Non-Noetherian groups and primitivity of their group rings

Tsunekazu Nishinaka * Department of Business Administration Okayama Shoka University

A ring R is (right) primitive provided it has a faithful irreducible (right) R-module. If non-trivial group G is finite or abelian, then the group ring KG over a field K can never be primitive. In the present note, we focus on a local property which is often satisfied by groups with non-abelian free subgroups:

(*) For each finite subset M of non-identity elements of G, there exists a subset X of three elements of G such that $(x_1^{-1}g_1x_1)\cdots(x_m^{-1}g_mx_m) = 1$ implies $x_i = x_{i+1}$ for some i, where $g_i \in M$ and $x_i \in X$.

We can see that if G is countably infinite group and satisfies (*), then KG is primitive for any field K. More generally, if G has a free subgroup whose cardinality is the same as that of G and satisfies (*), then KG is primitive for any field K. As an application of this theorem, we improve or generalize [1]; we state the primitivity of group algebras of locally amalgamated free products.

1 Primitive group rings

Let R be a ring with the identity element (R need not be commutative). A ring R is right primitive if and only if there exists a faithful irreducible right R-module M_R , where M_R is irreducible provided it has no non-trivial submodules, and M_R is faithful provided the annihilator of it is zero. The above definition is equivalent to the following: There exists a maximal right ideal ρ in R which contains no non-trivial ideals.

Let KG be the group ring of a group G over a field K. If non-trivial group G is finite or abelian, then the group ring KG over a field K can never be primitive. The first example of primitive group rings was offered by Formanek and Snider [5] in 1972. After that, many examples of primitive group rings were constructed. In 1978, Domanov [2], Farkas-Passman [3] and Roseblade [10] gave the complete solution for primitivity of group rings of polycyclic-by-finite groups.

Theorem 1.1. (Domanov[2], Farkas-Passman[3], Roseblade[10]) Let G be a nontrivial polycyclic-by-finite group. Then KG is primitive if and only if $\Delta(G) = 1$

^{*}Partially supported by Grants-in-Aid for Scientific Research under grant no. 23540063

and K is non-absolute, where $\Delta(G) = \{g \in G \mid [G : C_G(g)] < \infty\}$ and K is absolute if it is algebraic over a finite field.

Polycyclic-by-finite groups are belong to the class of noetherian groups. Almost all other infinite groups are belong to the class of non-noetherian groups, because it is not easy to find a noetherian group which is not polycyclic-by-finite [8]. As is well known, if KG is noetherian then G is also noetherian, but the converse is not true generally. A group of the class of non-noetherian groups which is, in particular, finitely generated has often non-abelian free subgroups; for instance, a free group, a locally free group, a free product, an amalgamated free product, an HNN-extension, a Fuchsian group, a one relator group, etc (a free Burnside group is not the case, though). Primitivity of group rings of some of those groups have been obtained gradually: In 1973, primitivity of group rings of free products [4]. In 1989, primitivity of group rings of amalgamated free products [4]. In 2007, primitivity of group rings of ascending HNN-extensions of free groups [6]. In 2011, primitivity of group rings of locally free groups [7]. However, much of them remains unknown. In the present note, we focus on a local property which is often satisfied by groups with non-abelian free subgroups:

(*) For each finite subset M of non-identity elements of G, there exists a subset X of three elements of G such that $(x_1^{-1}g_1x_1)\cdots(x_m^{-1}g_mx_m)=1$ implies $x_i=x_{i+1}$ for some i, where $g_i \in M$ and $x_i \in X$.

We can see that if G is countably infinite group and satisfies (*), then KG is primitive for any field K. More generally, we can get the following theorem:

Theorem 1.2. Let G be a non-trivial group which has a free subgroup whose cardinality is the same as that of G. Suppose that G satisfies the condition (*). If R is a domain with $|R| \leq |G|$, then the group ring RG of G over R is primitive. In particular, the group algebra KG is primitive for any field K.

As an application of the theorem, we generalize [1]; we state the primitivity of group algebras of locally amalgamated free products.

One of the main method to prove Theorem 1.2 is a graph theoretic method which is called SR-graph theory.

