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1. Introduction

An authentic theory of information can be developed only when the concept of
information is clearly and properly defined. Although there is a common agreement regarding
the importance ofthis concept and its applicability in a very wide range of contexts is widely
recognized, the $te-$ information” is usually used without much effort to specify its meaning
or relationship to the relevant conceptual framework. The dominating, fallacious view is that
the generality of the concept of information calls for its definition in terms of simple,
“obvious”, common sense concepts.

Attempts to define information, although multiple, were usually not veIy successful,
producing concepts too narrow to be applied in all domains where the term is used, too vague
to meet the requirements of a proper definition, or too much detached from the philosophical
or scientific tradition to provide foundations for a nontrivial reflection or theoretical analysis.
One of the typical deficiencies of these attempts was the lack of connection between two
major aspects of information, its quantitative and qualitative characteristics.

The attempts related to the quantitative methods initiated by Shannon in his study of
communication ignored the structural (qualitative) aspects of information. No wonder that
they had to give up the study of semantics for information, if in such perspective information
is an amorphous aggregate with the description exclusively in terms of the probability of
meaningless components. However, the attempts focusing on the qualitative aspects of
information were even less successful, since they did not go much beyond the relationship
with the philosophical reflection on the concept of form.

In order to combine both aspects of information and to place this concept in the context of
non-trivial philosophical conceptual framework, the present author introduced his definition
of information in terms of the one-many categorical opposition with a veIy long and rich
philosophical tradition [1]. Thus, information is defined as a resolution of the one-many
opposition, or in other words as that, which makes one out of many. There are two ways in
which many can be made one, either by the selection of one out of many, or by binding the
many into a whole by some structure. The former is a selective manifestation of information
and the latter is a structural manifestation. They are different manifestations of the same
concept of information, not different types, as one is always accompanied by the other,
although the multiplicity (many) can be different in each case.

This dualism between coexisting manifestations was explained by the author in his earlier
presentations of the definition using a simple example ofthe collection of the keys to rooms
in a hotel. It is easy to agree that the use of keys is based on their informational content, but
information is involved in this use in two different ways, through the selection of the right
key, or through the geometric description of its shape. We can have numbers of the rooms
attached to keys which allow a selection of the appropriate key out of many other placed on
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the shelf. However, we can also consider the shape of key’s feather made of mechanically
distinguishable elements or even of molecules. In the latter case, geometric structure of the
key is carrying information. The two manifestations of information make one out of very
different multiplicities, but they are closely interrelated.

The definition of information presented above, which generalizes many earlier attempts
and which due to its very high level of abstraction can be applied to practically all instances
of the use of the terrn information, can be used to develop a mathematical formalism for
information. It is not a surprise, that the formalism is using very general framework of
algebra [2].

The concept of information requires a variety (many), which can be understood as an
arbitrary set $S$ (called a carrier of information). Information system is this set $S$ equipped with
the family of subsets $s^{arrow}$ satisfying conditions: entire $S$ is in $s^{\infty}$ , and together with every
subfamily of $s^{arrow}$ , its intersection belongs to $s^{\infty}$ , i.e. $s^{arrow}is$ a Moore family. Of course, this means
that we have a closure operator defined on $S$ (i.e. a function $f$ on the power set $2^{S}$ of a set $S$

such that: (1) For every subset A of $S,$ $A\subseteq f(A);(2)$ For all subsets $A,$ $B$ of $S,$ $A\subseteq B\Rightarrow f(A)$

$\subseteq f(B);(3)$ For every subset A of $S,$ $f(f(A))=f(A)$). The Moore family $s^{arrow}$ of subsets is simply
the family f-C1 of all closed subsets, i.e. subsets A of $S$ such that $A=f(A)$ . The family of

closed subsets $s^{arrow}=f-C1$ is equipped with the structure of a complete lattice $L_{f}$ by the set
theoretical inclusion. $L_{f}$ can play a role of the generalization of logic for not necessarily

linguistic information systems, although it does not have to be a Boolean algebra. In many

cases it maintains all fundamental characteristics of a logical system [3].

