
A characteristic function to select rules for an
automated prover

Hidetsune Kobayashi (Institute of Computational Logic)
Yoko Ono (Yokohama City University)

1 Introduction

An automated prover generates a sequence of steps rewriting a proposition
by using an axiom or proved proposition, and the result of the final step
is an apparently true proposition. Hereafter, to avoid confusion, we call a
proposition to be rewritten as proposition, and we call a proposition used
to rewrite as a rule. In general, there are some rules employed to rewrite a
proposition and some of them results in failure. Therefore choosing proper
rules from a database determines the efficiency of the automated prover.

An automated prover should add a newely proved proposition to the
database as a rule, hence a function used to choose proper rules should also
decide whether the new rule is applicable or not. In other words, we cannot
remake a rule selection function after each time we prove a new proposition.

In this report, we give a selection method with extracting a character of
a rule.

2 Extracting a character of a proposition

Since our objective is to make an automated prover for Bernstein’s theorem[l]
in set theory, the scope of the function extracting a character of propositions
is limited to elementary set theory.

Our prover consists of three parts, Isabelle/HOL[2], ProofGeneral and
PostgreSQL. Isabelle/HOL is the inference engine, ProofGeneral is the in-
terface and PostgreSQL is the database of the prover, and these these three
parts are connected by using LISP language. A proposition is expressed in

数理解析研究所講究録

第 1915巻 2014年 26-37 26

logical expression in the interface, but those expressions are expressed as
trees in list of LISP. Therefore the function extracts a character of tree. In
Isabelle, there are four ways to apply rules to rewrite a proposition:

rule xxx, drule xxx, erule xxx, frule xxx,

where, xxx is the name of a rule. In this report, we focus on rule xxx or
rule-tac xxx.

Here we give an example to show how rule xxx is used to rewrite.

Proposition ExampleO: $1/[$ Pc; $QcI\Rightarrow\exists x$. Px $\wedge Qx"$

This proposition is changed to a simple form by using a rule

lemma $exI:^{11}?P?x\Rightarrow\exists y.$ $?py”$

Substituting Ay. $Py\wedge Qy$ for?P , we obtain the conclusion part of
exI changed as $\exists y.$ $Py\wedge Qy$ which is same as the conclusion part of
ExampleO. By this substitution,?$P?x$ is changed to $P?x\wedge Q?x$, so giving
a special value c to?x . If the proposition

[Pc; Qc] $\Rightarrow Pc\wedge$ Qc

is proved then ExampleO is proved. Thus apply (rule xxx) use a rule xxx
having the conclusion fit to the conclusion of the proposition. Note that

Isabelle has apply (rule-tac. . . in xxx) in which local variables can be
specified. In ExampleO,

apply (rule-tac?$P=$ Ay. Py $\wedge Qy$ in exI)

works. rule-tac specifies some variables, it can diminish ambiguity.

From now on, we discuss a function extracting a character of a propo-
sition. A type is set to each variable in Isabelle, we see a value to asign is

restricted according to types. Therefore the type of a variable is a part of
the character of a proposition, but it is not sufficient to distinguish rules.

We present an example to show how to extract a character of a proposi-
tion.

lemma Examplel: g : $Aarrow B,$ f : $Barrow C,$ $x\in A\Rightarrow(f$

$g)x\in C$

27

Here $(f\cdot g)x$ is an element transformed by the composed function of g and
f . The proposition states that if g is a function from A to B , and if f is a
function from B to C , and x is an element of A , then $(f\cdot g)$ xis an element of
C. To prove this lemma, at first, by using the definition of composition, we
change $(f\cdot g)x$ to $f(gx)$, then we apply the lemma called funcset-mem:

lemma funcset,nem : $[?f : : 7Aarrow 7B, ?x\in 7A]\Rightarrow?f?x$

$\in?B$

Since we express a proposition in a tree, the conclusion parts of Examplel,
and funcset-mem are $(inS$ ((circS (f) (g)) x) $(C))$ and $(inS(7f7_{X)}$

