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1 Introduction

In [6], Ivrii and Petkov introduced the notion of fundamental matriX,1 which
now called the Hamilton map, and proved that if the Cauchy problem is $C^{\infty}$

well-posed for any lower order term then the characteristics are at most double
and at every double characteristic point the Hamilton map has non-zero real
eigenvalues, now called effectively hyperbolic. If the Hamilton map has no non-
zero real eigenvalue, that is noneffectively hyperbolic case, they also proved,
under some restrictions, in order that the Cauchy problem is $C^{\infty}$ well-posed the
subprincipal symbol must lie in some interval on the real line, which depends on
the reference double characteristic point. This was a breakthrough in researches
on hyperbolic operators with multiple characteristics. They conjectured that
effectively hyperbolic operator is strongly hyperbolic, that is if the Hamilton
map has non-zero real eigenvalues at every double characteristic then the Cauchy
problem is $C^{\infty}$ well-posed for any lower order term. This conjecture has been
proved affirmatively in [9], [10], [11], [12]. On the other hand, the necessary
condition for the $C^{\infty}$ well-posedness for noneffectively hyperbolic operators,
mentioned above was completed in [5] by removing the restrictions and now
called the Ivrii-Petkov-H\"ormander condition (we abbreviate to IPH condition
in the following).

Let $P$ be a differential operator of order $m$ with the principal symbol $p.$

Then the Hamilton map $F_{p}$ is the linearization of the Hamilton field $H_{p}$ along
the double characteristic set $\Sigma$ , assumed to be a $C^{\infty}$ manifold. The positive
trace $Tr^{+}F_{p}$ is defined by $Tr^{+}F_{p}=\sum\mu_{j}$ where $i\mu_{j}$ are the eigenvalues of $F_{p}$

on the positive imaginary axis repeated according to their multiplicities. Now
$\ovalbox{\tt\small REJECT} mP_{sub}=0,$ $|{\rm Re} P_{sub}|\leq Tr^{+}F_{p}$ is the IPH condition.

1 one of the authors of [6] told me the history of the word”fundamental matrix”’ as follows:
At this time I was a grad student and among mathematical students we had the following
definitions: *Derivative$*$ of the drunken party is the party financed through deposit bottles.
[i.e. if I remember correctly the cheap booze was 1.52 per bottle, while returning the bottle
intact to the store one could recover 0.12, so multiplier was 12/152 and in order to be able to
get one bottle in the second round one should consume 13 in the first.]

*Fundamental* drunken party is a party with non-zero second derivative.
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If $KerF_{p}^{2}\cap{\rm Im} F_{p}^{2}=\{O\}$ on the doubly characteristic manifold $\Sigma$ , the Cauchy
problem for noneffectively hyperbolic operator $P$ is $C^{\infty}$ well-posed under the
strict IPH condition which is a classical result proved in [8], [5]. When $Tr^{+}F_{p}=$

$0$ on $\Sigma$ then the IPH condition is reduced to the Levi condition and is neces-
sary and sufficient for the $C^{\infty}$ well-posedness ([5]). Thus to understand the
well-posedness of the Cauchy problem for differential operators with double
characteristics the main remaining question is that when $KerF_{p}^{2}\cap{\rm Im} F_{p}^{2}\neq\{O\}$

on $\Sigma$ whether we need new necessary conditions for the $C^{\infty}$ well-posedness or
not.

2 Noneffectively hyperbolic operators

It has been recognized that what is crucial to the $C^{\infty}$ well-posedness is not
only the Hamilton map but also the behavior of null bicharacteristics of $p$ near
the double characteristic manifold and the Hamilton map itself is not enough
to determine completely the behavior of the null bicharacteristics. In the case
$KerF_{p}^{2}\cap{\rm Im} F_{p}^{2}\neq\{O\}$ on $\Sigma$ , strikingly enough, if there is a null bicharacteristic
which lands tangentially on the double characteristic manifold then the Cauchy
problem is not $C^{\infty}$ well-posed even though we assume the Levi conditions, only
well-posed in the Gevrey class $1\leq s<5$ as proved in [1]. On the other hand
if there is no such null bicharacteristic then the above mentioned result still
holds; the Cauchy problem is $C^{\infty}$ well-posed under the strict IPH condition. If
$Tr^{+}F_{p}=0$ on $\Sigma$ then the Levi condition is also necessary and sufficient for the
$C^{\infty}$ well-posedness of the Cauchy problem ([13]).

