality by

I. We split the integral into two parts as follows.

$I= \int_{|x|\geq|a|/2}+\int_{|x|\leq|a|/2}=:I_{1}+I_{2}.$

When $|x|\geq|a|/2$ , we have

$I_{1} \leq\frac{C}{\langle 1+|a|/2\rangle^{4b-1}\leq}\frac{dt}{\langle x-a)^{2b}\langle x)^{-2b+1+\epsilon}}\frac{-\epsilon\int_{-\infty}^{\infty}C}{\langle a\rangle^{4b-1-\epsilon}}.$

Since $|x-a|\geq|a|-|x|\geq|a|/2$ for $|x|\leq|a|/2$ , we have

$I_{2} \leq\frac{C}{\langle 1+|a|/2\rangle^{4b-1}\leq}\frac{dt}{\langle x-a\rangle^{-2b+1+e}\langle x\rangle^{2b}}\frac{-\epsilon\int_{-\infty}^{\infty}C}{\langle a)^{4b-1-e}}.$
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Therefore, we obtain the desired inequality. $\square$

We next prove the $L^{4}$ space-time estimate, which is a variant of the so-
called Strichartz estimate for the Schr\"odinger equation of fourth order.

Proposition 2.2. Let $b>5/16$ . Then, we have

$\Vert f\Vert_{L^{4}(RxT)}\leq C\Vert f\Vert_{Y^{b,0}},$

where $C$ is a positive constant dependent only on $b.$

Proof. We follow the argument by Kenig, Ponce and Vega [7, the proof

of Lemma 5.2] (see also [10, the proof of Lemma 2.1]).

By the Parseval identity, we have

$\Vert\overline{f\cross f}\Vert_{L^{2}(R\cross T)}^{2}$ (4)

$\leq C\sum_{k=-\infty}^{\infty}\int_{R}(\sum_{k_{1}+k_{2}=k}\int_{R}|\tilde{f}(\tau-\tau i, k_{1})||\tilde{f}(\tau_{1}, k_{2})|d\tau_{1})^{2}d\tau$

$=C \sum_{k\neq 0}\int_{R}(\sum_{k_{1}+k_{2}=k}\int_{R}|\tilde{f}(\tau-\tau_{1},k_{1})||\tilde{f}(\tau_{1}, k_{2})|d\tau_{1})^{2}d\tau$

$+C \int_{R}(\sum_{k_{1}+k_{2}=0}\int_{R}|\tilde{f}(\tau-\tau_{1}, k_{1})||\tilde{f}(\tau_{1}, k_{2})|d\tau_{1})^{2}d\tau$

$=:I_{1}+I_{2}.$

By the Schwarz inequality and the Minkowski inequality, we see that when

$b>1/4,$

$I_{2}\leq C -\tau_{1}-k_{1}^{2}-k_{1}^{4}\rangle^{-2b}$

$\cross\langle\tau_{1}-k_{1}^{2}-k_{1}^{4}\rangle^{-2b}d\tau_{1})^{1/2}$

$\cross(\int_{R}\langle\tau-\tau_{1}-k_{1}^{2}-k_{1}^{4}\rangle^{2b}|\tilde{f}(\tau-\tau_{1}, k_{1})|^{2}$

$\cross\langle\tau_{1}-k_{1}^{2}-k_{1}^{4}\rangle^{2b}|\tilde{f}(\tau_{1}, -k_{1})|^{2}d\tau_{1})^{1/2}\}]^{2}d\tau$

$\leq C[\sum_{k_{1}=-\infty}^{\infty}\{\int_{R}\int_{R}\langle\tau-\tau_{1}-k_{1}^{2}-k_{1}^{4}\rangle^{2b}|\tilde{f}(\tau-\tau_{1}, k_{1})|^{2}$

$\cross\langle\tau_{1}-k_{1}^{2}-k_{1}^{4}\rangle^{2b}|f(\tau_{1}, -k_{1})|^{2}d\tau_{1}d\tau\}^{1/2}]^{2}$