$(?B))$ respectively.
Expressing each variable as?, try (inS ((circS(?)(?)) 7)) and

$(inS (7 ?)$ (7) $)$ as charcters. To see automatically Example can be
rewritten by the rule funcset-mem, the prover should see the conclusion of
Examplel is the same as the conclusion of funcset-mem. Therefore expressing
(circS (7) (?)) as? we take the character of (inS ((circS (f) (g))

x) $(C))$ as $(inS(? ?)$ (7) $)$ or using % which matches any character in
SQL, we take the character as $(inS (\% \%) (\%))$. The character of (circS
(f) $(g))$ is not always?. That is, when it appears (circS (?) (7))

alone, we have to take the character as (circS (?) (?)).

Thus the character of a proposition should be decided by comparing with
rules to apply. The following table shows characters of trees.

The last expression of the table is a tree expression of $(fx)\in f$ $B,$

where f
‘

B is the image of a set B by the function f . For elementary rules,
we have the following table.

Three expressions f $A,\{y. \exists x\in A. y=fx\},$ $\{a\}$ express sets.
The first two are the same set.

28

If these appear alone or the front depth of the list expressing a tree is 1,
characters are

As noted above, rules are stored within postgreSQL, a character $($ SetS
ydS % $)$ is used to select rules to apply as:

select name from propositions where conclusion like $($ SetS

$7dS$ % $)$ ’

and so, % matches any pattern.
The following table presents names of rules selected from the SQL table

”propositions” comparing the character of the conclusion of the following
lemma

lemma $func_{-}to_{-}img:^{t/}f\in Aarrow f$ $A/$

name
funcset I
func-to-img

bij-betw-imp-funcset

image$-eqI$

rev-image$-eqI$

surj-to-hom
subsetD
(7 rows)

Among these rules, funcsetI is the proper rule to apply. We apply the
rule as

apply (rule funcsetI)

then, Isabelle returns proof (prove): step 1
goal (1 subgoal):

1. $\wedge x.$ $x\in A\Rightarrow fx\in f$ ‘
A

Repeating selection in SQL as

29

select name from propositions, prop-to-prove where comparel(name,
char2-c, char2-c1, charl-cl);

name
rangeI
$Pi\lrcorner nem$

extensional1$uncset\lrcorner nem$

imageI
surj $-to\lrcorner nem$

subsetD
(6 rows)

All of these are not suitable to apply, since the prover does not know what
is the meaning of f

‘ A at this time. This implies we cannot select a proper
rule by merely comparing characters. In this case, prover should unfold the
definition of an image. So, we give the definition as

apply (subst image-def)

then, we have
proof (prove): step 2
goal (1 subgoal):

1. $\wedge x.$ $x\in A\Rightarrow fx\in\{y. \exists x\in A. y=fx\}$

We present another example. A proposition to prove is:

lemma $itr_{-}into_{-}A1:^{1/}[A1\subseteq A;f\in Aarrow A1;y\in A]$ \Rightarrow itr

$nfy\in$ Al”

We try to select rules to apply as:

select name from propositions, prop-to-prove where comparel(name,
char2-c, char2-c1, char3-c1);

The result of this search is 0 row. Actually, we use a command

apply (induct-tac n)

30

The induct-tac is one of the tactics of proof in Isabelle, as rule-tac. And
the table “propositions” is a table containing rules to be applied by rule-tac.
Hence it is not possible to find out induct-tac. Now, we are discussing to
select XXX of apply (rule-tac XXX). WhereXXX is the name of a rule.