Information itself is a distinction of a subset $s_{0}^{\infty}$ of $s^{\sim}$ , such that it is closed with respect to

(pair-wise) intersection and is dually-hereditary, i.e. with each subset belonging to $s_{0}^{arrow}$ , all
subsets of $S$ including it belong to $s_{0}^{arrow}$ (i.e. $s_{0}^{\infty}$ is a filter in $L_{f}$).

The Moore family $s^{\infty}$ can represent a variety of structures of a particular type (e.g.

geometric, topological, algebraic, logical, etc.) defined on the subsets of S. This corresponds

to the structural manifestation of information. Filter $s_{0}^{\infty}$ in tum, in many mathematical
theories associated with localization, can be used as a tool for identification, i.e. selection of

an element within the family $s^{\infty}$ , and under some conditions in the set S. For instance, in the
context of Shannon’s selective information based on a probability distribution of the choice

of an element in $S,$ $s_{0}^{arrow}$ consists of elements in $S$ which have probability measure 1, while $s^{\infty}$ is
simply the set of all subsets of S.

This approach combines both manifestations of information, but the relationship between
articulations of these manifestations within the formalism thus far was based on the intuitive
interpretation. It was not clear in what sense we can talk about dualism. What exactly do we
mean by dualism? How can we use the formalism of information to describe two information
systems in the dual relationship?

The last question is of special importance, as the concept of dualism was used by the
author to consider dynamics of information and computing as well as other hierarchically
organized information systems [4, 5].

This paper is proposing answers to such questions based on an algebraic model of
dualism.

2. Preliminaries

This paper will refer to the two main algebraic concepts. The first, concept of a Gallois
connection is well known and belongs to the earliest tools of closure space theory [6]. The
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second, concept of a frame for the closure space was introduced by the author in a relatively
recent article in the context of information integration [7]. While Galois connections are
discussed in many introductory texts about lattices and a brief overview is provided here just
for reader’s convenience and for the clarification of symbolic conventions, frames require
more extensive explanation.

For our purpose, we can focus on the concept ofpolarity, i.e. Galois connection generated
by a binary relation. Let $S,$ $T$ be sets, and $R\subseteq SxT$ be a binary relation between sets $S$ and T.
$R^{*}$ is the converse relation of $R$, i.e. the relation $R^{*}\subseteq T\cross S$ such that $\forall x\in S\forall y\in T:xRy$ iff
$yR^{*}x$ . Then we define $R^{a}(A)=\{y\in T:\forall x\in A:xRy\},$ $R^{e}(A)=\{y\in T:\exists y\in A:xRy\}$ . We can
simplify our notation for single element subsets: $R(x)=R^{a}(\{x\})=R^{e}(\{x\})$ . Obviously,

$R^{a}(A)=\cap\{R(x):x\in A\}$ and $R^{e}(A)=u\{R(x):x\in A\}.$

If $R$ is a binary relation between sets $S$ and $T$, the pair of functions $\varphi:2^{S}arrow 2^{T}$ and $\psi:2^{T}$

$arrow 2^{S}$ between the power sets of $S$ and $T$ defined on subsets A of $S$ by $\varphi:Aarrow R^{a}(A)$ and on

subsets $B$ of $T$ by $\psi:Barrow R^{*a}(B)$ forms a Galois connection, and therefore their both

compositions, defined on subsets A of $S$ by $f(A)=\varphi\psi(A)=R^{a}R^{*a}(A)$ and on subsets $B$ ofT
$g(B)=\varphi\psi(B)=R^{*a}R^{a}(B)$ are transitive closure operators. Also, the functions $\varphi,$ $\psi$ are dual
isomorphisms between the lattices $L_{f}$ and $L_{g}$ of closed subsets for the closure operators $f$ and
$g.$

