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Non-Noetherian groups and
primitivity of their group rings

Tsunekazu Nishinaka *
Department of Business Administration
Okayama Shoka University

A ring R is (right) primitive provided it has a faithful irreducible (right) R-module. If
non-trivial group G is finite or abelian, then the group ring KG over a field K can never be
primitive. In the present note, we focus on a local property which is often satisfied by groups
with non-abelian free subgroups:

(¥*) For each finite subset M of non-identity elements of G, there exists a subset
X of three elements of G such that (z7'g;71) - (27, gm®m) = 1 implies
Z; = Z441 for some i, where g; € M and z; € X.

We can see that if G is countably infinite group and satisfies (%), then KG is primitive for
any field K. More generally, if G has a free subgroup whose cardinality is the same as that of
G and satisfies (x), then KG is primitive for any field K. As an application of this theorem,
we improve or generalize [1]; we state the primitivity of group algebras of locally amalgamated

free products.

1 Primitive group rings

Let R be aring with the identity element (R need not be commutative). A ring
R is right primitive if and only if there exists a faithful irreducible right R-module
Mg, where My, is irreducible provided it has no non-trivial submodules, and Mg
is faithful provided the annihilator of it is zero. The above definition is equivalent
to the following: There exists a maximal right ideal p in R which contains no
non-trivial ideals.

Let KG be the group ring of a group G over a field K. If non-trivial group G
is finite or abelian, then the group ring K G over a field K can never be primitive.
The first example of primitive group rings was offered by Formanek and Snider
[5] in 1972. After that, many examples of primitive group rings were constructed.
In 1978, Domanov [2], Farkas-Passman [3] and Roseblade [10] gave the complete
solution for primitivity of group rings of polycyclic-by-finite groups.

Theorem 1.1. (Domanov[2], Farkas-Passman/3],Roseblade[10]) Let G be a non-
trivial polycyclic-by-finite group. Then KG is primitive if and only if A(G) =1
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and K is non-absolute, where A(G) = {g € G | [G : Cg(9)] < >} and K is
absolute if it is algebraic over a finite field.

Polycyclic-by-finite groups are belong to the class of noetherian groups. Almost
all other infinite groups are belong to the class of non-noetherian groups, because
it is not easy to find a noetherian group which is not polycyclic-by-finite [8]. As
is well known, if KG is noetherian then G is also noetherian, but the converse
is not true generally. A group of the class of non-noetherian groups which is, in
particular, finitely generated has often non-abelian free subgroups; for instance, a
free group, a locally free group, a free product, an amalgamated free product, an
HNN-extension, a Fuchsian group, a one relator group, etc (a free Burnside group
is not the case, though). Primitivity of group rings of some of those groups have
been obtained gradually: In 1973, primitivity of group rings of free products [4].
In 1989, primitivity of group rings of amalgamated free products [1]. In 2007,
primitivity of group rings of ascending HNN-extensions of free groups [6]. In
2011, primitivity of group rings of locally free groups [7]. However, much of them
remains unknown. In the present note, we focus on a local property which is
often satisfied by groups with non-abelian free subgroups:

(x) For each finite subset M of non-identity elements of G,
there exists a subset X of three elements of G such that
(z7'g1z1) - - (2! gm®Tm) = 1 implies z; = ;41 for some i, where
g; € M and z; € X.

We can see that if G is countably infinite group and satisfies (x), then KG is
primitive for any field K. More generally, we can get the following theorem:

Theorem 1.2. Let G be a non-trivial group which has a free subgroup whose

cardinality is the same as that of G. Suppose that G satisfies the condition (*). If

R is a domain with |R| < |G|, then the group ring RG of G over R is primitive.
In particular, the group algebra KG is primitive for any field K.

As an application of the theorem, we generalize [1]; we state the primitivity of
group algebras of locally amalgamated free products.

One of the main method to prove Theorem 1.2 is a graph theoretic method
which is called SR-graph theory.