Applying induct-tac, we have
proof (prove): step 1
goal (2 subgoals):

1. IA1 $\subseteq A;f\in Aarrow A1;y\in AJ\Rightarrow$ itr $0fy\in$ Al
2. $\wedge n$. EA1 $\subseteq A;f\in Aarrow A1;y\in A$; itr nfy $\in AlI\Rightarrow$ itr
(Suc n) $fy\in$ Al

Since within the function comparel, used in SQL command selecting
rules, we can add a function to find induct-tac,

select name from propositions, prop-to-prove where comparel(name,

char2-c, char2-c1, char3-c1);

gives Using this result, we put apply (subst itr-O) as an Isabelle command,

name
itr-O
(1 row)

then we have
proof (prove): step 2
goal (2 subgoals):

1. $[Al \subseteq A;f\in Aarrow A1;y\in A]=$ fy \in Al
2. $\wedge n$. [Al $\subseteq A;f\in Aarrow A1;yarrow A$; itr nfy \in All \Rightarrow itr (Suc

n) $fy\in$ Al

Again, using the function comparel,

select name from propositions, prop-to-prove where comparel(name,
char2-c, $char2_{-}c1$, char3-c1);

We have Among these rules, funcset-mem is a proper rule to apply. Our
prover generates automatically the following command:

apply (rule-tac $f=f$ and $A=$ A and $B=$ Al and $x=y$ in
funcset mem)

31

name
extens ional1$uncset\lrcorner nem$

imageI
surj-tomem
funcset-mem
(4 rows)

Applying the command, we have
proof (prove): step 3
goal (3 subgoals):

1. $[Al \subseteq A;f\in Aarrow A1;y\in A]\Rightarrow f\in Aarrow A1$

2. [Al $\subseteq A;f\in Aarrow A1;y\in$ Al $=y\in A$

3. $\wedge n$. [Al $\subseteq A;f\in Aarrow A1;y\in A$; itr nfy \in All itr (Suc

n) $fy\in$ Al

Among these three, 1 and 2 have conclusion within premise, the command
apply asasumption$+$ sweaps away these two, and we have
proof (prove): step 4
goal (1 subgoal):

1. $\wedge n$. [Al $\subseteq A;f\in Aarrow A1;y\in A$; itr nfy \in Al 1 $\Rightarrow itr$ (Suc

n) $fy\in$ Al

select name from propositions, prop-to-prove where comparel(name,

char2-c, char2-c1, char3-c1);

name
itr-Suc
(1 row)

As above, we give the following command:
apply (subst itr-suc)

proof (prove): step 5

goal (1 subgoal):

1. $\wedge n.$

$[$ Al $\subseteq A;f\in Aarrow A1;y\in A$; itr nfy \in Al $]$ \Rightarrow (f itr nf)

$y\in$ Al

select name from propositions, prop-to-prove where comparel(name,

char2-c, char2-c1, char3-c1);

32

$\frac{name}{(0row)}$

Because the propver does not know the definition of composed function.
So we give apply (subst comp-def) then we have:
proof (prove): step 6
goal (1 subgoal):

1. $\wedge n.$ $[$ Al $\subseteq A;f\in Aarrow A1;y\in A$; itr nfy $\in A1]\Rightarrow f$ (itr

$nfy)\in$ Al

select name from propositions, prop to prove where comparel (name,

char2-c, char2-c1, char3-c1);

name
$funcset\lrcorner nem$

(1 row)

Applying this rule, we have
proof (prove): step 7
goal (1 subgoal):

1. $\wedge n.$ $[$ Al $\subseteq A;f\in Aarrow A1;y\in A$; itr nfy \in Al $]$ $\Rightarrow itrn$

$fy\in A,$

then we try choose next rule to apply:

select name from propositions, prop-to-prove where comparel(name,
char2-c, char2-c1, char3-c1);

$\frac{name}{(0r\mathring{w})}$

This failure is caused by the character $(inS$ (?) $(?))$ of subsetD
”’ $(inS(?x) (7C))^{1/}$ is too restrictive. If we take the character as $(inS$ $($% $)$

$($% $))$, then we can obtain subsetD as follows.

select name from propositions, prop-to-prove where comparel(name,
char2-c, char2-c1, char3-c1);

But, $(inS (\%)(\%))$ matches patterns (inS (xxx) (yyy)) with any xxx
and yyy, subsetD is often included as a superfluous one.