Probably the best known example of the use of closure operators generated by polarity is
Dedekind’s completion by cuts In this case we have a partially ordered set $<S,$ $\leq>$ in
which:
$\leq^{a}(A)=\{x\in S:\forall y\in A, y\leq x\},$ $\leq^{*a}(A)=\{x\in S:\forall y\in A, y\geq x\}$ and the closure operator $f$

defined by $f_{c}(A)=\leq^{*a}\leq^{a}(A)$ . This gives us MacNeille’s completion [6]:

Let $[P, \leq]$ be aposet and $\varphi$ afunctionfrom $P$ to the complete lattice $L_{c}$ ofthe $f_{c}$ -closed

subsets $ofP$ defined by $\varphi(x)=\leq^{*a}\leq^{a}(\{x\})$ . Then $\varphi$ is an injective, isotone and inverse-isotone

functionpreserving all suprema and infima $tha$ happen to exist in the poset $[P, \leq].$

MacNeille‘s completion is isomorphic to the originalposet whenever it is already a complete
lattice.

The concept of a frame for the closure space defined by a transitive closure operator $f$ on
a set $S$ appeared in the context ofthe reconstruction ofthe entire closure space from its subset.
To avoid misunderstanding, it has to be emphasized that frames are veIy different from
generating sets within closure space $<S,\triangleright$ defined by $B\in f$-Gen if $f(B)=$ S. Bases, i.e.
generating and independent subsets $(B\in f-Ind$ if $\forall x\in B:x\not\in f(B\backslash \{x\})$ , which in vector spaces
are minimal generating subsets are of great importance for linear algebra. However, in more
general cases bases are of limited interest for the study of closure spaces. Bases may have
different cardinality, or may not exist at all.

Example 2.1. Let $S$ be an infinite set and fbe a closure operator defined by $f(A)=AifA$ is
a finite subset of $S$ , and $f(A)=S$ otherwise. It is easy to see that there is no base in this
closure space, as there is no minimal infinite subset.

Example 2.2. Let X be a set with two disjoint proper, nonempty subsets $T$ and $U$, and let the
closure operator $f$ be defined by $f(A)=S$, if $T\subseteq A$ or $U\subseteq A,$ $f(A)=A$ otherwise. Then, both
$T$ and $U$ are bases. $IfT$ and $U$ are not equicardinal, they provide example ofbases of different
cardinality in the same closure space.
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Thus, our objective is to identify the subsets of a closure space $<S,\triangleright$ from which we can
reconstruct the entire structure, in similar way as a complete atomic Boolean algebra or
quantum logic can be reconstructed from the set of its atoms, a finite distributive lattice from
the set of its join-irreducible elements, or more generally, a lattice without infinite chains
from the set consisting of all join- and meet-irreducible elements. Example 2.2 showed that
the distinction of a base does not give us much information about the closure operator, as the
subset $T$ is a base, but the closure for many subsets is not determined by this fact.

For this reason, we will focus our attention on frames defined as follows.

Definition 2.1. $Let<Sf>be$ a closure space andB its subset (not necessarilyproper). $B$ is a

frame$for<Sf>$ , if $\forall A\subseteq S3B_{A}\subseteq B.\cdot f(A)=f(B_{A})$ . $A$ fiame is proper, if$B$ is a proper subset

of $S$; it is a minimalframe, if there is no proper subset of $B$ which is aframe. The closure
space is simple if it does not have properframe.

Proposition 2.1. [7] The condition defining aframefor closure space $<SJ>is$ equivalent to:
$\forall A\subseteq S.\cdot f(A)=f(B\cap f(A))$, where the equality can be replaced by the inclusion $\subseteq$

Since all set $S$ is always $a$ (trivial) improper frame, each closure space has at least one
frame. In some cases it is the only frame, as can be seen in the closure space from Example
2.1 above, in which the only subset of $S$ having nonempty intersections (and therefore
nonempty closure ofthe intersections) with all (closed) one-element sets is the set S.