2 Theory of SR-graphs

Let $\mathcal{G} = (V, E)$ denote a simple graph; a finite undirected graph which has no multiple edges or loops, where V is the set of vertices and E is the set of edges. A finite sequence $v_0e_1v_1\cdots e_pv_p$ whose terms are alternately elements e_q 's in E and

 v_q 's in V is called a path of length p in \mathcal{G} if $v_q \neq v_{q'}$ for any $q, q' \in \{0, 1, \dots, p\}$ with $q \neq q'$; it is often simply denoted by $v_0v_1 \cdots v_p$. Two vertices v and w of \mathcal{G} are said to be connected if there exists a path from v to w in \mathcal{G} . Connection is an equivalence relation on V, and so there exists a decomposition of V into subsets C_i 's $(1 \leq i \leq m)$ for some m > 0 such that $v, w \in V$ are connected if and only if both v and w belong to the same set C_i . The subgraph (C_i, E_i) of \mathcal{G} generated by C_i is called a (connected) component of \mathcal{G} . Any graph is a disjoint union of components. For $v \in V$, we denote by C(v) the component of \mathcal{G} which contains the vertex v.

Definition 2.1. Let $\mathcal{G} = (V, E)$ and $\mathcal{H} = (V, F)$ be simple graphs with the same vertex set V. For $v \in V$, let U(v) be the set consisting of all neighbours of v in \mathcal{H} and v itself: $U(v) = \{w \in V \mid vw \in F\} \cup \{v\}$. A triple (V, E, F) is an SR-graph (for a sprint relay like graph) if it satisfies the following conditions:

(SR1) For any $v \in V$, $C(v) \cap U(v) = \{v\}$.

(SR2) Every component of \mathcal{G} is a complete graph.

If \mathcal{G} has no isolated vertices, that is, if $v \in V$ then $vw \in E$ for some $w \in V$, then SR-graph (V, E, F) is called a proper SR-graph.

We call U(v) the SR-neighbour set of $v \in V$, and set $\mathfrak{U}(V) = \{U(v) \mid v \in V\}$. For $v, w \in V$ with $v \neq w$, it may happen that U(v) = U(w), and so $|\mathfrak{U}(V)| \leq |V|$ generally. Let S = (V, E, F) be an SR-graph. We say S is connected if the graph $(V, E \cup F)$ is connected.

Definition 2.2. Let S = (V, E, F) be an SR-graph and p > 1. Then a path $v_1w_1v_2w_2, \dots, v_pw_pv_{p+1}$ in the graph $(V, E \cup F)$ is called a SR-path of length p in S if either $e_q = v_qw_q \in E$ and $f_q = w_qv_{q+1} \in F$ or $f_q = v_qw_q \in F$ and $e_q = w_qv_{q+1} \in E$ for $1 \leq q \leq p$; simply denoted by $(e_1, f_1, \dots, e_p, f_p)$ or $(f_1, e_1, \dots, f_p, e_p)$, respectively. If, in addition, it is a cycle in $(V, E \cup F)$; namely, $v_{p+1} = v_1$, then it is an SR-cycle of length p in S.

To prove Theorem 1.2, we use some results for SR-graphs and apply them to the Formanek's method. We can give Formanek's method, as follows:

Proposition 2.3. (See [4]) Let RG be the group ring of a group G over a domain R with identity. Suppose that the cardinality of R is not larger than that of G. If for each non-zero $a \in RG$, there exists an element $\varepsilon(a)$ in the ideal RGaRG generated by a such that the right ideal $\rho = \sum_{a \in RG \setminus \{0\}} (\varepsilon(a) + 1) RG$ is proper; namely, $\rho \neq RG$, then RG is primitive.

The main difficulty here is how to choose elements $\varepsilon(a)$'s so as to make ρ be proper. Now, ρ is proper if and only if $r \neq 1$ for all $r \in \rho$. Since ρ is generated by the elements of form $(\varepsilon(a) + 1)$ with $a \neq 0$, r has the presentation, $r = \sum_{(a,b)\in\Pi} (\varepsilon(a) + 1)b$, where Π is a subset which consists of finite number of elements of $RG \times RG$ both of whose components are non-zero. Moreover, $\varepsilon(a)$ and b are linear combinations of elements of G, and so we have

$$r = \sum_{(a,b)\in\Pi} \sum_{g\in S_a, h\in T_b} (\alpha_g \beta_h g h + \beta_h h), \tag{1}$$

where S_a and T_b are the support of $\varepsilon(a)$ and b respectively and both α_g and β_h are elements in K. In the above presentation (1), if there exists gh such that $gh \neq 1$ and does not coincide with the other g'h''s and h''s, then $r \neq 1$ holds. (Strictly speaking: Let $\Omega_{ab} = S_a \times T_b$. If there exist $(a, b) \in \Pi$ and (g, h) in Ω_{ab} with $gh \neq 1$ such that $gh \neq g'h'$ and $gh \neq h'$ for any $(c, d) \in \Pi$ and for any (g', h') in Ω_{cd} with $(g', h') \neq (g, h)$, then $r \neq 1$ holds.)

