The proportion of numerical semigroups with no descendant or an infinite number of descendants ¹

神奈川工科大学・基礎・教養教育センター 米田 二良 Jiryo Komeda Center for Basic Education and Integrated Learning Kanagawa Institute of Technology

Abstract

Let p be the map between the sets of numerical semigroups sending a numerical semigroup to the one whose genus is decreased by 1. We give many examples of numerical semigroups H with $p^{-1}(H) = \emptyset$. We investigate the density of some kinds of numerical semigroups H with $p^{-1}(H) = \emptyset$ in the whole set of numerical semigroups. Moreover, we determine the numerical semigroups H with $p^{-n}(H) \neq \emptyset$ for any n.

1 The conductor and descendants

Let \mathbb{N}_0 be the additive monoid of non-negative integers. A submonoid H of \mathbb{N}_0 is called a *numerical semigroup* if the complement $\mathbb{N}_0 \setminus H$ is finite. The cardinality of $\mathbb{N}_0 \setminus H$ is called the *genus* of H, denoted by g(H). In this section H stands for a numerical semigroup of genus g. We set

$$m(H) = \min\{h \in H \mid h > 0\},\$$

which is called the *multiplicity* of H. We set

$$c(H) = \min\{c \in \mathbb{N}_0 \mid c + \mathbb{N}_0 \subseteq H\},\$$

which is called the *conductor* of H. Then we have $g + 1 \leq c(H) \leq 2g$. We note that $c(H) - 1 \notin H$. We set $p(H) = H \cup \{c(H) - 1\}$, which is a numerical semigroup of genus g - 1. The numerical semigroup p(H) is called the *parent* of H. The numerical semigroup H is called a *child* of p(H). Let M(H) be the minimal set of generators for H. For $\mu \in M(H)$ with $\mu > f(H)$, which is called an *effective generator* of H, we set $H_{\mu} = H \setminus \{\mu\}$, which is a child of H, and vice versa. A numerical semigroup H' is called a descendant of H if there exists $i \geq 1$ such that $p^i(H') = H$. A child of H is a descendant of H. In this paper we are interested in numerical semigroups H which have either no descendant, i.e., no child or an infinite number of descendants.

Proposition 1.1. Suppose that c(H) = g + 1. Then we have $H = \langle g + 1 \longrightarrow 2g + 1 \rangle$, which has an infinite number of descendants. In fact, for any $i \ge 1$ we have

$$p^i(\langle g+1+i \longrightarrow 2g+1+i \rangle) = H.$$

¹This paper is an extended abstract and the details will appear elsewhere.

Proposition 1.2. Suppose that c(H) = g + 2. Then H has an infinite number of descendants.

Proof. We have c(H) - 1 - g = 1. Since we have $g.c.m.(\lambda_0, \lambda_1) = \lambda_1 > 1$, by Theorem 10 in [1] H has an infinite number of descendants.

We set $\alpha_i = l_i - i$ for i = 1, ..., g where $\mathbb{N}_0 \setminus H = \{l_1 < \cdots < l_g\}$. We call $\alpha(H) = (\alpha_1, \ldots, \alpha_g)$ the Schubert index of H. Then we have $\alpha(p(H)) = (\alpha_1, \ldots, \alpha_{g-1})$.

Proposition 1.3. Assume that c(H) = 2g. If $H \neq \langle 2, 2g + 1 \rangle$, then H has no child.

Proof. Assume that H has a child \tilde{H} , i.e., $p(\tilde{H}) = H$. Since H is symmetric, i.e., c(H) = 2g, we have $\alpha(\tilde{H}) = (\alpha_1, \ldots, \alpha_{g-1}, g-1, \alpha_{g+1})$. Hence we get $\alpha_{g+1} = g-1$ or g. Case 1: $\alpha_{g+1} = g$. Then \tilde{H} is symmetric. Since $2g - 1 \notin \tilde{H}$, we have $\tilde{H} \ni 2(g + 1) - 1 - (2g - 1) = 2$, which implies that $\tilde{H} = \langle 2, 2(g + 1) + 1 \rangle$. Hence, we get $H = p(\tilde{H}) = \langle 2, 2g + 1 \rangle$.

Case 2: $\alpha_{g+1} = g - 1$. Then \tilde{H} is quasi-symmetric. Since $2g - 1 \notin \tilde{H}$, we have $\tilde{H} \ni 2(g+1) - 2 - (2g-1) = 1$, which implies that $\tilde{H} = \mathbb{N}_0$.

Proposition 1.4. Assume that c(H) = 2g - 1. If H is different from (3, g + 2, 2g + 1) with $g \neq 1 \mod 3$ and $(g \longrightarrow 2g - 3, 2g - 1)$, then H has no child.