Naturally, we are interested in the minimal subsets of closure spaces which are frames. It
is obvious that $B\backslash f(\emptyset)$ is always a frame, whenever $B$ is a frame in $<S,\triangleright.$

Although, obviously in every finite closure space there exists a minimal frame, in infinite
spaces there may be no minimal frames at all, as the following example shows.

Example 2.3. Let $S=[O,1]$ the interval ofreal numbers with its natural ordering $\leq$, and $f(A)=$

$\leq^{*a}\leq^{a}(A).$ $<S,\triangleright has$ a nontrivial frame $B$ consisting of all rational numbers on [0,1]. The
closed subsets for this closure are simply closed intervals [O,a] for every real number a in
[0,1], and therefore the condition for being a frame is for the set $B:\forall a\in S$ : [O,a] $=$

$f(B\cap[O,a])$ . If a is rational, it is obvious. If it is irrational, then $B\cap[O,a]$ consists of all rational
numbers on the interval [O,a], whose closure is [O,a].

Now, this closure space does not have a minimal frame. This can be restated as follows. If
$B$ is a frame, then $\forall a\in S:B_{a}=B\backslash \{a\}$ is also a frame. To prove it, suppose there exists a subset

A of $S$ , such that $f(A)\neq f(B_{a}\cap f(A))$ . This means $f(A)=$ [O,d] for some $d$ in $S,$ $f(B_{a}\cap f(A))$

$=[0,c]$ for some $c$ in $S$ , and $c<d$ . Since $B_{a}\cap f(A)=B_{a}\cap[0,d]\subseteq f(B_{a}\cap f(A))=[0,c]$ , we have
$B_{a}=B\backslash \{d\}$ , as otherwise $f(A)=f(B_{a}\cap f(A))$ , and therefore $a=d.$

Now, let $c<e<d=a$ . Then, $B\cap[O,e]=B_{a}\cap[0,e]$ , and $f(B\cap[O,e])=f(B_{a}\cap[0,e])$

$\subseteq f(B_{a}\cap[0,d])=$ [O,c], and therefore $f(B\cap[O,e])\neq[0,e]$ , which means $B$ is not a frame, $a$

contradiction concluding the proof.

We already have identified a convenient equivalent for the definition of a frame in
Proposition 2.1. However, there are several other equivalent conditions for a subset $B$ of the
closure space $<S,\triangleright to$ be a frame.

Proposition 2.2. [7] Thefollowing conditionsfor a subset $B$ of$S$ are equivalent:
a) $B$ is aframefor $<SJ\succ,$

b) $\forall A\subseteq S:A\subseteq f(B\cap f(A))_{f}$
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c) $\forall x\in S:x\in f(B\cap f((x\}))$,

d) $\forall x\in S:f((x\})=f(B\cap f((x\}))$,

e) $\forall C_{y}D\subseteq S.\cdot f(C)\cap B=f(D)nB\Rightarrow f(C)=f(D)$,

j) $\forall C\subseteq S.\cdot C\in f-Cl\Rightarrow f(BrC)=C.$

Remark. As a consequence of the fourth condition, every $T_{1}$ closure space $<S,\triangleright$ (in

which every one-element subset, or singleton, is closed, and therefore the empty set is also
closed) must be simple, as the only set intersecting with all singletons is all set S.

Also, it is worth to mention that in the fifth condition the arbitrary subsets $C$ and $D$

cannot be replaced by singletons, as the following example shows.