$\leq C\Vert f\Vert_{Y^{b,0}}^{4}.$

Next we suppose that

$\tilde{g}(\tau, k)=\tilde{h}(\tau, k)=0 (\tau\in R, k<0)$ .
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Then, for the estimate of $I_{1}$ , it suffces to show that

$\sum_{k\neq 0}\int_{R}(\sum_{k_{1}+k_{2}=k} \int_{R}|\tilde{g}(\tau-\tau_{1}, k_{1})||\tilde{h}(\tau_{1}, k_{2})|d\tau_{1})^{2}d\tau$ (5)

$\leq C\Vert g\Vert_{Y^{b,0}}^{2}\Vert h\Vert_{Y^{b,0}}^{2},$

$\sum_{k\neq 0}\int_{R}(\sum_{k_{1}+k_{2}=k} \int_{R}|\tilde{g}(\tau-\tau_{1}, k_{1})||\tilde{h}(\tau_{1}, k_{2})|d\tau_{1})^{2}d\tau$ (6)

$\leq C\Vert g\Vert\frac{2}{Y}b,0\Vert h\Vert\frac{2}{Y}b,0$

for $b>5/16$ . In fact, if we write $f=f_{1}+f_{2}$ with $\tilde{f}_{1}(\tau, k)=\tilde{f}(\tau, k)(k\geq 0)$

and $\tilde{f}_{2}(\tau, k)=\tilde{f}(\tau, k)(k<0)$ , the $L^{2}(T)$ norms of $(f_{1})^{2},$ $f_{1}f_{2}$ and $(f_{2})^{2}$ can
be evaluated by virtue of the above $estimat\underline{e}(5)$ . Because we have by the

Parseval identity and the fact that $\simeq f(\tau, k)=\tilde{f}(-\tau, -k)$ ,

$\Vert(f_{2})^{2}\Vert_{L^{2}(RxT)}=\Vert(\overline{f}_{2})^{2}\Vert_{L^{2}(RxT)}=\Vert(\tilde{f}_{2}.)^{-}*(\tilde{f}_{2})^{-}\Vert_{L^{2}(R\cross T)}$ , (7)

$\Vert f_{1}f_{2}\Vert_{L^{2}(R\cross T)}=\Vert fi\overline{f}_{2}\Vert_{L^{2}(RxT)}\leq\Vert|\tilde{f}_{1}|*|(\tilde{f}_{2})^{-}|\Vert_{L^{2}(RxT)}$ , (8)

where $(\tilde{f}_{2})^{-}(\tau, k)=\tilde{f}_{2}(-\tau, -k)$ and $\tilde{f}*\tilde{g}$ denotes the convolution in both $\tau$

and $k$ of $\tilde{f}$ and $\tilde{g}$ . Here, we note that if $f\in Y^{b,s}$ , then $\mathcal{F}^{-1}(\tilde{f})^{-},$ $\mathcal{F}^{-1}|(\tilde{f})^{-}|\in$

$\overline{Y}^{b,s}$ , where, $\mathcal{F}^{-1}f$ denotes the inverse Fourier transform of $f$ . Therefore,

the right hand side of (7) can be estimated by (5) and the right hand side of

(8) can be estimated by (5) and (6).

We only show the estimate (5), since (6) can be proved in the same wasy
as (5). We denote the left hand side of (5) by $J$ and we have by the Schwarz

inequality

$J \leq C\sum_{k\neq 0}k\in Z\int_{R}(\sum$

ん
$1+k_{2}=kk_{2}\geq 0^{\int_{R}\langle\tau-\tau_{1}-k_{1}^{2}-k_{1}^{4}\rangle^{-2b}}$

$\cross\langle\tau_{1}-k_{2}^{2}-k_{2}^{4}\rangle^{-2b}d_{\mathcal{T}_{1}})$

$\cross(\sum_{k_{1}+k_{2}=k}\int_{R}\langle\tau-\tau_{1}-k_{1}^{2}-k_{1}^{4}\rangle^{2b}|\tilde{g}(\tau-\tau_{1}, k_{1})|^{2}$