2 Theory of SR-graphs

Let G = (V, E) denote a simple graph; a finite undirected graph which has no
multiple edges or loops, where V is the set of vertices and E is the set of edges. A
finite sequence voeqv; - - - €0, Whose terms are alternately elements e,’s in E and
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vy's in V' is called a path of length p in G if v, # vy for any ¢,¢' € {0,1,---,p}
with ¢ # ¢'; it is often simply denoted by vgv; - - - v,. Two vertices v and w of G
are said to be connected if there exists a path from v to w in G. Connection is an
equivalence relation on V', and so there exists a decomposition of V' into subsets
Ci’'s (1 < i < m) for some m > 0 such that v,w € V are connected if and only if
both v and w belong to the same set C;. The subgraph (C;, E;) of G generated
by C; is called a (connected) component of G. Any graph is a disjoint union of
components. For v € V', we denote by C(v) the component of G which contains
the vertex v.

Definition 2.1. Let G = (V,E) and H = (V, F) be simple graphs with the same
vertex set V. Forv € V, let U(v) be the set consisting of all neighbours of v in H
and v itself: U(v) = {w eV | vw € F}U{v}. A triple (V,E, F) is an SR-graph
(for a sprint relay like graph) if it satisfies the following conditions:

(SR1) For anyv eV, C(v)NU(v) = {v}.
(SR2) Every component of G is a complete graph.

If G has no isolated vertices, that is, if v € V then vw € E for some w € V, then
SR-graph (V, E, F) is called a proper SR-graph.

We call U(v) the SR-neighbour set of v € V, and set (V) = {U(v) | v € V}.
For v,w € V with v # w, it may happen that U(v) = U(w), and so |Y(V)| < |V|
generally. Let S = (V, E, F) be an SR-graph. We say S is connected if the graph
(V, EU F) is connected.

Definition 2.2. Let S = (V,E,F) be an SR-graph and p > 1. Then a path
VIW1 VW2, * - -, UpWypUpt1 N the graph (V,E U F) is called a SR-path of length
p in S if either e = vawy, € E and f; = wevgr1 € F or f; = vywy, € F
and e, = wyvgr1 € E for 1 < q < p; simply denoted by (e1, fi, -+, €p, fp) OF
(fi,e1,- -+, for €p), Tespectively. If, in addition, it is a cycle in (V, EUF); namely,
Upy1 = V1, then it is an SR-cycle of length p in S.

To prove Theorem 1.2, we use some results for SR-graphs and apply them to
the Formanek’s method. We can give Formanek’s method, as follows:

Proposition 2.3. (See [4]) Let RG be the group ring of a group G over a domain
R with identity. Suppose that the cardinality of R is not larger than that of G.
If for each non-zero a € RG, there exists an element £(a) in the ideal RGaRG
generated by a such that the right ideal p = 3, pe\(0y(€(@) + 1)RG is proper;
namely, p # RG, then RG is primitive.



The main difficulty here is how to choose elements e(a)’s so as to make p
be proper. Now, p is proper if and only if » # 1 for all € p. Since p is
generated by the elements of form (e(a) + 1) with a # 0, r has the presentation,
r =) sen(€(a) + 1)b, where Il is a subset which consists of finite number of
elements of RG X RG both of whose components are non-zero. Moreover, £(a)
and b are linear combinations of elements of GG, and so we have

r= Y Y (cgBugh+ Buh), (1)

(a,b)ETL gESa,he€Ts

where S, and T, are the support of e(a) and b respectively and both ay and By
are elements in K. In the above presentation (1), if there exists gh such that
gh # 1 and does not coincide with the other ¢’h”’s and h’’s, then r # 1 holds.
(Strictly speaking: Let Q5 = S, X Tp. If there exist (a,b) € II and (g, h) in Qg
with gh # 1 such that gh # ¢'h’ and gh # A’ for any (c,d) € II and for any
(¢, ) in Q4 with (¢, #') # (g,h), then 7 # 1 holds.)
~ On the contrary, if r = 1, then for each gh in (1) with gh # 1, there exists
another ¢’h’ or A’ in (1) such that either gh = ¢’h’ or gh = h' holds. Suppose here
" that there exist go;_1h; and gpihi1 (1 =1,---,m) in (1) such that the following
equations hold:

githi = gaho,
gzha = gshs,
: (2)

P2m—-1Pm = Gomhmy1  and  hppy = Ry

Eliminating h;’s in the above, we can see that these equations imply the equation
9195 -+ gam—195~ = 1. If we can choose £(a)’s so that their supports g;’s never
satisfy such an equation, then we can prove that r % 1 holds by contradiction.
We need therefore only to see when supports g’s of €(a)’s satisfy equations as
described in (2).