Example 2.4. [7] Let $<S,\triangleright be$ a closure space, $T$ be a proper, nonempty subset of $S$ , and fbe
defined for any subset A of $S$ by: $f(A)=A$ if $A\subseteq T$, and $f(A)=S$ otherwise. Then, The set $T$

satisfies the condition Vx,$y\in S:f(\{x\})\cap T=f(\{y\})\cap T\Rightarrow f(\{x\})=f(\{y\})$ , but $T$ is not a ffame
for $<S,\triangleright.$

The following two examples justify our earlier claim that the concept of a frame has a
similar role in closure spaces to the role played by the set of atoms in a finite Boolean algebra
or the set ofjo\’in-irreducible elements in a finite distributive lattice.

Example 2.5. Let $L$ be a finite set with a structure of Boolean algebra defined on it. We can
define a closure space structure on $L$ by $f(A)=\leq^{*a}\leq^{a}(A)$ . Then, the set At(L) of all atoms in
$L$ is a minimal frame. Moreover, the restriction of the closure operator $f$ to At(L) has all
subsets ofAt(L) as closed subsets.

Example 2.6. Let $L$ be a finite set with a structure of distributive lattice defined on it. As

above, $f(A)=\leq^{*a}\leq^{a}(A)$ . Then, the set $J(L)$ of all $j_{0}in-i_{ITeducible}$ elements (elements which
are notjoins ofother elements) is a minimal frame.

Let’s retum to the issue of the relationship between frames and bases in closure spaces.
Obviously, every frame $B$ is a generating set $(f(B)=S)$ . However, it does not have to be an
independent set, and therefore it does not have to be a base. Since independent sets are
minimal sets generating their closure it follows that if a frame is a base, it has to be a minimal
frame. However, Example 2.2 shows an example of a simple closure space (with only trivial
frame of entire set S) in which there are proper subsets $T$ and $U$ which are bases. Thus the
concepts of frames and of bases are essentially different, although not mutually exclusive.
The following is a simple example ofa frame which is a base.

Example 2.7. [7] Let $\{T_{i}:i\in I\}$ be a partition of $S$ , and the closure operator $f$ on $S$ be defined
by $f(A)=u\{T_{i}:i\in I$ and $T_{i}\cap A\neq\emptyset\}$ . Then every subset $B$ of $S$ , such that $\forall i\in I:|B\cap T_{i}|=1$ is a
minimal frame which also is a base.

It is possible to characterize the subsets which are both frames and bases.

Proposition 2.3. [7] Aframe $B$ in a closure space $<SJ>is$ a base iffthe restriction $g$ of the
closure operation$f$ to set $B$ satisfies $\forall A\subseteq B:g(A)=A.$

Since frames are closed subsets only in simple spaces, the restriction of the closure
operator to a frame is usually not a subspace, i.e. the action of the restricted closure operator
on the subsets of the frame is different from the action of the original closure operator.
However, the restriction turns out to be in a strict correspondence with the original closure
space structure.
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In the following, if no confusion is likely, $g$ (with possible indices) will indicate the
restriction of the closure operator $f$ (with possible corresponding indices) to the frame $B$ in
$<S,\triangleright.$

We could see above that the action of a closure operator $f$ on an entire space $S$ can be
recovered from its action on any frame B. However, it was necessary to know the closures of
all subsets $ofB$ within the original space $<S,\triangleright$ . The question is to what extent the restriction
ofa closure operator fon set $S$ to a frame $B$ determines the original structure.

We will start from considering the relationship between the lattices of closed subsets for
$<S,\triangleright and<B,g>.$

Proposition 2.4. [7] Let $L_{f}$ and $L_{g}$ be the complete lattices of closed subsets $in<SJ>and$
$<B,g>$ respectively, and $g$ be the restriction ofclosure$fto$ aframe $B$ $in<Sf>$ . Then $L_{f}andL_{g}$

are isomorphic.