On the contrary, if r = 1, then for each gh in (1) with $gh \neq 1$, there exists another g'h' or h' in (1) such that either gh = g'h' or gh = h' holds. Suppose here that there exist $g_{2i-1}h_i$ and $g_{2i}h_{i+1}$ $(i = 1, \dots, m)$ in (1) such that the following equations hold:

$$g_{1}h_{1} = g_{2}h_{2},$$

$$g_{3}h_{2} = g_{4}h_{3},$$

$$\vdots$$

$$g_{2m-1}h_{m} = g_{2m}h_{m+1} \text{ and } h_{m+1} = h_{1}.$$
(2)

Eliminating h_i 's in the above, we can see that these equations imply the equation $g_1g_2^{-1}\cdots g_{2m-1}g_{2m}^{-1} = 1$. If we can choose $\varepsilon(a)$'s so that their supports g_i 's never satisfy such an equation, then we can prove that $r \neq 1$ holds by contradiction. We need therefore only to see when supports g's of $\varepsilon(a)$'s satisfy equations as described in (2).

By making use of graph theoretic considerations, we can state the following theorems:

Theorem 2.4. Let S = (V, E, F) be an SR-graph and let ω_E and ω_F be, respectively, the number of components of $\mathcal{G} = (V, E)$ and $\mathcal{H} = (V, F)$. Suppose that every component of $\mathcal{H} = (V, F)$ is a complete graph and S is connected. Then S has an SR-cycle if and only if $\omega_E + \omega_F < |V| + 1$.

In particular, if S is proper and $\alpha \leq \gamma$ then S has an SR-cycle.

We next consider the case that every component $\mathcal{H}_i = (V_i, F_i)$ of \mathcal{H} is a complete k-partite graph K_{m_1,\dots,m_k} . Let $\mu(\mathcal{H}_i)$ be the maximum number in $\{m_1,\dots,m_k\}$. For $W \subseteq V$, $I_{\mathcal{G}}(W)$ denotes the set of isolated vertices in W on

 \mathcal{G} ; namely $I_{\mathcal{G}}(W) = \{v \in W \mid d_{\mathcal{G}}(v) = 0\}$. $\mathfrak{C}(V)$ denotes the set of components of V on $\mathcal{H} = (V, F)$.

Theorem 2.5. Let S = (V, E, F) be an SR-graph and $\mathfrak{C}(V) = \{V_1, \dots, V_n\}$ with n > 0. Suppose that every component $\mathcal{H}_i = (V_i, F_i)$ of \mathcal{H} is a complete k-partite graph with k > 1, where k is depend on \mathcal{H}_i . If $|V_i| > 2\mu(\mathcal{H}_i)$ for each $i \in \{1, \dots, n\}$ and $|I_{\mathcal{G}}(V)| \leq n$ then S has an SR-cycle.

3 Proof of the main theorem

Let G be a group and M_1, \dots, M_n non-empty subsets of G which do not include the identity element. We say M_1, \dots, M_n are mutually reduced in G if for each finite elements g_1, \dots, g_m in the union of M_i 's, $g_1 \dots g_m = 1$ implies both g_i and g_{i+1} are in the same M_j for some i and j. If $M_1 = \{x_1^{\pm 1}\}, \dots, M_m = \{x_m^{\pm 1}\}$ in the above, then we say simply x_1, \dots, x_m are mutually reduced.

In this section, we shall prove Theorem 1.2 after preparing three lemmas.

Lemma 3.1. (See [9, Theorem 2]) Let K' be a field and G a group. If $\triangle(G)$ is trivial and K'G is primitive, then for any field extension K of K', KG is primitive.

Lemma 3.2. Let G be a non-trivial group, m > 0 and n > 0. For non-trivial distinct elements f_{ij} 's $(i = 1, 2, 3, j = 1, \dots, m)$ in G and for distinct elements g_i 's $(i = 1, \dots, n)$ in G, we set

$$\begin{array}{ll} S &= \bigcup_{i=1}^{3} S_{i}, \ \text{where} \ S_{i} = \{f_{ij} \mid 1 \leq j \leq m\}, \\ T &= \{g_{i} \mid 1 \leq i \leq n\}, \\ V &= S \times T, \\ M_{i} &= \{f_{ij}^{\pm 1}, \ f_{ij}^{-1} f_{ik} \mid j, k = 1, 2, \cdots, m, \ j \neq k\} \ (i = 1, 2, 3), \\ I &= \{(f,g) \in V \mid fg \neq f'g' \ \text{ for any} \ (f',g') \in V \ \text{with} \ (f',g') \neq (f,g)\}. \end{array}$$

Then if M_1 , M_2 and M_3 are mutually reduced, then |I| > n.