By making use of graph theoretic considerations, we can state the following
theorems:

Theorem 2.4. Let S = (V, E, F) be an SR-graph and let wg and wr be, respec-
tively, the number of components of G = (V, E) and H = (V, F). Suppose that
every component of H = (V, F) is a complete graph and S is connected. Then S
has an SR-cycle if and only if wg + wp < |V|+ 1.

In particular, if S is proper and a < v then S has an SR-cycle.

We next consider the case that every component H; = (V;,F;) of H is a
complete k-partite graph Ky, ..m,. Let p(H;) be the maximum number in
{my,---,mi}. For W C V, Ig(W) denotes the set of isolated vertices in W on
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G; namely Ig(W) = {v € W | dg(v) = 0}. €(V) denotes the set of components
of Von H=(V,F).

Theorem 2.5. Let S = (V,E,F) be an SR-graph and €(V) = {V4,---,V,o}
with n > 0. Suppose that every component H; = (V;, F;) of H is a complete
k-partite graph with k > 1, where k is depend on H;. If |V;| > 2u(H;) for each
i € {1,---,n} and [Ig(V)| < n then S has an SR-cycle.

3 Proof of the main theorem

Let G be a group and M, - - -, M, non-empty subsets of G which do not include
the identity element. We say My, -, M, are mutually reduced in G if for each

finite elements gy, - - -, g, in the union of M;’s, g; - gm =1 implies both g; and
gi+1 are in the same M for some ¢ and j. If M; = {xl b,y My = {z£'} in the
above, then we say simply z1, - - -, Zr, are mutually reduced

In this section, we shall prove Theorem 1.2 after preparing three lemmas.

Lemma 3.1. (See [9, Theorem 2]) Let K' be a field and G a group. If A(G)
is trivial and K'G is primitive, then for any field extension K of K', KG is
primitive.

Lemma 3.2. Let G be a non-trivial group, m > 0 and n > 0. For non-trivial

distinct elements fi;’s (i = 1,2,3, j=1,---,m) in G and for distinct elements
g’s(i=1,---,n) in G, we set

S =U _1Si, where S; = {fi; | 1 <j <m},

T ={g|l1<i<n},

V =8xT,

M, ={f2" f fa 1 5 k=1,2,--,m, j £k} (i=1,2,3),

I ={(f,9eV|fa#rfyg forany(f’g)GVwzth(f’g)#(f,g)}

Then if My, My and M3 are mutually reduced, then |I| > n.

Lemma 3.3. Let G be a non-trivial group and n > 0. For each i =1,2,---,n,
let fi,- -+, fim; be distinct m; > 0 elements of G; fi, # fiq for p # q, and let z;;
(1 <i<mn,1<j<3) be distinct elements in G. we set

§ =Up1 S, where §;={f;; | 1<j <mi},
X =Ur, Xi, where X; ={z; | 1<j <3},
V =UL, Vi, where V, = X; x Sj,

I ={(z,f)eV |zf#a'f forany (2, f) eV with (¢, f) # (z, )}

If zi;’s are mutually reduced elements, then |I| > m, where m =my + -+ + my.



Proof of Theorem 1.2. Let B be the basis of a free subgroup of G whose car-
dinality is the same as that of G. Then we may assume that the cardinality of
B is also same as G, that is, |B| = |G|. In addition, since |R| < |G|, we have
that |B| = |RG|. We can divide B into three subsets By, By and Bj each of
whose cardinality is |B|. It is then obvious that the elements in B are mutually
reduced. Let ¢ be a bijection from B to RG \ {0} and o, a bijection from B to
B, s=1,23.

For b € B, let ¢(b) = (e, asf, where ay € R and F} is the support of ¢(b).
We set

My={f¥, ff | £,f € Fo f £ f}.