Corollary. Let $f_{l}$ and $f_{2}$ be closure operators defined on the same set $S,$
$g_{1}$ and $g_{2}$ be their

respective restrictions to a subset $BofS$, which is aframefor both closure spaces $<Sf_{1}>and$

$<Sf_{2}>$ . Then, firom the equality of the restrictions $g_{1}=g_{2}$ follows the isomorphism of the
lattice $off_{J}$-closed subsets $ofS$ and the lattice of $f_{2}$-closed subsets $ofS.$

However, from the equality of restrictions we can only conclude about the isomorphism
of the lattices of closed subsets for the original closure spaces, but not about their identity.
Thus, frames determine the structure of entire closure space only up to isomorphism of
lattices ofclosed subsets, as the following example shows.

Example 2.8. Let $f_{1}$ and $f_{2}$ be closure operators defined as in Example 2.7 on the same set $S$

by two partitions $\{T_{i}:i\in I\}$ and $\{U_{i}:i\in I\}$ , which although different satisfy the condition $\forall i\in I$ :
$T_{i}\cap U_{i}\neq\emptyset$ . Then we can select a set $B$ which satisfies both conditions $\forall i\in I:|B\cap T_{i}|=1$ and
$\forall i\in I:|B\cap U_{i}|=1$ , i.e. which is a common ffame.

Our interest is naturally in finding either minimal frames, or, in the case when the closure
space does not have minimal frames, in finding the ways to minimize them according to
particular needs. We will study the relationship between different frames from this
perspective.

Proposition 2.5. Let subsets $B_{J}$ and $B_{2}$ of $S$ be frames $in<SJ>$, and $g_{2}$ be the restriction of
closurefto $B_{2}.$ $IfB_{l}\subseteq B_{2}$, then $B_{1}$ is aframe $in<B_{2},g_{2}>.$

Proof: Let A be a subset of B. Then, $g_{2}(B_{1}\cap g_{2}(A))=f(B_{1}\cap(f(A)\cap B_{2}))\cap B_{2}=$

$f(B_{1}\cap f(A))\cap B_{2}=f(A)\cap B_{2}=g(A)$ .

Proposition 2.6. Let subset $B_{2}$ of$S$ be aframe $in<Sj>andsubsetB_{1}ofB_{2}$ be aframe $in<B_{2},$

$g_{2}>$ , where $g_{2}$ is the restriction ofclosure $ftoB_{2}$. Then $B_{1}$ is aframe $in<SJ>.$

Proof: Let A be a subset of S. Then $f(B_{1}\cap(f(A))=f(f(B_{1}\cap(f(A)))=f(f(B_{1}\cap(B_{2}\cap(f(A))))$

$=$ $f(f(B_{1}\cap(B_{2}\cap f(B_{2}\cap f(A)))))$ $=$ $f(f(B_{1}\cap g_{2}(B_{2}\cap f(A))))$ $\supseteq f(g_{2}(B_{1}\cap g_{2}(B_{2}\cap f(A))))$ $=$

$f(g_{2}(B_{2}\cap f(A)))=f(B_{2}\cap f(B_{2}\cap f(A)))=f(B_{2}\cap f(A))=f(A)$ .

Corollary. A frame $B$ in a closure space $<SJ>is$ minimal iffthe closure space $<B,g>with$

the restriction $g$ ofclosure $f$to $B$ is a simple space.
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3. Closure Space Induced on the Power Set

Examples of dual information systems with different varieties (such as hotel room keys
considered as members of the variety ofall keys and at the same time as geometric structures
integrating the variety of molecules into particular shape) suggest that the dualism of
information manifestations is a result of the hierarchic relationship in which members of one
variety are varieties themselves. Thus, we can try to inquire the relationship between closure
spaces on a set $S$ and on its power set $2^{s}.$

The simplest fact related to the transition from a set to its power set, well known from the
very beginning of the study of closure spaces, is that the family of all Moore families (each

being a subset of $2^{s}$) is itself a Moore family $(as a$ subset $of 2^{T},$ where $T=2^{s})$ . This fact has
interesting consequences for the structure of closure spaces on S. Closure operators form a
complete lattice, in which we can consider the least or the greatest closure operator of some
property, which is greater than, or less then given one, i.e. we can consider minimal or
maximal modifications of closure operators [8]. However, this relationship between a set $S$

and its power set does not seem to build any specific relationship between closure operators
on set $S$ and on its power set.