Lemma 3.3. Let G be a non-trivial group and n > 0. For each $i = 1, 2, \dots, n$, let f_{i1}, \dots, f_{im_i} be distinct $m_i > 0$ elements of G; $f_{ip} \neq f_{iq}$ for $p \neq q$, and let x_{ij} $(1 \le i \le n, 1 \le j \le 3)$ be distinct elements in G. we set

$$S = \bigcup_{i=1}^{3} S_{i}, \text{ where } S_{i} = \{f_{ij} \mid 1 \le j \le m_{i}\}, \\ X = \bigcup_{i=1}^{n} X_{i}, \text{ where } X_{i} = \{x_{ij} \mid 1 \le j \le 3\}, \\ V = \bigcup_{i=1}^{n} V_{i}, \text{ where } V_{i} = X_{i} \times S_{i}, \\ I = \{(x, f) \in V \mid xf \ne x'f' \text{ for any } (x', f') \in V \text{ with } (x', f') \ne (x, f)\}.$$

If x_{ij} 's are mutually reduced elements, then |I| > m, where $m = m_1 + \cdots + m_n$.

Proof of Theorem 1.2. Let *B* be the basis of a free subgroup of *G* whose cardinality is the same as that of *G*. Then we may assume that the cardinality of *B* is also same as *G*, that is, |B| = |G|. In addition, since $|R| \leq |G|$, we have that |B| = |RG|. We can divide *B* into three subsets B_1 , B_2 and B_3 each of whose cardinality is |B|. It is then obvious that the elements in *B* are mutually reduced. Let φ be a bijection from *B* to $RG \setminus \{0\}$ and σ_s a bijection from *B* to B_s , s = 1, 2, 3.

For $b \in B$, let $\varphi(b) = \sum_{f \in F_b} \alpha_f f$, where $\alpha_f \in R$ and F_b is the support of $\varphi(b)$. We set

$$M_b = \{ f^{\pm 1}, \ f^{-1}f' \mid f, f' \in F_b, f \neq f' \}.$$

Since G satisfies the condition (*), there exist $x_{b1}, x_{b2}, x_{b3} \in G$ such that $M_b^{x_{bt}} = \{x_{bt}^{-1}f^{\pm 1}x_{bt}, x_{bt}^{-1}f^{-1}f'x_{bt} \mid f, f' \in F_b, f \neq f'\}$ (t = 1, 2, 3) are mutually reduced. We here define $\varepsilon(b)$ and $\varepsilon^1(b)$ by

$$\varepsilon(b) = \sum_{s=1}^{3} \sum_{t=1}^{3} \sigma_s(b) x_{bt}^{-1} \varphi(b) x_{bt} \text{ and } \varepsilon^1(b) = \varepsilon(b) + 1.$$
(3)

Note that $\varepsilon(b)$ is an element in the ideal of RG generated by $\varphi(b)$. Let $\rho = \sum_{b \in B} \varepsilon^1(b) RG$ be the right ideal generated by $\varepsilon^1(b)$ for all $b \in B$. If $w \in \rho$, then we can express w by

$$w = \sum_{b \in A} \varepsilon^1(b) u_b = \sum_{b \in A} (\varepsilon(b) u_b + u_b)$$
(4)

for some non-empty finite subsets A of B and u_b in RG. In view of Proposition 2.3, in order to prove that RG is primitive, we need only show that ρ is proper; $\rho \neq RG$. To do this, it suffices to show that $w \neq 1$.