$\cross\langle\tau_{1}-k_{2}^{2}-k_{2}^{4}\rangle^{2b}|\tilde{h}(\tau_{1}, k_{2})|^{2}d\tau_{1})d\tau$

$\leq CM\Vert g\Vert_{Y^{b,0}}^{2}\Vert h\Vert_{Y^{b,0}}^{2},$

where

$M= \sup_{(\tau,k)\in R\cross(Z\backslash \{0\})[\sum\int_{R}\langle\tau-\tau_{1}-k_{1}^{2}-k_{1}^{4}\rangle^{-2b}}k+k_{2}kk_{1}^{1},k_{2}\overline{\overline{\geq}}0$

$\cross\langle\tau_{1}-k_{2}^{2}-k_{2}^{4}\rangle^{-2b}d\tau_{1}].$
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Consequently, for the proof of (5), it suffices to show that $M<\infty$ . A simple

computation and Lemma 2.1 yield

$M\leq C$ (9)

$\cross\sup_{(\tau,k)\in R\cross(Z\backslash \{0\})}\sum_{k+k_{2} ,k_{1}^{1},k_{2}\overline{\overline{\geq}}0^{k\langle\tau-(k-k_{1})^{2}-(k-k_{1})^{4}}}$

$+k_{1}^{2}+k_{1}^{4}\rangle^{-4b+1+\epsilon}$

for any $\epsilon$ with $0<\epsilon<4(b-1/4)$

For each $(\tau, k)\in R\cross(Z\backslash \{O\})$ , we consider the following algebraic equa-

tion with respect to $k_{1}$ , which corresponds to the formula inside the brackets

on the right hand side of (9).

$k(4k_{1}^{3}-6kk_{1}^{2}+2(k^{2}+1)k_{1}-k(1+k^{2}))+\tau=0$ . (10)

We denote three roots of the algebraic equation (10) with respect to $k_{1}$ by $\alpha,$

$\beta$ and $\gamma$ , respectively. Since (10) is a cubic equation, one of the three roots

is necessarily real, which is denoted by $\alpha$ . If the two other roots are real, we

write $\beta$ and $\gamma$ for those real roots. If the two other roots are complex, that

is, if $\beta=\overline{\gamma}$ and $\Im\beta\neq 0$ , then we simply use the same notation $\beta$ and $\gamma$ for

the real part of $\beta$ and $\gamma$ . In either case, there exist at most 12 $k_{1}$ ’s such that

$|k_{1}-\alpha|<2,$ $|k_{1}-\beta|<2$ or $|k_{1}-\gamma|<2,$

and we can choose $\eta>0$ so that for the other $k_{1}’ s,$

$|k_{1}^{3}- \frac{3}{2}kk_{1}^{2}+\frac{1}{2}(k^{2}+1)k_{1}-\frac{1}{4}k(1+k^{2})-\frac{\tau}{4k}|$

$\geq|(k_{1}-\alpha)(k_{1}-\beta)(k_{1}-\gamma)|$

$\geq\eta\langle k_{1}-\alpha\rangle\langle k_{1}-\beta\rangle\langle k_{1}-\gamma\rangle.$

On the other hand, the condition $k_{1}\geq 0$ and $k-k_{1}\geq 0$ implies that $k\geq$

$k_{1}\geq 0$ . Furthermore, we can choose $\epsilon>0$ so small that $4(4b-1-\epsilon)>1.$

109



Therefore, the right hand side of (9) is bounded by the following:

$C \sup_{(\tau,k)\in R\cross(Z\backslash \{0\})}\sum_{k+k_{2}k\frac{1-1-}{\langle k(k_{1}-\alpha)(k_{1}-\beta)(k_{1^{-\gamma))}}\epsilon} ,k_{1)}^{1}k_{2}\overline{\overline{\geq}}0}k\neq 0$

$\leq C\sum_{k_{1}\in Z\langle(|k_{\overline{1}}|+1)(k_{1}-\alpha)(k\beta)(k_{1}-\gamma)\rangle^{4-1-\epsilon}}$