Proof. For the proof see Theorem 3.9 in [4].

2 The proportion of certain kinds of numerical semigroups

Let ϵ be a fixed positive number. Let $\gamma = \frac{5+\sqrt{5}}{10} = \frac{\phi}{\sqrt{5}}$ where ϕ is the golden ratio. For a non-negative integer g let NS(g) be the set of numerical semigroups of genus g. We set $\Phi S_{\epsilon}(g) = \{H \in NS(g) \mid (\gamma - \epsilon)g < m(H) < (\gamma + \epsilon)g\}$. Remark 2.1. ([3])) We have $\lim_{g \to \infty} \frac{\#\Phi S_{\epsilon}(g)}{\#NS(g)} = 1$.

For any positive integer $n \ge 2$ we set $L_n(H) = \{l_1 + \dots + l_n \mid l_i \in \mathbb{N}_0 \setminus H, \text{ all } i\}$.

Key Lemma 2.2. Let $0 < \epsilon < \frac{1}{21}$ and $m \ge 420$. Assume that m = m(H) and $(2-\epsilon)m < c(H) - 1 < (2+\epsilon)m$. If $\#L_n(H) \ge (2n-1)(g-1) - 19$ with some $n \ge 2$, then we have g < 1.38175m.

For the proof see [5].

Theorem 2.3. We set $BS(-19,g) = \{H \in NS(g) \mid \sharp L_n(H) \ge (2n-1)(g-1) - 19 \text{ for some } n \ge 2\}.$ Then we obtain $\lim_{g \to \infty} \frac{\sharp BS(-19,g)}{\sharp NS(g)} = 0.$ For the proof see [5].

Remark 2.4. ([7])) Assume that $c(H) \neq 2g$. Then we have $L_2(H) \supseteq \{2, 3, 4, 5, ..., 2g\}$.

Using Remark 2.4 we get the following:

Key Lemma 2.5. Assume that c(H) = 2g - i with $1 \leq i \leq g - 1$. Then we have $\sharp L_2(H) \geq 3g - 3 - (i - 1)$.

For the proof see [5].

Main Theorem 2.6. We set

$$CS(20,g) = \{ H \in NS(g) \mid 2g - 20 \le c(H) \}.$$

Then we obtain $\lim_{g \to \infty} \frac{\#CS(20,g)}{\#NS(g)} = 0.$

For the proof see [5].

Corollary 2.7. We have $\lim_{g \to \infty} \frac{\#\{H \in NS(g) \mid c(H) = 2g\}}{\#NS(g)} = 0.$ Corollary 2.8. We have $\lim_{g \to \infty} \frac{\#\{H \in NS(g) \mid c(H) = 2g - 1\}}{\#NS(g)} = 0.$

Problem 1. Assume that $c(H) \leq 2g - 21$. What kind of numerical semigroup H has a child?

Problem 2.

$$\lim_{g \to \infty} \frac{\#\{H \in NS(g) \mid H \text{ has no child}\}}{\#NS(g)} = 0 ?$$

3 Numerical semigroups with an infinite number of descendants

We are interested in numerical semigroups which have infinite numbers of descendants. Such a numerical semigroup is said to be *IND*. We set $d_2(H) = \{h' \in \mathbb{N}_0 \mid 2h' \in H\}$, which is also a numerical semigroup. n(H) stands for the minimum odd number in H.

Theorem 3.1. Assume that $n(H) \ge 2c(d_2(H)) + 1$. Then the following are equivalent: i) H is IND.

ii)
$$H = 2d_2(H) + \langle n, n+2, ..., n+2(m'-1) \rangle$$
 where $n = n(H)$ and $m' = m(d_2(H))$.

For the proof see [6].

Example 3.1. Let $t \ge 1$. We set $H = 2\langle 2, 2t+1 \rangle + \langle 4t+1, 4t+3 \rangle$. Then we have $n(H) = 4t+1, d_2(H) = \langle 2, 2t+1 \rangle$ and $c(d_2(H)) = 2t$. Hence, H is IND. In fact, when we set $H_i = 2\langle 2, 2t+1 \rangle + \langle 4t+1+2i, 4t+3+2i \rangle$, we obtain $p^i(H_i) = H$ for $i \ge 1$.

Theorem 3.2. Let H be a numerical semigroup and $m' = m(d_2(H))$. For an odd number n we set $H = 2d_2(H) + \langle n, n+2, \ldots, n+2(m'-1) \rangle$. i) If $n \ge 2c(d_2(H)) + 1$, then H is IND. ii) If $g(d_2(H)) \ge 1$ and $n = 2c(d_2(H)) - 1$, then H is IND. iii) If n = n(H) and $n \le 2c(d_2(H)) - 5$, then H is not IND.