Let $u_b = \sum_{h \in H_b} \beta_h h$, where H_b is the support of u_b . Substituting this and $\varphi(b) = \sum_{f \in F_b} \alpha_f f$ into (3), we obtain the following expression of $\varepsilon(b)u_b$:

$$\varepsilon(b)u_b = \sum_{s=1}^3 \sum_{t=1}^3 \sum_{f \in F_b} \sum_{h \in H_b} \alpha_f \beta_h y_{bs} x_{bt}^{-1} f x_{bt} h, \text{ where } y_{bs} = \sigma_s(b).$$
(5)

In what follows, for the sake of convenience, we represent $y_{bs}x_{bt}^{-1}fx_{bt}h$ by $y_sx_t^{-1}fx_th$, and we note that y_s and x_t are depend on $b \in B$. For s = 1, 2, 3, we here set

$$E_{bs} = \sum_{t=1}^{3} \sum_{f \in F_b} \sum_{h \in H_b} \alpha_f \beta_h y_s \xi(x_t, f, h), \text{ where } \xi(x_t, f, h) = x_t^{-1} f x_t h.$$
(6)

That is, $\varepsilon(b)u_b = E_{b1} + E_{b2} + E_{b3}$. We can see that there exist more than $|H_b|$ isolated elements in the expression (6) of E_{bs} for each s = 1, 2, 3. Strictly speaking, if we set $X_b = \{x_1, x_2, x_3\}, \Gamma_b = X_b \times F_b \times H_b$ and

$$I_s = \{(x_t, f, h) \mid (x_t, f, h) \in \Gamma_b, \xi(x_t, f, h) \neq \xi(x_p, f', h')$$

for any $(x_p, f', h') \in \Gamma_b$ with $(x_p, f', h') \neq (x_t, f, h)\},$

then $|I_s| > |H_b|$. In fact, since $M_b^{x_{bt}}$ (t = 1, 2, 3) are mutually reduced, it follows from lemma 3.2 that $|I_s| > |H_b|$.

Now, we shall see that $w \neq 1$ holds, where w as in (4). In (4), we set that $w_1 = \sum_{b \in A} \varepsilon(b) u_b$ and $w_2 = \sum_{b \in A} u_b$. We have then that

$$w_1 = \sum_{b \in A} \sum_{s=1}^{3} E_{bs}$$
 and $w = w_1 + w_2$.

Let $Supp(E_{bs})$ be the support of E_{bs} and let $m_b = |Supp(E_{b1})|$. We should note that $|Supp(E_{bs})| = m_b$ for all s = 1, 2, 3. It is obvious that $m_b \ge |I_s|$, and so $m_b > |H_b|$ by the above. Since y_{bs} ($b \in A, 1 \le s \le 3$) are mutually reduced, by virtue of Lemma 3.3, we have $|Supp(w_1)| > \sum_{b \in A} m_b$. Moreover we have that

$$|Supp(w)| \geq |Supp(w_1)| - |Supp(w_2)|$$

>
$$\sum_{b \in A} m_b - \sum_{b \in A} |H_b|$$

> 0,

which implies $|Supp(w)| \ge 2$. In particular, $w \ne 1$. We have thus seen that RG is primitive.

Finally, we shall show that KG is primitive for any field K. Let K' be a prime field. Since G satisfies (*) and $|K'| \leq |G|$, we have already seen that K'G is primitive. In view of Lemma 3.1, we need only show that $\Delta(G) = 1$.

Let g be a non-identity element in G. We can see that there exist infinite conjugate elements of g. In fact, if it is not true, then the set M of conjugate elements of g in G is a finite set. Since G satisfies (*), for M, there exists $x_1, x_2 \in G$ such that M^{x_1} and M^{x_2} are mutually reduced. Since g is in M, $(x_1^{-1}gx_1)(x_2^{-1}fx_2)^{-1} \neq 1$ for any $f \in M$, and thus $x_1^{-1}gx_1 \neq x_2^{-1}fx_2$. Hence $(x_1x_2^{-1})^{-1}g(x_1x_2^{-1}) \neq f$ for all $f \in M$, which implies a contradiction $x^{-1}gx \notin M$, where $x = x_1x_2^{-1}$. This completes the proof of theorem.

4 An application of the main theorem

In what follows in this section, let $A *_H B$ be the free product of A and B with H amalgamated, and suppose that $A \neq H \neq B$. For $x, u_1, \dots, u_n \in A *_H B$, we write $x \equiv u_1 \cdots u_n$ or $x^{\rho} = u_1 \cdots u_n$ provided that $u_1 \cdots u_n$ is a reduced form for x, that is, $x = u_1 \cdots u_n$, $u_i \notin H$, $u_i \in A \cup B$, u_i and u_{i+1} are not both in A or both in B. For x as above, n is called the length of x and is denoted here by l(x). If $x \in H$, we define l(x) = 0. For $x, U, V, W \in A *_H B$, we also write $x \equiv UVW$ provided that x = UVW and $x \equiv u_1 \cdots u_n v_1 \cdots v_m w_1 \cdots w_l$ where $U \equiv u_1 \cdots u_n$,

 $V \equiv v_1 \cdots v_m$ and $W \equiv w_1 \cdots w_l$. For a set M of finite elements of G and an element $x \in G$, we denote $\{x^{-1}fx \mid f \in M\}$ by M^x .