More promising is approach in which the binary relation $R$ is built between the set $S$ and
its power set $2^{s}$ by the membership of elements of $S$ in the closures of subsets of $S$ :

Definition 2.1. $Let<SJ>be$ a transitive closure space. Define for $x\in S$ and $A\in f$ a binar
relation $R_{f}\subseteq S\cross \mathscr{J}$ such that $xR_{f}Aifx\in f(A)$ . Ifno confusion is likely, we will write simply $R$

instead $ofR_{f}$

The Galois connection defined by this relation was used 70 years ago by Everett to
demonstrate that every closure space is produced by a Galois connection, as for every subset

A of $S$ we have $R_{f}^{*a}R_{f}^{a}(A)=f(A)$ , i.e. we recover the original closure operator $f[9]$ . For our
purpose, more interesting is the other closure operator defined on the power set of S.

We have: $\forall A\subseteq S:R^{a}(A)=\{B\in 2^{s}:A\subseteq f(B)\}$ or equivalently $R^{a}(A)=\{B\in 2^{s}:f(A)\subseteq$

$f(B)\}$ . Also we have: $\forall\beta\subseteq 2^{s}:R^{*a}(\beta)=\cap\{f(B):B\in\beta\}.$

Thus, we can define a transitive closure $g$ on $2^{s}$ by:
$\forall\beta\subseteq 2^{s}:g(\beta)=R^{a}R^{*a}(\beta)=\{A\subseteq S:\cap\{f(B):B\in\beta\}\subseteq f(A)\}.$

We know from the properties of Galois connections that the complete lattice of $f$-closed
subsets of $S$ (f-C1) is dually isomorphic to the lattice of $g$-closed subsets of the power set $2^{s}$

(g-C1). This dual isomorphism is given by either $\varphi:2^{S}arrow 2^{T}$ , where $T=2^{S}$ with $\varphi:Aarrow$

$R^{a}(A)=\{B\in 2^{s}:A\subseteq f(B)\}$ , or by $\psi:2^{T}arrow 2^{S}$ , where again $T=2^{s}$ with $\psi:\betaarrow R^{*a}(\beta)=$

$\cap\{f(B):B\in\beta\}.$

Now we can observe that g-C1 consists of the families of subsets of $S$ which satisfy the

condition: $\forall\beta\subseteq 2^{s}:\beta\in g-C1$ iff $[\forall A\subseteq S:\cap\{f(B):B\in\beta\}\subseteq f(A)\Rightarrow A\in\beta$ }.
Thus, we get a mutual correspondence linking all closure operators on $S$ with some

closure operators on the power set of $S$ in such a way that corresponding closure operators
have dually isomorphic lattices of closed subsets. This correspondence is our candidate for
the formalization of the duality of information manifestations in hierarchically related
information systems.

Our present goal is to investigate the properties of the closure operator $g$ and its relation
to the closure operator $f$. We start with an example of the simple example of the trivial
closure operator fsuch that $\forall A\subseteq S:f(A)=A$ whose set ofclosed subsets is the power set of $S$

and which generates the relation $xRAiffx\in A.$
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Then we have $\forall A\subseteq S:R^{a}(A)=\{B\in 2^{s}:A\subseteq B\}$ , i.e. $R^{a}(A)$ is the principal filter generated by

A. Also we have: $\forall\beta\subseteq 2^{S}:R^{*a}(\beta)=\cap\{B:B\in\beta\}$ . Finally $\forall\beta\subseteq 2^{S}:g(\beta)=\{A\subseteq S:\cap\{B:B\in\beta\}$

$\subseteq A\}$ , i.e. $g(\beta)$ is the principal filter generated by the intersection ofall sets in $\beta$ . This means
that $\forall\beta\subseteq 2^{S}:\beta\in g-C1$ iff $[\forall A\subseteq S:\cap\{B:B\in\beta\}\subseteq A\Rightarrow A\in\beta$ }.