Since G satisfies the condition (x), there exist xy;, Tpz, Tos € G such that M,* =
{z 2y, ot f  f'aee | £, f € By, f# '} (= 1,2,3) are mutually reduced.
We here define £(b) and €!(b) by

3 3

e(d) => > ou(b)zy'p(b)ze and €'(b) =e(b) + 1. (3)

s=1 t=1
Note that €(b) is an element in the ideal of RG generated by ¢(b). Let p =
Y s € (B)RG be the right ideal generated by e!(b) for all b € B. If w € p, then

we can express w by

w = Zel(b)ub = Z(E(b)ub + up) (4)
beA beA
for some non-empty finite subsets A of B and u, in RG. In view of Proposition
2.3, in order to prove that RG is primitive, we need only show that p is proper;
p # RG. To do this, it suffices to show that w # 1.
Let up = 3, #, Brh, where Hy is the support of u;. Substituting this and
@(b) = 3 tep, @7 f into (3), we obtain the following expression of £(b)us:

3 3
e(b)ub = Z Z Z Z afﬁhybsxélfwbth, where Ybs = Us(b)' (5)

s=1 t=1 feF, heH,

In what follows, for the sake of convenience, we represent ybsa:b"t1 fzyh by
ys:ct_lf;cth, and we note that y, and x; are depend on b € B. For s = 1,2,3,
we here set

3
Eps = Z Z Z s Brys&(zs, f, h), where &(zy, f,h) = 27 fxih. (6)

t=1 feF, hcH,

That is, e(b)us = Ep1 + Epa + Ep3. We can see that there exist more than |Hy|
isolated elements in the expression (6) of Ey, for each s = 1, 2, 3. Strictly speaking,
if we set Xb = {$1,CC2,$3}, Fb = Xb X Fb X Hb and
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Is = {(xty fa h) I (mh f7 h) € Fb> {(xta fa h) 7é f(xp, f,7 hl)
for any (z,, f', ') € Ty with (zp, f', #') # (z¢, f, h)},
then |I;| > |Hy|. In fact, since M;** (t = 1,2, 3) are mutually reduced, it follows
from lemma 3.2 that |I;| > |Hy|.
Now, we shall see that w # 1 holds, where w as in (4). In (4), we set that
wy = Y 4 €(b)up and wy =Y, , up. We have then that

3
w; = 5 E By, and w = w; + ws.
beA s=1

Let Supp(E}ys) be the support of Eys and let my, = |Supp(Ep;)|. We should note
that |Supp(Eps)| = mp for all s = 1,2,3. It is obvious that m, > ||, and so
my > |Hp| by the above. Since yps (b € A,1 < s < 3) are mutually reduced, by
virtue of Lemma 3.3, we have |Supp(w;)| > D, 4 ms. Moreover we have that

|Supp(w)| > [Supp(w:)| — |Supp(ws)]

> Zmb_ZIHbl

beA beA
> 0,

which implies |Supp(w)| > 2. In particular, w # 1. We have thus seen that RG
is primitive.

Finally, we shall show that KG is primitive for any field K. Let K’ be a prime
field. Since G satisfies (x) and |K’| < |G|, we have already seen that K'G is
primitive. In view of Lemma 3.1, we need only show that A(G) = 1.

Let g be a non-identity element in G. We can see that there exist infinite
conjugate elements of g. In fact, if it is not true, then the set M of conjugate
elements of g in G is a finite set. Since G satisfles (%), for M, there exists
Z1,Zy € G such that M* and M® are mutually reduced. Since g is in M,
(7 gz1) (25 fxs)~! # 1 for any f € M, and thus z7'gzy # z;'fz,. Hence
(2125 ")Yg(x125 ") # f for all f € M, which implies a contradiction 27 gz ¢ M,
where £ = z;2; . This completes the proof of theorem. O

4 An application of the main theorem

In what follows in this section, let A xy B be the free product of A and B with
H amalgamated, and suppose that A # H # B. For z,uy, -, u, € A *xg B, we
write T = uy - - - Up OF TP = Uy - - - U, provided that u; - - - u, is a reduced form for
z, that is, x = u; - - - un, u; € H, u; € AU B, u; and u;;; are not both in A or
both in B. For z as above, n is called the length of z and is denoted here by I(z).
If z € H, we define [(z) = 0. For z,U,V,W € A xg B, we also write z = UVW
provided that x = UVW and z = u; - - - un,v; -+ - Uppwy - - - w; where U = uy - - - uy,



V=uv-v,and W= w;---w,. For aset M of finite elements of G and an
element z € G, we denote {z~!fz | f € M} by M®.
We consider the following condition on A xy B:

(t) B # H and there exist elements a and a, in A\ H such that aa. # 1
and e 'HaN H = 1.