$\leq C(12+\sum_{1k_{1}-\alpha|\geq 2 ,|k_{1}-\beta|\geq 2}\frac{1}{\langle k_{1}\rangle^{4b-1-\epsilon}\langle k_{1}-\alpha\rangle^{4b-1-e}\langle k_{1}-\beta\rangle^{4b-1-\epsilon}\langle k_{1}-\gamma\rangle^{4b-1-\epsilon}})|k_{1}-\gamma|\geq 2$

$\leq C\{12+(\sum_{k_{1}\in Z}\frac{1}{\langle k_{1}\rangle^{4(4b-1-\epsilon)}})^{1/4}(\sum_{|k_{1}-\alpha|\geq 2}\frac{1}{\langle k_{1}-\alpha\rangle^{4(4b-1-\epsilon)}})^{1/4}$

$\cross(\sum_{|k_{1}-\beta|\geq 2}\frac{1}{\langle k_{1}-\beta\rangle^{4(4b-1-\epsilon)}})^{1/4}(\sum_{|k_{1}-\gamma|\geq 2}\frac{1}{\langle k_{1}-\gamma\rangle^{4(4b-1-e)}})^{1/4}\}<\infty,$

since $4(4b-1-\epsilon)>1$ . This inequality shows that $M<\infty$ and so the proof

is complete. 口

Remark 2.3. (i) We use Lemma 2.1 to show (9) in the above proof of Propo-

sition 2.2. Therefore, we need to assume that $b>1/4$ , which corresponds to

the Sobolev embedding in the time variable: $H^{b}(R)\subset L^{4}(R)(b\geq 1/4)$ .
(ii) For $H>0$ , we consider the Fourier restriction norm $\Vert\cdot\Vert_{Z^{\epsilon,b}}$ with

the Fourier restriction wight $\langle\tau-k^{2}-k^{4}\rangle$ replaced by $\langle\tau-k^{2}-Hk^{4}\rangle$ in

the definition of the norm $\Vert\cdot\Vert_{Y^{b,\epsilon}}$ . This Fourier restriction norm $\Vert\cdot\Vert_{Z^{b,s}}$ is

related to the following equation (see [5]).

$i\partial_{t}u+\partial_{x}^{2}u-H\partial_{x}^{4}u=f, t\in R, x\in T$ . (11)

Proposition 2.4 also holds with $\Vert\cdot\Vert_{Y^{b,\epsilon}}$ replaced by $\Vert\cdot\Vert_{Z^{b,s}}$ . Because in that

case, the algebraic equation(10) is changed to

$k(4Hk_{1}^{3}-6Hk_{1}^{2}+2(2Hk^{2}+1)k_{1}-k(1+Hk^{2}))+\tau=0,$

which causes no trouble to the proof of Proposition 2.2.

The following corollary is an immediate consequence of Proposition 2.2.

Corollary 2.4. Let $T>0$ and let $1/2>b>5/16$ . Then, we have

$\Vert U(\cdot)u_{0}\Vert_{L^{4}((-T,T)xT)}\leq CT^{1/2}\mathcal{T}^{-b}\Vert u_{0}\Vert_{L^{2}(T)},$

where $C$ is a positive constant dependent only on $b.$
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Proof. Let $\varphi$ be a time cut-off function in $C_{0}^{\infty}(R)$ such that $\varphi(t)=1$ for

$|t|\leq 1$ and $\varphi(t)=0$ for $|t|\geq 2$ . We put $\varphi_{T}(t)=\varphi(t/T)$ for $T>0$ . We note

that $\varphi_{T}(t)U(t)u_{0}\in Y^{b,0}$ for any $b\in R$ , since a simple computation yields

$\varphi_{T}\overline{U(\cdot)}u_{0}=T\hat{\varphi}(T(\tau-k^{2}-k^{4}))\hat{u}_{0}(k)$ ,

where
$\wedge$

denotes either the Fourier transform in the time variable or the

Fourier coefficient in the spatial variable. Furthermore, for $b>0,$

$\langle\tau\rangle^{2b}=(1+T^{-1}|T\tau|)^{2b}\leq \mathcal{T}^{-2b}\langle T\tau\rangle^{2b}.$