This special and of course trivial case gives the most direct association with the dualism
of information manifestations, if information is understood as a property of objects, and the
property is identified with the set ofobjects which have it. But this also demonstrates that the
intuitive understanding of the dualism can be misleading, as in more general case the
association can be much more complicated.

In the general case where there are no assumptions regarding the closure operator $f$ on $S,$

we have the following simple facts provided here without proofs:

Proposition 3.1.
1. $\emptyset\in\sqrt{}\Rightarrow g(\beta)=S.$

2. $B_{1},B_{2}\in\beta\ B_{1}\underline{<}B_{2}\Rightarrow g(\beta)=g(\beta(B_{2}\})$ .
3. $B_{1},B_{2}\in\beta\ f(B_{1})\underline{<}f(B_{2})\Rightarrow g(\beta)=g(\beta(B_{2}\})$ .
4. $\alpha\subseteq\beta\Rightarrow g(\sqrt{)}=g(\beta\alpha(\Lambda\cap\alpha))$

5. $(\cap\sqrt{})\in\beta\Rightarrow g(\beta)=g(((\cap\sqrt{)}\})$ .
6. $\beta’=\zeta f(B):B\in\beta\})\Rightarrow g(\sqrt{})=g(\beta)$ .
7. $A\in g(\sqrt{})$ & $A\subseteq B\Rightarrow B\in g(\sqrt{})$ ($i.e.$ $g(\beta)$ is dually hereditary)

8. $g(\beta)$ does not have to be afilter.
9. $f(A)=A\in g(\beta)$ &f(B) $=B\in g(\beta)\Rightarrow ArB=f(A)nf(B)\in g(\beta)$ .
10. $g(\sqrt{})=\beta\Rightarrow f$-closed elements of$\beta$ form afilter.
The last statement is of special interest for us, as we can see that each $g$-closed family of

subsets of $S$ corresponds to some filter of $f$-closed sets.
The sixth statement ofthe proposition has even more important consequences.

Corollary
The familyf-Cl off-closed subsets $ofS$ is aframefor the closure space $<F,g>,$ $i.e.$ $\forall\beta\subseteq^{-}$

$2^{S}\Xi\beta_{A}\subseteq f-Cl\subseteq 2^{S}.\cdot g(\sqrt{)}=g(\beta_{A})$ .

4. Conclusion

The dualism of information manifestations understood as the relationship between
information systems arranged into the two level hierarchy, in which the multiplicity ofhigher
rank information ca1mer consists of elements which themselves are multiplicities of lower
rank information systems can be formalized using the Galois connection defined by a binary
relation $R_{f\subseteq}S\cross 2^{s}$ such that $xR_{f}$ A $ifx\in f(A)$ . The closure relation fon the set $S$ describes the
information system ofthe lower rank.

The Galois closure $Aarrow R_{f}^{*a}R_{f}^{a}(A)$ for the subsets of $S$ tums out to be simply closure $f.$

The other Galois closure on the power set of $S$ defined by $\forall\beta\subseteq 2^{s}:g(\beta)=R^{a}R^{*a}(\beta)=\{A\subseteq S$ :
$\cap\{f(B):B\in\beta\}\subseteq f(A)\}$ describes the information system of higher rank. The relationship
between closures makes the family of $f$-closed subsets a frame for $g$ closure. The $g$-closed
subfamilies of the power set correspond to filters in the family of $f$-closed subsets. The
relationship clarifies the meaning of the families of closed subsets and of the filters in these
families introduced ad hoc by the author in his earlier papers on the formalism for
information theory.
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