We consider the following condition on $A *_H B$:

(†) $B \neq H$ and there exist elements a and a_* in $A \setminus H$ such that $aa_* \neq 1$ and $a^{-1}Ha \cap H = 1$.

In this section, as an application of the main theorem, we generalize [1] and state the primitivity of group algebras of locally amalgamated free products:

Theorem 4.1. Let R be a domain (i.e. a ring with no zero divisors) and G a non-trivial group which has a free subgroup whose cardinality is the same as that of G. Suppose that for each finite elements f_1, \dots, f_n in G, there exists a subgroup N containing f_1, \dots, f_n such that N is isomorphic to $A *_H B$ which satisfies the condition (\dagger).

Then the group ring RG is primitive provided $|R| \leq |G|$. In particular, KG is primitive for any field K.

If $A \neq H \neq B$, then $A *_H B$ has always a countable free subgroup. Hence, in the above theorem, the assumption on existence of a free subgroup is needed only in the case of $|G| > \aleph_0$.

In view of Theorem 1.2, to prove the theorem above, we need only show that G satisfies the condition (*) described in the previous section. In the above theorem, it is supposed that for each finite elements f_1, \dots, f_n in G, there exists a subgroup $N = A *_H B$ containing f_1, \dots, f_n such that N satisfies (†). Hence it suffices to show that $A *_H B$ has always the property (*) provided it satisfies (†). In fact, if $b \in B \setminus H$ and $a, a_* \in A$ which satisfy $aa_* \neq 1$ and $a^{-1}Ha \cap H = 1$, then for i = 1, 2, 3,

$$x_{i} = (b^{-1}a)^{\omega_{i}}a_{*}b^{-1}a_{*}^{-1}(b^{-1}a)^{\omega_{i}} \quad \text{if} \ aa_{*} \notin H$$
(7)

$$x_{i} = (b^{-1}a^{-1})^{\omega_{i}}a_{*}^{-1}b^{-1}a_{*}(b^{-1}a^{-1})^{\omega_{i}} \quad \text{if} \ a_{*}a \notin H$$
(8)

are desired elements in $A *_H B$; namely, for $M = \{f_1, \dots, f_n\}$, M^{x_i} (i = 1, 2, 3) are mutually reduced, where $\omega_i = l + i$ for $i \in \{1, 2, 3\}$ and l is the maximum number in the set $\{l(f_i) \mid 1 \leq i \leq n\}$. We shall confirm this after preparing a lemma.

Lemma 4.2. Let $G = A *_H B$. Suppose that G satisfies (\dagger) , and let a be an element as in (\dagger) above. Let $1 \neq f \in G$ with l(f) = l and $W = (a^{-1}b)^m f(b^{-1}a)^m$, where m is a positive integer and $b \in B \setminus H$.

If m > l + 1, then a reduced form of W is of form

$$W \equiv (a^{-1}b)V(b^{-1}a) \text{ for some reduced form word } V, \tag{9}$$

otherwise $W \equiv (b^{-1}a)^{\pm k}$ for some k > 0.

Proof. Let f in G with l(f) = l. Then a reduced form f^{ρ} of f is one of following forms:

 $\begin{array}{ll} (\mathrm{T0}) & f^{\rho} = h \text{ if } l = 0, \\ (\mathrm{T1}) & f^{\rho} = \alpha_{1}\beta_{2}\cdots\beta_{l-1}\alpha_{l}, \\ (\mathrm{T2}) & f^{\rho} = \alpha_{1}\beta_{2}\cdots\alpha_{l-1}\beta_{l}, \\ (\mathrm{T3}) & f^{\rho} = \beta_{1}\alpha_{2}\cdots\alpha_{l-1}\beta_{l}, \\ (\mathrm{T4}) & f^{\rho} = \beta_{1}\alpha_{2}\cdots\beta_{l-1}\alpha_{l}, \end{array}$

where $h \in H$, $\alpha_i \in A \setminus H$ and $\beta_i \in B \setminus H$.

In order to see that the assertions hold, it suffices to show when f^{ρ} is of the above forms; (T0)-(T4).

Let $W = (a^{-1}b)^m f^{\rho}(b^{-1}a)^m$. If f^{ρ} is of form (T1), then it is trivial that W^{ρ} is of form (9). We may therefore assume that f^{ρ} is not of form (T1).