Here considering the following model operator we explain this rather striking
phonomenon. Let us consider

$P(x, D)=-D_{0}^{2}+2x_{1}D_{0}D_{2}+D_{1}^{2}+x_{1}^{3}D_{2}^{2}$ . (2.1)

It is worthwhile to note that if we make the change of coordinates

$y_{j}=x_{j}, j=0, 1, y_{2}=x_{2}+x_{0}x_{1}$

which preserves the initial planes $x_{0}=const.$ , the operator $P$ is written in these
coordinates as

$P=-D_{0}^{2}+(D_{1}+x_{0}D_{2})^{2}+(x_{1}\sqrt{1+x_{1}}D_{2})^{2}=-D_{0}^{2}+A^{2}+B^{2}$

which is of so called “divergence free” from. Here we have $A^{*}=A$ and $B^{*}=B$

while $[D_{0}, A]\neq 0$ and $[A, B]\neq 0.$

Let us denote by $p(x, \xi)$ the symbol of $P(x, D)$ then it is clear that the double
characteristic manifold near the double characteristic point $\overline{\rho}=(0, (0,0,1))\in$

$\mathbb{R}^{3}\cross \mathbb{R}^{3}$ is given by

$\Sigma=\{(x, \xi)\in \mathbb{R}^{2(n+1)}|\xi_{0}=0, x_{1}=0,\xi_{1}=0\}$

and it is not difficult to see

$KerF_{p}^{2}(\rho)\cap{\rm Im} F_{p}^{2}(p)\neq\{0\}, \rho\in\Sigma.$
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The main feature of $p$ is that the Hamilton flow $H_{p}$ lands tangentially on $\Sigma.$

Indeed the integral curve of $H_{p}$

$x_{1}=- \frac{x_{0}^{2}}{4}, x_{2}=\frac{x_{0}^{5}}{8}, \xi_{0}=0, \xi_{1}=\frac{x_{0}^{3}}{8}, \xi_{2}=c\neq 0, |x_{0}|>0$ (2.2)

parametrized by $x_{0}$ lands on $\Sigma$ tangentially as $\pm x_{0}\downarrow 0.$

We are now concerned with the Cauchy problem for $P.$

Definition 2.1 We say that the Cauchy problem for $P$ is locally solvable in the
Gevrey class $s$ at the origin if for any $\Phi=(u_{0}, u_{1})$ taken in the Gevrey class $s,$

there exists a neighborhood $U_{\Phi}$ of the origin such that the Cauchy problem

$\{\begin{array}{l}Pu=0 in U_{\Phi},D_{0}^{j}u(0,x’)=u_{j}(x’) , j=0, 1, x’\in U_{\Phi}\cap\{x_{0}=0\}\end{array}$

has a solution $u(x)\in C^{\infty}(U_{\Phi})$ .

We can prove the next result following [1], modifying the argument there about
the existence of zeros with negative imaginary part” of some Stokes multiplier
(see also [13]).

Theorem 2.1 If $s>5$ then the Cauchy problem for $P$ is not locally solvable in
the Gevrey class $s$ . In particular the Cauchy problem for $P$ is not $C^{\infty}$ well-posed.

Denoting $W={\rm Im} F_{p}^{2}\cap KerF_{p}^{2}$ the results about $C^{\infty}$ well-posedness of the
Cauchy problem for differential operators with double characteristics can be
summarized in the following table:

The missing part in the table is

Assume that $W\neq\{O\}$ and there is a null bicharacteristic landing on $\Sigma$ tangen-
tially and $Tr^{+}F_{p}>0$ . Then what happens $Q$
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We exhibit the main difficulty to answer this question by considering the
following model operator

$P(x, D)=-D_{0}^{2}+2x_{1}D_{0}D_{2}+D_{1}^{2}+x_{1}^{3}D_{2}^{2}+a(x_{3}^{2}D_{2}^{2}+D_{3}^{2})$ (2.3)

where $a>0$ is a positive constant. It is easy to check that $Tr^{+}F_{p}=a$ and the
double characteristic manifold is given by $\Sigma=\{\xi_{0}=\xi_{1}=\xi_{3}=0, x_{1}=x_{3}=0\}.$

Since $P_{sub}=0$ the IPH condition is satisfied obviouly. If we define a curve
$x_{0}\mapsto(x’(x_{0}), \xi(x_{0}))$ where $(x_{1}(x_{0}), x_{2}(x_{0}),\xi_{0}(x_{0}), \xi_{1}(x_{0}),\xi_{2}(x_{0}))$ is given by
(2.2) and $x_{3}(x_{0})=\xi_{3}(x_{0})=0$ then this curve is a null bicharacteristic of $p$ even
for $a\neq$ O. From the view point of “classical mechanics”’ it is supposed that
the non well-posedness of the Cauchy problem is caused by this singular orbit
(2.2) of the Hamilton flow. On the other hand from the view point of (quantum
mechanics” it is prohibited from taking $x_{3}=0,$ $\xi_{3}=0$ by the Heisenberg
uncertainty principle.

3 Strong Gevrey hyperbolicity

Let
$P=P_{m}+P_{m-1}+\cdots+P_{0}$

be a differential operator of order $m$ where $P_{j}$ denotes the homogeneous part
of degree $j$ . We denote $p(x, \xi)=P_{m}(x,\xi)$ . Motivated by the Gevrey 5 well-
posedness results in Section 2 we introduce the following definitions:

Definition 3.1 Let $s\geq 1$ . We say that $P$ (or $p$) is strongly Gevrey $s$ hyperbolic
if for any differential operator $Q$ of order less than $m$ the Cauchy problem for
$P+Q$ is locally solvable in the Gevrey class $s.$

Definition 3.2 We define the strong Gevrey hyperbolicity index $G(p)$ of $p$ (or
$P)$ by

$G(p)= \sup${$s|P$ is strongly Gevrey $s$ hyperbolic}.