In this section, as an application of the main theorem, we generalize [1] and
state the primitivity of group algebras of locally amalgamated free products:

Theorem 4.1. Let R be a domain (i.e. a ring with no zero divisors) and G a
non-trivial group which has a free subgroup whose cardinality is the same as that
of G. Suppose that for each finite elements f1,-- -, fu in G, there exists a subgroup
N containing fi1,- -, fn such that N is isomorphic to A xg B which satisfies the
condition (1).

Then the group ring RG is primitive provided |R| < |G|. In particular, KG is
primitive for any field K.

If A# H # B, then A xg B has always a countable free subgroup. Hence,
in the above theorem, the assumption on existence of a free subgroup is needed
only in the case of |G| > No.

In view of Theorem 1.2, to prove the theorem above, we need only show that G
satisfies the condition (%) described in the previous section. In the above theorem,
it is supposed that for each finite elements f1, - - - .f, in G, there exists a subgroup
N = A xg B containing fi,---.f, such that N satisfies (). Hence it suffices to
show that A xg B has always the property (x) provided it satisfies (f). In fact,
if b€ B\ H and a,a, € A which satisfy aa, # 1 and a™'Ha N H = 1, then for
i=1,23,

;= (b7la)¥abla (b7 1a)w if aa, ¢ H (7)
z; = (bla Y)“a b0 ta (b7 e ) if a,a g H (8)
are desired elements in A xg B; namely, for M = {f1,--.f.}, M® (i = 1,2,3)
are mutually reduced, where w; = [ + ¢ for ¢ € {1,2,3} and [ is the maximum

number in the set {I(f;) | 1 < ¢ < n}. We shall confirm this after preparing a
lemma.

Lemma 4.2. Let G = A xyg B. Suppose that G satisfies (1), and let a be an
element as in (1) above. Let 1 # f € G withI(f) =1 and W = (a”1b)" f(b~1a)™,
where m is a positive integer and b € B\ H.

If m > 1+ 1, then a reduced form of W is of form

W = (a7')V (b 'a) for some reduced form word V, (9)

otherwise W = (b~1a)** for some k > 0.
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Proof. Let f in G with I(f) = [. Then a reduced form f” of f is one of following
forms:

(T0) fP=hifl =0,

(T1) ff=aifs-- B0y,
(T2) fP=o1By a1,
(T3) fP=pBrag- a1,
(T4) fP=pag- - By,

where h € H, o, € A\ H and ; € B\ H.

In order to see that the assertions hold, it suffices to show when f? is of the
above forms; (T0)-(T4).

Let W = (a=1b)™ f?(b~1a)™. If f* is of form (T1), then it is trivial that W* is
of form (9). We may therefore assume that f# is not of form (T1).

We first suppose that f7 is of form (T2). It suffices to show that W¥ is of form
(9), otherwise W; = (a~!b)*, where k > 0. We prove it by induction on .

Let [ = 0; thus f* = h # 1 is of form (T0). We set b’ = bhb~! and o' = a~!Va.
Then b # 1 because of h # 1. If ¥’ € H, then W = (a~b)™ 1a"Wa(b1a)™ ! is
of of form (9), and therefore we may assume that ¥’ € H. In this case, if a’ € H
then o’ = 1 by (1), which implies a contradiction; ' = 1. Hence we have that
o' ¢ H and thus o’ € A\ H, which implies that W = (a~!b)™ 1a/(b~1a)™! is of
form (9).