We first suppose that f^{ρ} is of form (T2). It suffices to show that W_1^{ρ} is of form (9), otherwise $W_1 \equiv (a^{-1}b)^k$, where k > 0. We prove it by induction on l.

Let l = 0; thus $f^{\rho} = h \neq 1$ is of form (T0). We set $b' = bhb^{-1}$ and $a' = a^{-1}b'a$. Then $b' \neq 1$ because of $h \neq 1$. If $b' \notin H$, then $W \equiv (a^{-1}b)^{m-1}a^{-1}b'a(b^{-1}a)^{m-1}$ is of of form (9), and therefore we may assume that $b' \in H$. In this case, if $a' \in H$ then a' = 1 by (†), which implies a contradiction; b' = 1. Hence we have that $a' \notin H$ and thus $a' \in A \setminus H$, which implies that $W \equiv (a^{-1}b)^{m-1}a'(b^{-1}a)^{m-1}$ is of form (9).

Now let l > 0 and suppose that the assertion holds provided that the length of f^{ρ} is less than l. Since f^{ρ} is of form (T2), in this case, $l \ge 2$. If $\beta_l b^{-1} \notin H$, then the assertion is trivial, and so we may assume that $\beta_l b^{-1} \in H$ and also that $\alpha_{l-1}\beta_l b^{-1}a \in H$. Let $\alpha'_{l-1} = \alpha_{l-1}\beta_l b^{-1}a$. If l = 2 and $\alpha'_{l-1} = 1$, then $W = (a^{-1}b)^m(b^{-1}a)^{m-1}$, and hence $W \equiv (a^{-1}b)$. We may therefore assume that $\alpha'_{l-1} \neq 1$ for l = 2. We set $f' = \alpha'_{l-1}$ for l = 2 and $f' = \alpha_1\beta_2\cdots\beta'_{l-2}$ for l > 2, where $\beta'_{l-2} = \beta_{l-2}\alpha'_{l-1} \in B \setminus H$. Let $W' = (a^{-1}b)^{m-1}f'(b^{-1}a)^{m-1}$. In the case of l = 2, since l(f') = 0, we have already seen that a reduced form of W' is of form (9). In the case of l > 2, f' is of form (T2). Since l(f') < l and m-1 > l(f) = l(f') + 2 > l(f') + 1, it follows from our inductive hypothesis that a reduced form of W' is of form (9), otherwise $W' \equiv (a^{-1}b)^p$, where p > 0. Since $W = a^{-1}bW'$, if W^{ρ} is not of form (9), then $W \equiv (a^{-1}b)^{p+1}$. We have thus seen that the assertion of lemma holds when f^{ρ} is of form (T2).

If f^{ρ} is of form (T4), then $(f^{\rho})^{-1}$ is of form (T2). Therefore, replacing W by W^{-1} , it follows from the above that the assertion of lemma holds when f^{ρ} is of form (T4). So the remaining case is that f^{ρ} is of form (T3).

Suppose that f^{ρ} is of form (T3). We shall show in this case that W^{ρ} is of form (9). It is proved by induction on l.

Let l = 1; thus $f^{\rho} = \beta_1$. Let $b' = b\beta_1 b^{-1}$ and $a' = a^{-1}b'a$. Then $b' \neq 1$ because

of $\beta_1 \neq 1$. Similarly as above, we may assume that $b' \in H$. In this case, $a' \in A \setminus H$ by (†) and $W \equiv (a^{-1}b)^{m-1}a'(b^{-1}a)^{m-1}$ is of form (9) because of m > 2.

Now, let l > 1 and suppose that W^{ρ} is of form (9) provided that the length of f^{ρ} is less than l. Since f^{ρ} is of form (T3), in this case, l > 2. Let $\beta'_1 = b\beta_1$ and $\alpha'_2 = a^{-1}\beta'_1\alpha_2$. As we saw above, we may assume that $\beta'_1 \in H$ and also $\alpha'_2 \in H$. Let $\beta'_3 = \alpha'_2\beta_3$, and then $\beta'_3 \in B \setminus H$. We set that $f' = \beta'_3\alpha_4 \cdots \alpha_{l-1}\beta_l$ and $W' = (a^{-1}b)^{m-1}f'(b^{-1}a)^{m-1}$. Since l(f') = l - 2 < l and m - 1 > l(f) =l(f') + 2 > l(f') + 1, it follows from our inductive hypothesis that a reduced form of W' is of form (9), and so is W because of $W = W'b^{-1}a$. This complete the proof of the lemma.