33

name
subsetD
(1 row)

3 Checking premises

In sectionl, we selected rules by comparing the characters of conclusions.
There are many propositions conclusions of them have the same character.
Therefore we can expect that characters of premises distinguish rules. For
example, following two different propositions have conclusions with the same
character.

trans : “
$a=b,$ $b=c$ $a=c$

”

sym $:$

” $a=b\Rightarrow b=a$”

Represent their conclusions in tree as

$((=$ (a) $(b)) (=$ (b) $(c)))$ and $((=$ (a) $(b)))$

respectively. By ignoring difference of variables, we have

$((=(?) (?)) (=(7) (?)))$ and $((=(?) (?)))$.

If sym is applicable to a proposition, then the character of the proposi-
tion’s conclusion should be $(=$ (7) $(?))$ and the proposition should have
a premise with a character $(=$ (7) (7) $)$. So, trans is also selected as a

rewriting rule for the proposition. But if a proposition is rewritten by trans,
then a rule to apply should have at least two premises, sym is not selected.
However, comparing the numbers expressions within a premise makes a mis-
take as following examples show.

Examplel:[Pc, Qc] $\Rightarrow\exists x$. Px $\wedge Qx$

To this proposition, we apply

exI : Pc $==>\exists x$. Px

with P substituted by $\lambda x.$ $Px\wedge Qx$. In this case exI has only one
premise $Pc\wedge Qc$ which is equivalent to $[Pc;Qc].$

In general, rule tactic is not applicable unless the first expression of the
premise is satisfied by a proposition to prove. So, we compare a rule and a
proposition to prove focusing on the relation between variables of the first
expression in the premise and variables of the conclusion.

34

4Other proof tactics: drule, erule, frule

We discussed Isabelle’s tactic rule or rule-tac. Here we discuss briefly on
drule,erule, frule.
drule: As an example, we give the following proposition.

$Example_{-}d$: $b\in\{y.\exists x\in A.y = fx\}\exists a\in$ A.b $=f$ a

To rewrite this proposition, we use the rule

CollectD: $a\in\{x. ?Px\}\Rightarrow?P$?a

as apply (drule CollectD). Then we have:

$\exists x\in.$ $b=fx$ $\exists a\in A.$ $b=f$ a

And the obtained proposition is apparently true. In this way, drule substi-
tutes an existing expression in the premise of the proposition by the conclu-
sion of the rule. Since an original expression in the premise is removed, we
cannot use it anymore.
erule: Let us take the following lemma as an example.

lemma [$b\in B;\exists x\in$ A. $b=fxI\Rightarrow\exists a\in$ A. f a $=b$

In this lemma, the equation in the conclusion is f a $=b$, whereas that
of Example-d is $b=fa$. In this case the equation $b=fx$ in $\exists x\in$ A. b

$=fx$ and equation f a $=b$ in $\exists a\in$ A. f a $=b$ are different in ordering.
So, we need more steps to rewrite. At first by apply (erule bexE). Here
bexE is a rule

bexE : $/[\exists x\in A.?Px;\wedge x.$ $[x\in?A;7pxI=?QI\Rightarrow 7Q$

We have the proposition rewritten as

$\wedge x.$ $[b\in B;x\in A;b= fx]$ $\Rightarrow\exists a\in$ A. fa $=b$

We see the original premise is substituted by the second premise of bexE. It
is easy to see when we use erule. That is, if there is $\exists x.$ Px or $\exists x\in$ A.
Px within a proposition to prove, then we use erule exE or erule bexE.
frule: Let us treat the next proposition

$\wedge xy.$ $[f\in Aarrow B$; inj-onf $A;g\in Barrow C$; inj-ong $B;x$

$\in A;y\in A$; g(fx) $=$ g(fy): fx $=fyI\Rightarrow x=y$

35

To this proposition, we apply a command

apply(frule-tac fl $=f$ and Al $=$ A and xl $=x$ and yl $=y$

in injective-iff [THEN sym])