We now consider differential operators with double characteristics. We assume
that the doubly characteristic set $\Sigma$ is a $C^{\infty}$ manifold of codimension 3. We
also assume that

rank $(d\xi\wedge dx)=$ constant on $\Sigma,$

(3.1)
either $W=\{O\}$ or $W\neq\{O\}$ throughout $\Sigma.$

Then the following table sums up a picture of the strong Gevrey hyperbolicity
for differential operators with double characteristics ([2], [3]):
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This implies that, assuming the condition (3.1), the strong Gevrey hyper-

bolicity index completely characterizes the spectral properties of the Hamilton

map and the geometry of null bicharacteristics and vice versa for differential

operators with double characteristics.
We turn to consider differential operators with characteristics of higher order.

Let $\rho=(0,\overline{\xi})$ be a characteristic of order $m$ . Then the localization of $p$ at $\rho$ is

defined by

$p(\rho+\mu X)=\mu^{m}(p_{\rho}(X)+o(1)) , X=(x,\xi) , \muarrow 0$

which is nothing but the first non-vanishing part in the Taylor expansion of $p$

around $\rho$ . Denote by $\Sigma$ the set of characteristics of order $m$ which is assumed

to be a $C^{\infty}$ manifold. Note that $p_{\rho}$ is a function on $\mathbb{R}^{2(n+1)}/T_{\rho}\Sigma$ because
$p_{\rho}(X+Y)=p_{\rho}(X)$ for any $Y\in T_{\rho}\Sigma$ . If $m=2$ then $p_{\rho}(X)$ is always strictly

hyperbolic on $\mathbb{R}^{2(n+1)}/T_{\rho}\Sigma$ . Taking this fact into account we assume that

$p_{\rho}$ is strictly hyperbolic in $\mathbb{R}^{2(n+1)}/T\Sigma,$

(3.2)
rank $(d\xi\wedge dx)=$ constant on $\Sigma.$

A natural question is

For differential operators $P$ with characteristics of order $m(\geq 3)$ verifying (3.2)

the strong Gevrey hyperbolicity index $G(p)$ plays the same role as in the case
$m=29$

To investigate this question we first recall a classical result due to Bronshtein

[4].

Theorem 3.1 ([4]) Let $P$ be a differential operator of order $m$ with real charac-
$te7\dot{\eta}stics$ . Then for any differential operator $Q$ of order less than $m$ , the Cauchy

problem for $P+Q$ is well-posed in the Gevrey class $m/(m-1)$ .

This implies that for a differential operator $P$ with characteristics of order $m$

we have
$G(p)\geq m/(m-1)$ .

We also recall a result in [7] which bound $G(p)$ from above.
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Theorem 3.2 ([7]) Let $P$ be a differential operator of order $m$ with real ana-
lytic coefficients and let $\overline{\xi}=$ $(0, 0,1)\in \mathbb{R}^{n+1}$ . Assume that $p$ verifies

$\partial_{\xi}^{\alpha}\partial_{x}^{\beta}p(0,\overline{\xi})=0$ for $|\alpha+\beta|<m,$ $\partial_{\xi_{0}}^{m}p(0,\overline{\xi})\neq 0.$

Then if the Cauchy problem for $P$ is well-posed near the origin in the Gevrey
class $\kappa$ we have

$\partial_{\xi}^{\alpha}\partial_{x}^{\beta}P_{s}(0,\overline{\xi})=0$

for $|\alpha+\beta|<m-2(m-s)\kappa/(\kappa-1)$ .

Assume that $(0,\overline{\xi})$ is a characteristic of order $m$ . If $P$ is strongly Gevrey $\kappa$

hyperbolic then we have $\kappa\leq m/(m-2)$ . Indeed if $\kappa>m/(m-2)$ and hence
$m-2\kappa/(\kappa-1)>0$ then from Theorem 3.2 it follows that for the Cauchy
problem to be well-posed in the Gevrey class $\kappa$ we have $P_{m-1}(0,\overline{\xi})=0$ . That is
one can not take $P_{m-1}$ arbitrary so that $P$ is not strongly Gevrey $\kappa$ hyperbolic.
This proves

$G(p)\leq m/(m-2)$

and hence
$\frac{m}{m-1}\leq G(p)\leq\frac{m}{m-2}.$

In a special case that $p(x, \xi)=q(x, \xi)^{m}$ where $q(x, D)$ is a first order differ-
ential operator it is known that

$G(p)= \frac{m}{m-1}.$

bom the results for differential operators with double characteristics above
it is natural to ask

Question 1 Assume that (3.2) is verified. If rank $(d\xi\wedge dx)=0$ on $\Sigma$ then
$G(p)=m/(m-1)^{9}.$

Question 2 Assume that (3.2) is verified. If every null bicharacteristic is
transversal to $\Sigma$ then $G(p)=m/(m-2)^{Q}.$

The next one seems to be much more difficult to answer.

Question 3 Assume that (3.2) is verified. Then $G(p)$ takes only discrete val-
$ues^{q}.$
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