Proof of Theorem 4.1. Let $M = \{f_1, \dots, f_n\}$ be a set of finite non-trivial elements in G. By the assumption of the statement, there exists a subgroup N with $M \subset N$ such that $N \simeq A *_H B$ which satisfies (†). As was mentioned at the beginning of this section, it suffices to show that M^{x_i} (i = 1, 2, 3) are mutually reduced, where x_i (i = 1, 2, 3) are as in (7) and (8). Replacing a and a_* in (7) by a^{-1} and a_*^{-1} respectively, we can get the case of (8), and so we shall show only in the case of (7); namely, we let $x_i = (b^{-1}a)^{\omega_i}a_*b^{-1}a_*^{-1}(b^{-1}a)^{\omega_i}$ and suppose $aa_* \notin H$.

Let $g_{ip} = x_i^{-1} f_p x_i$ $(p = 1, \dots, n)$ are the elements in M^{x_i} . Since $\omega_i = l + i$ for $i \in \{1, 2, 3\}$ and l is the maximum number in the set $\{l(f_i) \mid 1 \le i \le n\}$, by virtue of Lemma 4.2, for each $i \in \{1, 2, 3\}$ and each $p \in \{1, 2, \dots, n\}$, the reduced form W_{ip} of $(a^{-1}b)^{\omega_i} f_p(b^{-1}a)^{\omega_i}$ is either $(b^{-1}a)^{\pm k}$ for some k > 0 or $(a^{-1}b)V_{ip}(b^{-1}a)$ for some reduced form word V_{ip} . In either case, since $aa_* \in A \setminus H$, we may consider that $a_*^{-1}W_{ip}a_*$ is a reduced form word. We set $A_{ip} \equiv a_*^{-1}W_{ip}a_*$. We have then that

$$g_{ip} \equiv X_i^{-1} A_{ip} X_i, \tag{10}$$

where $X_i = b^{-1}a_*^{-1}(b^{-1}a)^{\omega_i}$. If $i \neq j$, say i > j, then a reduced form B_{ij} of $X_i X_j^{-1}$ is $b^{-1}a_*^{-1}(b^{-1}a)^{\omega_i-\omega_j}a_*b$. Therefore we have

$$g_{ip}g_{jq} \equiv X_i^{-1}A_{ip}B_{ij}A_{jq}X_j. \tag{11}$$

Now, let $g = g_1 \cdots g_k$ be any finite product of g_i 's in $\bigcup_{j=1}^3 M^{x_j}$. If both of g_i and g_{i+1} are not in the same M^{x_j} , since the reduced form of g_i is of form (10), by noting that $g_i g_{i+1}$ has the reduced form of (11), it can be easily seen by induction on k that $g \equiv X_1^{-1}UX_k$ for some reduced form word U with $U \neq 1$ in G. Hence, in particular, $g \neq 1$. We have thus seen that M^{x_i} 's are mutually reduced. This completes the proof of the theorem.

References

- B. O. Balogun, On the primitivity of group rings of amalgamated free products, Proc. Amer. Math. Soc., 106(1)(1989), 43-47
- [2] O. I. Domanov, Primitive group algebras of polycyclic groups, Sibirsk. Mat. Ž., 19(1)(1978), 37-43
- [3] D. R. Farkas and D. S. Passman, Primitive Noetherian group rings, Comm. Algebra, 6(3)(1978), 301-315.
- [4] E. Formanek, Group rings of free products are primitive, J. Algebra, 26(1973), 508-511
- [5] E. Formanek and R. L. Snider, *Primitive group rings*, Proc. Amer. Math. Soc., 36(1972), 357-360
- [6] T. Nishinaka, Group rings of proper ascending HNN extensions of countably infinite free groups are primitive, J. Algebra, **317**(2007), 581-592
- [7] T. Nishinaka, Group rings of countable non-abelian locally free groups are primitive, Int. J. algebra and computation, **21**(3) (2011), 409-431
- [8] A. Ju. Ol'shanskiĭ, An infinite simple torsion-free Noetherian group, Izv. Akad. Nauk BSSR, Ser. Mat., 43(1979), 1328-1393.
- [9] D. S. Passman, Primitive group rings, Pac. J. Math., 47(1973), 499-506.
- [10] J. E. Roseblade, Prime ideals in group rings of polycyclic groups, Proc. London Math. Soc., 36(3)(1978), 385-447. Corrigenda "Prime ideals in group rings of polycyclic groups" Proc. London Math. Soc., 36(3)(1979), 216-218.