Here the rule injective-iff [THEN sym] is

[inj-on?fl?Al;?xl \in 7Al;?yl \in 7A1I $\Rightarrow(?f1$?xl $=$

$7f1$?yl $)$ $=$ (7xl $=$?yl)

As a result, an assumption is added within the premise of the propositon to
prove:

$\wedge xy.$ $[f\in A\in B$; inj-onf A; $g\in Barrow C$; inj-ongB; x

$\in A;y\in A$; g(fx) $=$ g(fy); fx $=fy$; $(fx= fy)$ $=$

$(x=y)I\Rightarrow x=y$

Thus frule or frule-tac adds conclusion of an applied rule to the premise of
the proposition to prove. Our selection method for rules does not work to

select rules applied by frule or frule-tac.

5 Discussion on an automated reasoning

Our automated prover consists of three parts:

Database of rules, a function to extract proper rules to apply and
inference engine

We think another important function should be added. We explain the
function presenting a simple example.
A commutative ring R is called boolean[3] if any element x of R satisfies 2 x

$=0$, and $x\cdot x=x$. Then we have

Proposition. If R is boolean, following two hold:
(1) Any finitely generated ideal is principal.
(2) Any prime ideal is maximal.

We try Gedanken expreriment to prove these as if we are a machine
prover.
(1) Mathematical induction can be used in a prover, we prove the proposition
by induction on the cardinality of a generator of the ideal. If it is 1, then

36

it is trivial. Suppose if the cardinality is n , the ideal is principal, we show
the proposition is true is the cardinality is $n+1$. Given an ideal $I=$

$(a_{1}, a_{2}, \ldots, a_{n+1})$. By virtue of the induction assumption, there is an element
a such that $(a_{1}, a_{2}, \ldots, a_{n})=(a)$. We must show $(a_{1}, a_{2}, \ldots, a_{n}, a_{n+1})=$

(a, a_{n+1}) and $(a, a_{n+1})=(a+a_{n+1}+a\cdot a_{n+1})$. Now, we suppose in the
prover’s database, only the definition of boolean is stored. How we can let
the prover find the fact $(a, b)=a+b+a\cdot b$)? It seems our prover cannot find
out this fact now, because there is no rules concerning to this problem. But
since our prover can use LISP, it is not difficult to make a function generating
elements obtained by addition and multiplication starting with two elements.
In fact starting with two elements a and b , we have $0,$ $a,$

b , and $a+b,$ $a\cdot b,$

$a+a\cdot b,$ $b+a\cdot b,$ $a+b+a\cdot b$ only, generated by binary operations of the
ring. We see $a\cdot(a+b+a\cdot b)=a$, and $b\cdot(a+b+a\cdot b)=b$. This implies
both a and b are the element of the ideal $(a+b+a\cdot b)$. q.e.d. of (1).
(2) Let P be a prime ideal. In the residue class ring R/P , by the relation
$\overline{x}^{2}=\overline{x}$, we have $\overline{x}\cdot(\overline{x}-\overline{1})=\overline{0}$. Since R/P is an integral domain, if \overline{x} is not
$\overline{0}$ then $\overline{x}=\overline{1}$. Therefore R/P is a ring with two elements $\{\overline{0}, \overline{1}\}$. It is well
known this ring is a field. This implies P is maximal. As a consequence of
this experiment, we see
(1) Try to generate elements and then try an element generates every element
or not.
(2) Make a residue class ring.
These two are not rules, we call them as mathematical knowledge. So not
only three parts already implemented, a prover should have a function to
select mathematical knowledge and a function to test along the knowledge.

References

[1] Shunji Kometani, Set and General Topology (In Japanese) (Asakura
shoten, 2003)

[2] T. Nipkow, L. Paulson and M. Wenzel, Isabelle/HOL: A Proof Assitant
for Higher Order Logic (Springer, 2010)

[3] M. F. Atiyah and I. G. McDonald, Introduction to Commutative Algebra
(Addison-Wesley publishing Company, 1969)

37