Therefore, for $1/2>b>0$ , we have by the change of variables

$\Vert\varphi_{T}U(\cdot)u_{0}\Vert_{Y^{b,0}}^{2}$

$= \sum_{k=-\infty}^{\infty}\int_{-\infty}^{\infty}\langle\tau-k^{2}-k^{4}\rangle^{2b}|T\hat{\varphi}(T(\tau-k^{2}-k^{4}))\hat{u}_{0}(k)|^{2}d\tau$

$\leq(\sum_{k=-\infty}^{\infty}|\hat{u}_{0}(k)|^{2})(\int_{-\infty}^{\infty}T\mathcal{T}^{-2b}\langle\tau\rangle^{2b}|\hat{\varphi}(\tau)|^{2}d\tau)$

$\leq CT\mathcal{T}^{-2b}\Vert u_{0}\Vert_{L^{2}(R)}^{2}.$

Therefore, Proposition 2.2 implies Corollary 2.4. 口

We are now in a position to show Theorem 1.1.

Proof of Theorem 1.1. Lemma 1.1 without external forceing $f$ is

reduced to Corollary 2.4. When $u_{0}=0$ , it is sufficient to prove that

$\Vert\int_{0}^{t}U(t-\tau)f(\tau)d\tau\Vert_{L^{4}((0,T)xT)}\leq CT\mathcal{T}^{-2b}\Vert f\Vert_{L^{4/3}}((0,\tau)\cross T)$ , (12)

where $C$ is a positive constant dependent only on $T$ . Because we can easily

prove the estimate (12) on $(-T, 0)$ in the same way. From the Christ-Kiselev

lemma (see [2] and [9, Lemma 3.1 on page 2179 it follows that the proof

of (12) is reduced to that of the following inequality.

$\Vert\int_{0}^{T}U(t-\tau)f(\tau)d\tau\Vert_{L^{4}((0,T)\cross T)}\leq CT\mathcal{T}^{-2b}\Vert f\Vert_{L^{4/3}}((0,\tau)\cross T)$ (13)

where $C$ is a positive constant dependent only on $T$ . Then, Corollay 2.4

yields that

$\Vert\int_{0}^{T}$ $U$ ( $t$ – $\tau$) $f$ (丁) $d\tau\Vert_{L^{4}(0,T)\cross T)}$ (14)

$= \Vert U(t)\int_{0}^{T}U(-\tau)f(\tau)d\tau\Vert_{L^{4}(0,T)\cross T)}$

$\leq c\tau^{1/2}\tau^{-b}\Vert\int_{0}^{T}U(-\tau)f(\tau)d\tau\Vert_{L^{2}(T)}.$
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Furthermore, we have by the Fubini theorem, H\"older’s inequality and Corol-
lary 2.4

$|( \int_{0}^{T}U(-\tau)f(\tau)d\tau, v)|=|\int_{0}^{T}(f(\tau), U(\tau)v)d\tau|$ (15)

$\leq\Vert f\Vert_{L^{3/4}}((0,\tau)xT)\Vert U(\cdot)v||_{L^{4}((0,T)\cross T)}$

$\leq c\tau^{1/2}\mathcal{T}^{-b}\Vert f\Vert_{L^{4/3}}((0,\tau)\cross T)\Vert v\Vert_{L^{2}(T)}, v\in L^{2}(T)$ ,

where ) denots the $L^{2}(T)$ saclar product and $C$ is a positive constant
dependent only on $b$ . Accordingly, inequalities (14), (15) and the duality

argument imply (13), which completes the proof of Theorem 1.1. 口

Remark 2.5. (i) When we use the Christ-Kiselev lemma to derive (12) from

(13) in the above proof of Theorem 1.1, we can see explicitly how the right

hand side of (12) depends on $T$ and $\mathcal{T}$ (see, e.g., [9, Lemma 3.1 on page

2179
(ii) We consider the equation (11) with parameter $H>0$ instead of (1).

In that case, Theorem 1.1 also holds for any $H>0$ , because the introduction

of parameter $H$ gives rise to no change in the above proof as long as $H$ is

positive (see Remark 2.3 (ii)).
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