THE FULL TRANSFORMATION SEMIGROUP OF FINITE RANK AND AMALGAMATION BASES FOR FINITE SEMIGROUPS*

KUNITAKA SHOJI (島根大学・総合理工学部 庄司 邦孝) DEPARTMENT OF MATHEMATICS SHIMANE UNIVERSITY

In this paper, we prove that the full transformation semigroup of finite rank is an amalgamation bases for finite semigroups.

1 Semigroup amalgamation bases

Definition Let \mathcal{A} be the class of finite semigroups.

An amalgam [S,T;U] of \mathcal{A} is called to be *weakly embedable* in \mathcal{A} if there exist a semigroup K belonging to \mathcal{A} and monomorphisms $\xi_1 : S \to K$, $\xi_1 : T \to K$ such that the restrictions to U of ξ_1 and ξ_2 are equal to each other (that is, $\xi_1(S) \cap \xi_2(T) \supseteq \xi_1(U)$).

An amalgam [S,T;U] of \mathcal{A} is called to be *strongly embeddable* in \mathcal{A} if $\xi_1(S) \cap \xi_2(T) = \xi_1(U)$.

A semigroup U in \mathcal{A} is amalgamation base [resp. weak amalgamation base] if any amalgam with a core U in \mathcal{A} is strongly embeddable [resp. weakly embeddable] in \mathcal{A} .

Result 1 [[3], Theorem 12] Any finite semigroup U is an amalgamation base for finite semigroups if and only if U is a weak amalgamation base for finite semigroups.

Result 2[[5], Theorem 1] If a finite semigroup U is an amalgamation base for finite semigroups, then all \mathcal{J} -classes of U form a chain.

Definition Let U be a semigroup with zero, 0, and $a, b \in S$.

The set $\{s \in U \mid sa = 0\}$ is called the *left annihilator* of a in S and is denoted by $Ann_l(a)$. In this case, we say that U satisfies the condition Ann_l if $ann_l(a) = ann_l(b)$ implies aU = bU. The *right annihilator* and the condition Ann_r are defined by left-right duality.

Result 3 [[9], Theorem 1.6] Let U be a finite regular semigroup whose all the \mathcal{J} -classes form a chain. Suppose that there is a chain of principal ideals such that U_n is a maximal subgroup and each U_i/U_{i+1} is a completely 0-simple semigroups satisfying the conditions Ann_i and Ann_r $(1 \le i \le n-1)$. Then U is an amalgamation base for finite semigorups.

^{*}This is an absrtact and the paper will appear elsewhere.

Consider $\mathcal{T}(X)$, where the composition is from right to left.

The following result is a characterization of semigroups which is amalgamation baseses for finite semigroups.

Result 4. [[6], Lemma 1 and Corollary] Let U be a finite semigroup. Then the following are equivalent:

(1) U is an amalgamation base for finite semigroups ;

(2) For any two embeddings ϕ_1, ϕ_2 of U into the full transformation semigroup $\mathcal{T}(X)$, there exist a finite set Y and two embeddings $\delta_1, \delta_2 : \mathcal{T}(X) \to \mathcal{T}(Y)$ such that Y contains X as a subset and $\delta_1\phi_1$ and $\delta_2\phi_2$ coincide on U;

(3) For any finite semigroups S, T, any finite faithful left [right] S-set X and any finite faithful left [right] T-set Y, there exist a finite faithful left [right] S-set $X' \supseteq X$ and a finite faithful left [right] T-set $Y' \supseteq Y$ such that the U-sets X', Y' are U-isomorphic to each other.

2 The main theorem

Consider $\mathcal{T}^{op}(X)$, where the composition is from left to right.

Let |X| = n and $I_k = \{f \in \mathcal{T}^{op}(X) \mid |(X)f| \le k\}$. Then $\mathcal{T}^{op}(X) = I_n \supset I_{n-1} \supset \cdots \supset I_2 \supset I_1$ is a chain of ideals of $\mathcal{T}^{op}(X)$ and each factor semigroup I_i/I_{i-1} $(i \ge 2)$ is a completely 0-simple semigroup satisfying the conditions Ann_l and Ann_r .

Let R_n denote the set I_1 of contant maps on X and S_n the set of bijective maps on X. Then in $\mathcal{T}^{op}(X)$. Then $S_n \cup R_n$ is a subsemigroup of $\mathcal{T}^{op}(X)$.

Proposition. The semigroup $S_n \cup R_n$ is an amalgamation bases for finite semigroups.

By using Proposition and an analogue of Result 3, we obtain

The main theorem. The full transformation semigroup of finite rank is an amalgamation bases for finite semigroups.

References

- S. Bulman-Fleming and K. McDowell. Absolutely flat semigroups. Pacific J. Math. 107(1983), 319-333.
- [2] A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Amer. Math. Soc., Math. Survey, No.7, Providence, R.I., Vol.I(1961); Vol.II(1967).
- [3] T. E. Hall. Representation extension and amalgamation for semigroups. Quart. J. Math. Oxford (2) 29(1978), 309-334.
- [4] T. E. Hall. Finite inverse semigroups and amalgamations. Semigroups and their applications, Reidel, 1987, pp. 51-56.

- T. E. Hall and M.S. Putcha, The potential *J*-relation and amalgamation bases for finite semigroups, Proc. Amer. Math. Soc. 95(1985), 309-334.
- [6] T. E. Hall and K. Shoji, Finite bands and amalgamation bases for finite semigroups, Submitted. Communications in Algebra, 30(2002), 911-933.
- [7] J. Okniński and M.S. Putcha, Embedding finite semigroup amalgams, J. Austral. Math. Soc. (Series A) 51(1991), 489-496.
- [8] K. Shoji, A proof of Okniński and Putcha's theorem, Proc. of the Third Inter. Colloq. on Words, Languages and Combinatorics. Ed. by M. Ito &T Imaoka World Scientific, 2003, 420-427.
- K. Shoji, Regular semigroups which are amalgamation bases for finite semigroups, Algebra Colloquium 14(2007) 245-254.