Now let [ > 0 and suppose that the assertion holds provided that the length
of f* is less than I. Since f* is of form (T2), in this case, [ > 2. If B! € H,
then the assertion is trivial, and so we may assume that 8b~! € H and also
that oy_18b7la € H. Let o] ; = oy_18b~ta. Ifl = 2 and o] ; = 1, then
W = (a7'b)™(b~ta)™!, and hence W = (a~1b). We may therefore assume that
ap, # 1forl =2 Weset ff =0 forl =2and f = ayB---B|_, for
I > 2, where Bj_, = B2a)_; € B\ H. Let W' = (a7 o)™ f/(b~'a)™ . In
the case of | = 2, since I(f’) = 0, we have already seen that a reduced form of
W' is of form (9). In the case of [ > 2, f’ is of form (T2). Since I(f') < ! and
m—1>1U(f)=Uf)+2>1(f)+1, it follows from our inductive hypothesis that
a reduced form of W’ is of form (9), otherwise W’ = (a~1b)?, where p > 0. Since
W = a~1oW’, if W is not of form (9), then W = (a~!b)P*1. We have thus seen
that the assertion of lemma holds when f* is of form (T2).

If f# is of form (T4), then (f?)~! is of form (T2). Therefore, replacing W by
W1, it follows from the above that the assertion of lemma holds when f* is of
form (T4). So the remaining case is that f* is of form (T3).

Suppose that f? is of form (T3). We shall show in this case that W* is of form
(9). It is proved by induction on .

Let I = 1; thus f° = B;. Let ¥ = bB;b~! and o’ = a'¥a. Then ¥’ # 1 because



of B8, # 1. Similarly as above, we may assume that &’ € H. In this case, a’ € A\H
by (1) and W = (a*0)™1a/(b~1a)™"! is of form (9) because of m > 2.

Now, let I > 1 and suppose that W is of form (9) provided that the length
of f# is less than l. Since f* is of form (T3), in this case, | > 2. Let 8] = bB;
and of, = a7'fjas. As we saw above, we may assume that 2, € H and also
of € H. Let B3 = o4fs, and then 8} € B\ H. We set that f' = By -+ 15
and W' = (a7'b)™ ! f'(b=la)™ L. Since I(f) =1—-2<landm—1>I(f) =
I(f)+2>1(f")+1, it follows from our inductive hypothesis that a reduced form
of W' is of form (9), and so is W because of W = W’b~!a. This complete the
proof of the lemma. O

Proof of Theorem 4.1. Let M = {f1,---, fu} be a set of finite non-trivial el-
ements in G. By the assumption of the statement, there exists a subgroup N
with M C N such that N ~ Axy B which satisfies (f). As was mentioned at the
beginning of this section, it suffices to show that M* (i = 1,2, 3) are mutually
reduced, where z; (i = 1,2,3) are as in (7) and (8). Replacing a and a, in (7)
by a™! and a;! respectively, we can get the case of (8), and so we shall show
only in the case of (7); namely, we let z; = (b~'a)* a,b~'a;*(b~1a)* and suppose
aa, &€ H.

Let gip = 27" foz; (p =1,---,n) are the elements in M. Since w; = [ + % for
i € {1,2,3} and [ is the maximum number in the set {I(f;) | 1 < < n}, by virtue
of Lemma, 4.2, for each i € {1,2,3} and each p € {1,2,---,n}, the reduced form
Wip of (a™1b)“ f,(b~a)“ is either (b~1a)** for some k > 0 or (a='b)V;,(b~'a) for
some reduced form word V;,. In either case, since aa, € A\ H, we may consider
that a_ lmpa* is a reduced form word. We set A;, = a;‘lmpa*. We have then
that

9ip = X1 A X, (10)

where X; = b~'a; (b~ a)“:. If i # 7, say i > j, then a reduced form B;; of X X;!
is b~'a;*(b71a)“~“iq,b. Therefore we have

9ip9iq = Xi ' AipBij Aje X;. (11)

Now, let g = g1 - - - gx be any finite product of g;’s in U?=1 M?®i. If both of g;
and g;,, are not in the same M %, since the reduced form of g; is of form (10), by
noting that g;g;;1 has the reduced form of (11), it can be easily seen by induction
on k that g = X7 'UXj, for some reduced form word U with U 5 1 in G. Hence,
in particular, g # 1. We have thus seen that M®’s are mutually reduced. This
completes the proof of the theorem. O
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