For the proof see [6].

Theorem 3.3. Let *H* be a numerical semigroup, $m' = m(d_2(H)), g' = g(d_2(H)) \ge 2$ and $c' = c(d_2(H))$. We set $H = 2d_2(H) + (2c' - 3, 2c' - 3 + 2, ..., 2c' - 3 + 2(m' - 1))$. i) If $d_2(H)$ is not IND, then neither is *H*.

ii) Assume that $d_2(H)$ is IND. Then H is IND if and only if we have

$$(\lambda'_0, \lambda'_1, \dots, \lambda'_{c'-1-g'}, 2c'-3) > 1$$

where $d_2(H) = \{\lambda'_0 < \lambda'_1 < \cdots < \lambda'_{c'-1-g'} < \cdots\}.$

For the proof see [6].

Theorem 3.4. Assume that $n(H) \leq 2c' - 1$ where $c' = c(d_2(H))$. If H is IND, then there exists $i \geq 0$ such that $p^i(H)$ is one of the following: i) $2d_2(p^i(H)) + \langle 2c^{(i)} - 1, 2c^{(i)} + 1, \dots, 2c^{(i)} + 2m^{(i)} - 3 \rangle$ where $c^{(i)} = c(d_2(p^i(H)))$ and $m^{(i)} = m(d_2(p^i(H)))$ ii) $2d_2(p^i(H)) + \langle 2c^{(i)} - 3, 2c^{(i)} - 1, \dots, 2c^{(i)} + 2m^{(i)} - 5 \rangle$ with $(\lambda_0^{(i)}, \lambda_1^{(i)}, \dots, \lambda_{c^{(i)} - 1 - g^{(i)}}^{(i)}, 2c^{(i)} - 3) > 1$ where $g^{(i)} = g(d_2(p^i(H)))$ and $d_2(p^i(H)) = \{\lambda_0^{(i)} < \lambda_1^{(i)} < \dots\}$.

For the proof see [6].

Remark 3.5. The converse of Theorem 3.4 does not hold. In fact, let

 $H = \langle 10, 15, 17, 18, 21, 22, 23, 24, 26, 29 \rangle.$

Then we have c(H) = 20, g(H) = 15 and c(H) - 1 - g(H) = 4. It follows from $H = \{0 < 10 < 15 < 17 < 18 < \cdots\}$ and (0, 10, 15, 17, 18) = 1 that H is not IND. Moreover, we have $d_2(H) = \langle 5, 9, 11, 12, 13 \rangle$. Then we obtain $2c(d_2(H)) - 3 = 2 \times 9 - 3 = 15$, $m(d_2(H)) = 5$, $2c(d_2(H)) + 2m(d_2(H)) - 5 = 23$ and

$$p(H) = 2\langle 5, 9, 11, 12, 13 \rangle + \langle 15, 17, 19, 21, 23 \rangle.$$

We note that $d_2(p(H)) = \langle 5, 9, 11, 12, 13 \rangle$, $c(d_2(H)) - 1 - g(d_2(H)) = 9 - 1 - 7 = 1$ and (0, 5) = 5 > 1.

On the other hand we consider

$$H' = \langle 10, 15, 18, 19, 21, 22, 23, 24, 26, 27 \rangle.$$

Since g(H') = 15 and c(H') = 18, we obtain c(H') - g(H') - 1 = 2. It follows from (0, 10, 15) = 5 > 1 that H' is IND. Moreover, we have p(H) = p(H').

References

- M. Bras-Amóros, S. Bulygin, Towards a better understanding of the semigroup tree, Semigroup Forum 79 (2009) 561–574.
- [2] R.O. Buchweitz, On Zariski's criterion for equisingularity and non-smoothable monomial curves, Preprint 113, University of Hannover, 1980.
- [3] N. Kaplan, L. Ye, The proportion of Weierstrass semigroups, J. Algebra 373 (2013) 377-391.
- [4] J. Komeda, On quasi-symmetric numerical semigroups, Research Reports of Kanagawa Institute of Technology B-35 (2011) 17-21.
- [5] J. Komeda, The proportion of numerical semigroups with high conductor, in preparation.
- [6] J. Komeda, The proportion of numerical semigroups which have infinite numbers of descendants, in preparation.
- [7] G. Oliveira, Weierstrass semigroups and the canonical ideal of non-trigonal curves, Manuscripta Math. 71 (1991) 431–450.
- [8] F. Torres, Weierstrass points and double coverings of curves with application: Symmetric numerical semigroups which cannot be realized as Weierstrass semigroups, Manuscripta Math. 83 (1994) 39–58.